Ultrafast Electronic Probe with Ultrafine Spatial Resolution

John Whitaker
Center for Ultrafast Optical Science
University of Michigan, Ann Arbor, MI
Ultrafast electronics probe with Ultrafine spatial resolution

To meet the measurement needs of:

- The IC industry where standard production will incorporate 100 nm line dimension by 2007.
- The scientific community where high-speed, high-efficiency devices will be working with reduced dimensionality nanostructures.
Properties of LT- GaAs grown near 200°C

- femtosecond carrier lifetime

- resistivity $> 10^7$ ohm-cm

- responsivity 1 to 100 mA/W

- MSM gates with < 10 fF capacitance
Principle: Photoconductively gated sampling

- provide direct contact of photoconductive gate to devices for maximum sensitivity
- sense voltage waveforms using a picosecond gate with low parasitics

Material: Low-Temperature GaAs & metal contacts

- define probe by conventional etch processes
- define contact tip by self-terminating lift-off
- utilize subpicosecond carrier lifetime in to achieve temporal resolution with low parasitics
- utilize sub-100 nm tip radius to scan and contact surface structures
Probe processing

- grow layered structure
- etch front side
- pattern metal electrodes
- form tip by self-terminating lift-off
- pot front side in black wax
- thin and etch to remove substrate
- mount probes for scanning probe microscope
MSM capacitance

The elliptic integral of the first kind, defined as:

\[K(k) = \int_{0}^{\frac{\pi}{2}} \frac{d\phi}{\sqrt{1-k^2\sin^2\phi}} \]

The capacitance, C, of an interdigital MSM structure with area, \(A \), finger width, \(w \), and center-to-center finger spacing of, \(d \), is

\[C = \frac{K(k)}{K(k')} \epsilon \left(1 + \frac{\epsilon}{\epsilon'} \right) \frac{A}{d} \]

where,

\[k = \tan^2 \left(\frac{\pi w}{4d} \right) \]

\[k' = \sqrt{1 - k^2} \]
Image acquired by fiber-supported probe
Conclusions

- A high sensitivity probe of picosecond electrical signals with nanometer spatial resolution has been demonstrated.

Future work

- Probes will be adapted to the cryogenic environment and used to sample signals on quantum wire structures.
- Testing of multi-chip-modules will be performed.
- Applications of the probe to VLSI testing will be developed.