EECS 442 – Computer vision

Introduction to Image Filters

- Convolution
- Blurring
- Sharpening
- Multi-scale representation
- Aliasing and sampling

Reading: [FP] Chapters: 7,8

Some slides of this lectures are courtesy of prof F. Li, prof S. Lazebnik, and various other lecturers
From the 3D to 2D

$P = [x, y, z]$

$P = [x, y, z]$

Let’s now focus on 2D

Extract building blocks
Extract useful building blocks
The big picture...

Feature Detection

e.g. DoG

e.g. SIFT

Feature Description

database of local descriptors

Matching / Indexing / Detection
Images as functions

• We can think of an image as a function, f, from \mathbb{R}^2 to \mathbb{R}:

 – Defined over a rectangle, with a finite range:
 • $f: [a,b] \times [c,d] \to [0,255]$
 – $f(x, y)$ gives the intensity at position (x, y)

• A color image:

 $$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Source: S. Seitz
Images as functions
Images as functions

• Images are usually **digital (discrete)**:
 – **Sample** the 2D space on a regular grid

• The image can now be represented as a matrix of integer values

```
  62  79  23  119  120  05  4  0
  10  10   9   62   12   78  34  0
 10  58 197   46   46    0   0  48
176 135   5  188  191   68   0  49
  2   1   1   29   26   37   0  77
  0  89 144  147  187  102  62 208
255 252   0  166  123  62   0  31
166  63 127  17   1   0  99  30
```

Source: S. Seitz
Filters

• **Linear filtering:**
 – Form a new image whose pixels are a weighted sum of original pixel values
 – use the same set of weights at each point

Goals:

Extract useful information from the images
 • Features (edges, corners, blobs…)

Modify or enhance image properties
 - super-resolution, in-painting, de-noising
De-noising

Super-resolution

In-painting

Original
Salt and pepper noise

Inpainting, M. Bertalmio et al.
http://www.ina.upf.es/~mbertalmio/restoration.html
Convolution

• Let f be the image and g be the kernel. The output of convolving f with g is denoted by $f * g$.

$$(f * g)[m, n] = \sum_{k,l} f[k, l] g[m-k, n-l]$$

Weighted product of $f(k,l)$ by $g(-(k,l))$ computed at different locations m,n

• MATLAB: `conv2` vs. `filter2` (also `imfilter`)
Box filter

- Kernel \(k \) with positive entries, that sum to 1.
- Notice: all weights are equal

\[
g[\cdot, \cdot] = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}
\]

Slide credit: David Lowe (UBC)
Box filter

\[F[x, y] \]

\[G[x, y] \]

\[(f * g)[m, n] = \sum_{k,l} f[k, l] g[m - k, n - l]\]
(f \ast g)[m, n] = \sum_{k,l} f[k, l] g[m-k, n-l]
Box filter

\[F[x, y] \]

\[G[x, y] \]

\[(f * g)[m, n] = \sum_{k,l} f[k, l] g[m - k, n - l]\]

Source: S. Seitz
Box filter

\[F[x, y] \]

\[G[x, y] \]

\[
(f \ast g)[m, n] = \sum_{k,l} f[k, l] g[m-k, n-l]
\]

Source: S. Seitz
Box filter

\[F[x, y] \]

\[G[x, y] \]

\((f \ast g)[m, n] = \sum_{k,l} f[k, l] g[m-k, n-l]\)

Source: S. Seitz
Box filter

\[F[x, y] \]

\[G[x, y] \]

\[(f \ast g)[m,n] = \sum_{k,l} f[k,l] g[m-k,n-l] \]

Source: S. Seitz
Box filter

- Replaces each pixel with an average of its neighborhood.
- Achieve smoothing effect (remove sharp features)

\[
g[\cdot, \cdot] \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

Slide credit: David Lowe (UBC)
Example: Smoothing with a box filter
Smoothing with a Gaussian

- Weight contributions of neighboring pixels by nearness

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

- Constant factor at front makes volume sum to 1 (can be ignored, as we should normalize weights to sum to 1 in any case).

Slide credit: Christopher Rasmussen

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.003</td>
<td>0.013</td>
<td>0.022</td>
<td>0.013</td>
<td>0.003</td>
</tr>
<tr>
<td>0.013</td>
<td>0.059</td>
<td>0.097</td>
<td>0.059</td>
<td>0.013</td>
</tr>
<tr>
<td>0.022</td>
<td>0.097</td>
<td>0.159</td>
<td>0.097</td>
<td>0.022</td>
</tr>
<tr>
<td>0.013</td>
<td>0.059</td>
<td>0.097</td>
<td>0.059</td>
<td>0.013</td>
</tr>
<tr>
<td>0.003</td>
<td>0.013</td>
<td>0.022</td>
<td>0.013</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Choosing kernel width

- Rule of thumb: set filter half-width to about 3σ
Smoothing with a Gaussian
Gaussian noise

- Mathematical model: sum of many independent factors
- Assumption: independent, zero-mean noise
Smoothing reduces pixel noise:

Each row shows smoothing with Gaussians of different width; each column shows different amounts of Gaussian noise.
Gaussian filters

- Remove “high-frequency” components from the image (low-pass filter)

- Convolution with self is another Gaussian
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sqrt{2} \sigma$

- **Separable** kernel
 - Factors into product of two 1D Gaussians
 - Useful: can convolve all rows, then all columns

Source: K. Grauman
Separability of the Gaussian filter

\[G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

\[= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right)\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{y^2}{2\sigma^2}\right)\right) \]

The 2D Gaussian can be expressed as the product of two functions, one a function of \(x \) and the other a function of \(y \).

In this case, the two functions are the (identical) 1D Gaussian.
Median filtering

- A **median filter** operates over a window by selecting the median intensity in the window.

![Median filtering diagram]

- Is median filtering linear?

Source: K. Grauman
Median filter

• What advantage does median filtering have over Gaussian filtering?
 – Robustness to outliers
 – Remove salt & pepper noise

Source: K. Grauman
Salt-and-pepper noise

- **Salt and pepper noise**: contains random occurrences of black and white pixels
Filter salt & pepper noise

Salt-and-pepper noise

Median filtered

- MATLAB: medfilt2(image, [h w])

Source: K. Grauman
Median vs. Gaussian filtering

Gaussian

3x3 5x5 7x7

Median
Convolution: Properties

- **Commutative:** $a \ast b = b \ast a$
 - Conceptually no difference between filter and signal

- **Associative:** $a \ast (b \ast c) = (a \ast b) \ast c$
 - Often apply several filters one after another: $(((a \ast b_1) \ast b_2) \ast b_3)$
 - This is equivalent to applying one filter: $a \ast (b_1 \ast b_2 \ast b_3)$

- **Distributes over addition:** $a \ast (b + c) = (a \ast b) + (a \ast c)$

- ** Scalars factor out:** $ka \ast b = a \ast kb = k(a \ast b)$

- **Identity:** unit impulse $e = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $a \ast e = a$
Convolution: Properties

- **Linearity**: \(\text{filter}(f_1 + f_2) = \text{filter}(f_1) + \text{filter}(f_2) \)

- **Shift invariance**: \(\text{filter} \left(\text{shift}(f) \right) = \text{shift} \left(\text{filter}(f) \right) \)

 (same behavior regardless of pixel location)

- Theoretical result: any linear shift-invariant operator can be represented as a convolution
Other examples of convolution

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\quad = \quad ?
\]

Source: D. Lowe
Other examples of convolution

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

Filtered
(no change)

Source: D. Lowe
Other examples of convolution

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{array}
\] = ?

Source: D. Lowe
Practice with linear filters

Original

=

Shifted left
By 1 pixel

Source: D. Lowe
Other examples of convolution

Original

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\frac{1}{9}
\]

= ?

Source: D. Lowe
Other examples of convolution

Original

Blur (with a box filter)

Source: D. Lowe
Other examples of convolution

Original

(Note that filter sums to 1)

Source: D. Lowe
• What does blurring take away?

[Images of an original image, a blurred (smoothed) image, and a detail image]

= detail

• Let’s add it back:

[Images of an original image, a detail image, and a sharpened image]

= sharpened
Other examples of convolution

Sharpening filter
- Accentuates differences with local average

Source: D. Lowe
Sharpening

before

after

Source: D. Lowe
Sharpening

unit impulse

Gaussian

Laplacian of Gaussian

\[f \ast ((1 + \alpha)e^{-g}) \]

Impulse function
Differentiation and convolution

• Recall, for 2D function, $f(x,y)$:

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y)}{\varepsilon} - \frac{f(x, y)}{\varepsilon} \right)$$

• This is linear and shift invariant \rightarrow convolution

• We could approximate this as

$$\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}$$

2D Kernel

-1 0 1
-1 0 1
-1 0 1

Rudimentary edge detector!
Differentiation and convolution

Directional Derivatives Of A Binary Image

<table>
<thead>
<tr>
<th>Original Image</th>
<th>Arguments: -w 3 -a 0</th>
<th>Arguments: -w 5 -a 0</th>
<th>Arguments: -w 7 -a 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2D Kernel</th>
<th>2D Kernel</th>
<th>2D Kernel</th>
<th>2D Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>-1 0 1</td>
<td>-2 -1 0 1 2</td>
<td>-3 -2 -1 0 1 2 3</td>
</tr>
<tr>
<td>0 1 0</td>
<td>-1 0 1</td>
<td>-2 -1 0 1 2</td>
<td>-3 -2 -1 0 1 2 3</td>
</tr>
<tr>
<td>0 0 0</td>
<td>-1 0 1</td>
<td>-2 -1 0 1 2</td>
<td>-3 -2 -1 0 1 2 3</td>
</tr>
</tbody>
</table>

2D Kernel:
- For -w 3, the 2D Kernel is:

 \[
 \begin{array}{ccc}
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 0 \\
 \end{array}
 \]

- For -w 5, the 2D Kernel is:

 \[
 \begin{array}{ccc}
 -1 & 0 & 1 \\
 -1 & 0 & 1 \\
 -1 & 0 & 1 \\
 \end{array}
 \]

- For -w 7, the 2D Kernel is:

 \[
 \begin{array}{ccc}
 -2 & -1 & 0 \\
 -2 & -1 & 0 \\
 -2 & -1 & 0 \\
 \end{array}
 \]

Differentiation and convolution...
Differentiation and convolution
Analyzing the image at different scales
Why is a multi-scale representation useful?

• Find template matches at all scales
 – e.g., when finding hands or faces, we don’t know what size they will be in a particular image
 – Template size is constant, but image size changes

• Efficient search for correspondence
 – look at coarse scales, then refine with finer scales

• Examining all levels of detail
 – Find edges with different amounts of blur
 – Find textures with different spatial frequencies (levels of detail)
Sub-sampling the image

• How about taking every second pixel?

Throw away every other row and column to create a 1/2 size image
Sub-sampling the image

Problem: Aliasing

- Sub-sampling may be dangerous....
- Characteristic errors may appear:
 - “Wagon wheels rolling the wrong way in movies”
 - “Checkerboards disintegrate in ray tracing”
 - “Striped shirts look funny on color television”

Source: D. Forsyth
Aliasing

• 1D example (sinewave):

Source: S. Marschner
Aliasing

• 1D example (sinewave):
Aliasing in videos (stroboscopic effect)
Aliasing in graphics

Disintegrating textures

Source: A. Efros
Sampling and aliasing
Sampling Theorem (Nyquist)

- When sampling a signal at discrete intervals, the sampling frequency must be $\geq 2 \times f_{\text{max}}$;
- $f_{\text{max}} = \text{max frequency of the input signal}$.
- This will allow to reconstruct the original perfectly from the sampled version.
Anti-aliasing

Solutions:

• Sample more often

• Get rid of all frequencies that are greater than half the new sampling frequency
 – Will lose information
 – But it’s better than aliasing
 – Apply a smoothing filter
Algorithm 7.1: Sub-sampling an Image by a Factor of Two

Apply a low-pass filter to the original image
(a Gaussian with a σ of between one
and two pixels is usually an acceptable choice).
Create a new image whose dimensions on edge are half
those of the old image
Set the value of the i, j’th pixel of the new image to the value
of the $2i, 2j$’th pixel of the filtered image
The Gaussian pyramid

• Create each level from previous one:
 – smooth and sample

• Smooth with Gaussians, in part because
 – Gaussian*Gaussian = another Gaussian
 – $G(x) \ast G(y) = G(\sqrt{x^2 + y^2})$

Slide credit: David Lowe (UBC)
With Gaussian pre-filtering

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Source: Steve Seitz
Super-resolution

EECS 442 – Computer vision

Next lecture:
Filters & Feature detectors
Filters are templates

- filters look like the effects they are intended to find
- filters find effects they look like

- Applying a filter at some point can be seen as taking a dot-product between the image and some vector
- Filtering the image is a set of dot products

Slide credit: David Lowe (UBC)
Normalized correlation

- Think of filters as a dot product of the filter vector with the image region
 - Now measure the angle between the vectors
 \[a \cdot b = |a||b| \cos \theta \]
 - Angle (similarity) between vectors can be measured by normalizing length of each vector to 1.
 - Normalized correlation: divide each correlation by square root of sum of squared values (length)
Multi-Scalar feature (edge) extraction

Images courtesy of Tony Jebara
The Steerable Pyramid

http://www.cns.nyu.edu/~eero/STEERPYR/

Pag. 204-205, FP (add figure)