MOVING LASER: A Simple Technique to Remove Thermal Distortions in Pulsed Solid State Lasers

Subrat Biswal, John Nees
Center for Ultrafast Optical Science
University of Michigan, Ann Arbor, MI
Motivation

Average power of solid-state lasers limited by thermal effects.

Yb and Nd-doped glasses have numerous attractive properties for CPA, however glass has poor thermal conductivity.

Need to remove thermal effects

1. Thermal distortions
 a. Thermal lensing
 b. Thermal birefringence
 c. Higher-order aberrations

2. Thermal fracture
Three Steps for the Removal of Thermal Distortions

1. Uniform Pumping
 Pumping of the laser medium results in a uniform inversion distribution transverse to the lasing beam path.

2. Lase before Thermal Diffusion
 Pumping and lasing must occur during the time period when the resulting uniform temperature profile exists (< 1 ms).

3. Move out heated material, Move in cooled material
 Heated region must be moved away from the lasing path to be cooled and a cooled region moved into the lasing path before the next pump pulse arrives.
Distinctions From Other Moving Lasers

- Laser operation occurs during transient uniform temperature increase
- Effectively single-shot thermal effects
- Laser operation occurs with a steady-state temperature distribution
- Different techniques used to remove thermal effects:
 - zig-zag slab
 - thin disks
Other Geometries for Moving Gain Media

Linearly Translating Slab

Rotating Cassette of Rods

Rotating Disk
Interferometer Setup to Measure the Transient Temperature Profile

- AOM - acousto-optic modulator chops He-Ne to 10 μs pulses synchronized to the 10 Hz of the alexandrite laser
- HR1 - high reflector at 760 nm, transmissive at 632 nm
- HR2 - high reflector at 632 nm
- BS - 50:50 beamsplitters at 632 nm
Pump Beam Spatial Profile Incident on Nd:glass Hollow Cylinder
Interferograms Imaged from the Face of the Hollow Cylinder

Hollow cylinder is stationary and pumped for 3 s at 10 Hz

Curved fringes indicates heat diffusion in outgoing media

Circle indicates pumped region of 2.4 mm diameter. Half-wave increase within circle indicates nearly uniform temperature rise.

Straight fringes indicates cooled incoming media

Hollow cylinder is rotating upwards at a speed of 0.2 rev/sec
Moving Gain Medium Respective Sizes for a 1 kW laser (1 J at 1 kHz)

<table>
<thead>
<tr>
<th>Material</th>
<th>Saturation Fluence (J/cm²)</th>
<th>Thermal cond. (W/m/K)</th>
<th>Beam radius (cm)</th>
<th>Thermal decay const (sec)</th>
<th>Cylinder radius (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd:silicate</td>
<td>7.8</td>
<td>1.1</td>
<td>0.14</td>
<td>1.3</td>
<td>59</td>
</tr>
<tr>
<td>Nd:YAG</td>
<td>0.7</td>
<td>14</td>
<td>0.48</td>
<td>1.8</td>
<td>270</td>
</tr>
<tr>
<td>Ti:sapphire</td>
<td>0.62</td>
<td>52</td>
<td>0.51</td>
<td>0.33</td>
<td>54</td>
</tr>
<tr>
<td>Yb:YAG</td>
<td>9.6</td>
<td>7.3</td>
<td>0.13</td>
<td>0.25</td>
<td>10</td>
</tr>
<tr>
<td>Yb:phosphate</td>
<td>50</td>
<td>0.85</td>
<td>0.056</td>
<td>0.30</td>
<td>5.4</td>
</tr>
</tbody>
</table>

\[r_c \propto \frac{r_p^3 R}{k} \]