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Abstract

Despite recent successes, pose estimators are still some-
what fragile, and they frequently rely on a precise knowl-
edge of the location of the object. Unfortunately, articu-
lated objects are also very dif®cult to detect. Knowledge
about the articulated nature of these objects, however, can
substantially contribute to the task of ®nding them in an im-
age. It is somewhat surprising, that these two tasks are usu-
ally treated entirely separately. In this paper, we propose
an Articulated Part-based Model (APM) for jointly detect-
ing objects and estimating their poses. APM recursively
represents an object as a collection of parts at multiple
levels of detail, from coarse-to-®ne, where parts at every
level are connected to a coarser level through a parent-
child relationship (Fig.1(b)-Horizontal). Parts are fur-
ther grouped into part-types (e.g., left-facing head, long
stretching arm, etc) so as to model appearance variations
(Fig. 1(b)-Vertical). By having the ability to share appear-
ance models of part types and by decomposing complex
poses into parent-child pairwise relationships, APM strikes
a good balance between model complexity and model rich-
ness. Extensive quantitative and qualitative experiment re-
sults on public datasets show that APM outperforms state-
of-the-art methods. We also show results on PASCAL 2007
- cats and dogs - two highly challenging articulated object
categories.

1. Introduction
Detecting and estimating the pose (i.e., detecting the lo-

cation of every body parts) of articulated objects (e.g., peo-
ple, cats, etc.) has drawn much attention recently. This
is primarily the result of an increasing demand for an auto-
mated understanding of the actions and intentions of objects
in images. For example, person detection and pose estima-
tion algorithms have been applied to the ®elds of automo-
tive safety, surveillance, video indexing, and even gaming.
Most of the existing literature treats object detection and
pose estimation as two separate problems. On the one hand,
most of the state-of-the-art object detectors [8, 13, 19, 2]
do not focus on localizing articulated parts (e.g., location
of heads, arms, etc.). Such methods have shown excel-
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Figure 1.Panel (a) shows large appearance variation and part deformation
of articulated objects (people) with different poses (sitting, standing, and
jumping, etc). (b) we propose a new model for jointly detecting objects and
estimating their pose. Inspired by Marr[14], our model recursively repre-
sents the object as a collection of parts from a coarse-to-®ne level (e.g.,
see horizontal dimension) using a parent-child relationship with multiple
part-types (e.g., see vertical dimension). We argue that our representation
is suitable for ªtamingº such pose and appearance variability.

lent results on rigid vehicle-type objects (e.g., cars, motor-
bikes, etc) but less so on the articulated ones (e.g., human
or animals) [7]. On the other hand, most pose estimators
[12, 20, 10, 5, 16, 15, 11] assume that either the object lo-
cations, the object scales, or both are predetermined by ei-
ther a speci®c object detector, or given manually. We argue
that these two problems are two faces of the same coin and
must be solved jointly. The ability to model parts and their
relationship allows to identify objects in arbitrary con®g-
urations (e.g., jumping and sitting, see Fig.1) as opposed
to canonical ones (e.g., walking and standing). In turn, the
ability to identify the object in the scene provide strong con-
textual cues for localizing object parts.

Some recent works partially attempt to solve the prob-
lems in a joint fashion. [1] combines a tree-model with
discriminative part detectors to achieve good pose estima-
tion and object detection performance. However, good
detection performance is only demonstrated on the TUD-
UprightPeople and TUD-Pedestrians datasets [1], which
have fairly restricted poses. Alternatively, [4, 3] propose
a holistic representation of human body using a large num-
ber of overlapping parts, called poselets, and achieve the
best performance on PASCAL 2007» 2010 person category.
However, poselet can only generate a distribution of pos-



sible locations for each part's end points independently,
which make it dif®cult to infer the best joint con®guration
of parts for the entire object.

Our Model. We present a new model for jointly detecting
articulated objects and estimating their part con®gurations
(Fig. 1(a)). Since the building blocks of this model are ob-
ject parts and their spatial relationship in the image, we call
it the Articulated Part-based Model (APM). Our approach
based on APM seeks to satisfy the following properties.

Hierarchical (coarse-to-®ne) Representation.Inspired by
the articulated body model in the 1980s [14] which recur-
sively represents objects as generalized cylinders at differ-
ent coarse to ®ne levels (Fig.1(b)), our model jointly mod-
els the 2D appearance and relative spatial locations of 2D
parts (Fig.1(b)) recursively at different Coarse-to-Fine (CF)
levels. We argue that a coarse-to-®ne representation is valu-
able because distinctive features at different levels can be
used to jointly improve detection performance. For exam-
ple, the whole body appearance features are very useful
to prune out false positive detection from the background,
whereas detail hand appearance features can be used to fur-
ther reinforce or lower the con®dence of the detection.

Robustness to Pose Variability by Part Sharing.Artic-
ulated objects exhibit tremendous appearance changes be-
cause of variability in: i) view point location (e.g. frontal
view, side view, etc); ii) object part arrangement (e.g. sit-
ting, standing, jumping, etc); iii) self-occlusions among ob-
ject parts (Fig.1(a)). We refer to the combination of these
effects as to theposeof the object. Methods such as [8, 25]
capture such appearance variations by introducing a num-
ber of fully independent models where each model is spe-
cialized to detect the object observed under a speci®c pose.
Clearly such representation is extremely redundant as ap-
pearance and spatial relationship of parts are likely to be
shared across different poses (e.g., a ºstretched armº is ob-
served in both a sitting (Top) and standing (Bottom) per-
son as Fig.1(b) highlights in red). While this representa-
tion may be suitable for rigid objects (for which appearance
changes are mostly dictated by the view point location of
the observer), it may be less so for articulated objects. In
order to obtain a more parsimonious representation while
keeping the ability to capture rich pose variability, we in-
troduce the concept of ºpart-typeº. A part-type allows to
characterize each part with attributes associated to semantic
or geometrical properties of the part. For example a human
arm can be characterized by part-types such as ºstretchedº
or ºfore-shortenedº at a given level of the hierarchy. The
introduction of part-types lets parts be shared across object
poses if they can be associated to the same part-type. By
having the APM to share parts, we seeks to strike a good
balance between model richness (i.e., the number of dis-
tinct poses) and model complexity (i.e., the number of part-
types) (Sec.3.3).

Methods CF Type Sub. E.I
PS [10] N N N Y
Yao et. al. [23] N Y N N
Wang et. al. [21] Y Y Y N
Yang et. al. [22] N Y Y Y
Grammar [26, 24] Y Y Y N
APM (Ours) Y Y Y Y

Figure 2. A comparison of the properties satis®ed by our APM
model versus other models. The CF column indicates if a coarse-
to-®ne recursive representation is supported or not. ºTypeº indi-
cates if multiple part-types are supported or not. ºSubº indicates if
the model complexity grows sublinearly as function of the number
of poses. ºE.Iº indicates if exact inference is tractable (Sec.2).

Ef®cient Exact Inference & learning Following the re-
cursive structure of an APM, we use ef®cient dynamic pro-
gramming algorithms to jointly (and exactly) infer the best
object location and estimate their pose (Sec.3.1, 3.2). We
learn the parameters regulating part appearance and their
relationships across coarse-to-®ne levels by using a Struc-
tured Support Vector Machine (SSVM) [18] with a loss
function penalizing incorrect pose estimation (Sec.4).
Novel Evaluation metric. Because the detection and
pose estimation are often performed separately, no standard
method exists for evaluating algorithms that address both
problems. The popular Percentage of Correctly estimated
body Parts (PCP) metric measures the percentage of cor-
rectly detected parts for the objects that have been correctly
detected. This is problematic in that PCP can be high while
detection accuracy is low. To ®x this, we propose to di-
rectly compare the recall vs False Positive Per Image (FPPI)
curves of the whole object and all parts. Using this new
measure as well as standard evaluation metrics, we show
that APM outperforms state-of-the-art methods. We also
show, for the ®rst time, promising pose estimation results
on two very challenging categories of PASCAL: cats and
dogs.

The rest of the paper is organized as follows. Sec.2 de-
scribes related work. Model representation, recognition,
learning, and implementation details are discussed in Sec.3,
4, and 5 respectively. Experimental results are given in
Sec.6.

2. Related Work
Pictorial Structure (PS) based methods such as [10, 8]

are the most common approaches for pose estimation and
object recognition. Similarly to our model, the PS object
representation is part-based. Unlike ours, however, in PS's
model parts are not organized at different coarse-to-®ne lev-
els with multiple part-types. Moreover, as discussed earlier,
object models are learnt independently for each object pose
without having the ability to share parts across poses. As
a result, the number independent models used in PS grows
linearly with the number of distinct poses that one wishes
to capture (Fig.2).

Our model bears some similarity to recent works (Fig.2).
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Figure 3.Graphical illustration of the recursive coarse-to-®ne structure
of APM. Panel (a)-Top: An APM (blue trapezoid) can be obtained by re-
cursively combining atomic APMs (AAPM) (black boxes) such as arm-
AAPM, lower-arm-AAPM, etc, into higher-level part-APM such as the
arm-APM (green trapezoid). Panel (b) shows examples of selected part
locations (white windows) at the different levels. The selected part-types
are highlighted by red boxes in panel (a).

In [23] a procedure is presented for capturing the typical
relationship between body part con®gurations and objects.
While the concept of part type is used to increase the ¯exi-
bility of the representation, pairwise relationships between
body parts are not shared across classes. As a result, the
number of parameters that are used to model spatial rela-
tionship grows linearly with the number of pose classes.
Moreover, unlike our approach, parts are not organized in
a recursive coarse-to-®ne structure. [21] propose a hierar-
chical poselet model for both detection and pose estimation.
However, the model requires loopy belief propagation algo-
rithm for approximate inference. [22] propose a mixture of
parts model which achieves outstanding performance and
speed. However, because the representation is not hierar-
chical, it is not suitable to detect objects at a small scale.

APM is also related to grammar models for images or
objects [26, 24]. In such models, the object is represented
by reusing and sharing common object elements. However,
these models rely on complex learning and inference proce-
dures which can only be made tractable using approximate
algorithms (Fig.2). On the contrary, despite the sophis-
ticated structure of APMs, we show that a tractable exact
inference algorithm can be used (Sec.3.1and 3.2).

3. Articulated Object Representation
Given a still image containing many articulated objects

(e.g., persons in Fig.1(a)), our goal is to jointly localize
the objects and estimate their poses (i.e., localize articulated
parts such as arms, legs, etc).

We introduce a new model called Articulated Part-based
Model (APM) to achieve this goal. In designing the APM
model, we seek to meet the desiderata discussed in the
Sec.3.3 and propose a representation that is hierarchical,
robust to pose variability and parsimonious. An APM for
an object category (object-APM) is a hierarchical struc-
ture constructed by recursively combining primary elements
called atomic APM (AAPM). An AAPM is used to repre-

sent an object part at each level of the object representation
(e.g., an AAPM can represent a lower arm, the torso, or the
whole body, etc.). An AAPM just models the appearance
of a part and it is characterized by a number of part types
(e.g., an head-AAPM is characterized by types such as left,
front, etc.) (Fig.3). AAPMs can be recursively combined
into APMs by following a parent-child relationship. E.g., an
arm-AAPM and a lower-arm-AAPM are subject to a parent-
child relationship (a lower-arm is part of an arm) and are
combined into an APM called arm-APM. As an other ex-
ample, children APMs such as the arm-APM, or head-APM
can be combined with their parent (the body-AAPM) and
form the person-APM (Fig.3). An APM models the part
appearance of both parent and children as well as the 2D
geometrical relationships between parent and children.

Since each AAPM can be characterized by several part
types, and since AAPM or APMs can bereusedtoward con-
structing new APMs, an object-APM has the nice property
of being able of capturing an exponentially large number of
pose con®gurations by just using a few AAPMs. For in-
stance, suppose that a person is described by5 parts (head,
torso, arm, lower-arm) (thus5 AAPMs) and that each part
is characterized by4 types. A person-APM model can then
encode up to45 different poses in total by only using the
5 AAPMS. This way, the APM allows us to strike a good
balance between model richness (i.e., the number of dis-
tinct object poses that the model can capture) and model
complexity (i.e., the number of model parameters) (See
Sec.3.3(i)).

The structure of the APM model (i.e., number of parts,
part-types, and parents-child relationships) may be pre-
de®ned following the kinematic construction of the object.
Given such a structure, the goal of learning is to jointly learn
the appearance model for every part-type and parent-child
geometric relationships so that the importance of different
part-types and the discriminative power of different parent-
child relationships can be automatically discovered. During
recognition (inference), the goal is to determine the most
likely con®guration of object parts and part-types that is
compatible with the observation and the learnt APM model.
The next section describes how to utilize the recursive struc-
ture of APM to ef®ciently estimate the most likely con®gu-
ration.

3.1. Recognition
Finding the best part con®guration (i.e., in our case, both

the part locations and types) for arbitrary part-based models
corresponding to the highest likelihood or score is in general
computationally intractable since the con®guration space
grows exponentially with the number of parts. By leverag-
ing the recursive structure of an APM, we show that an ef-
®cient top-down search strategy for exploring pose con®g-
uration hypotheses in the image is possible. Then we show
how to compute a matching score for each hypothesis with



a time that is at most quadratic with the number of hypothe-
sis per part by using a bottom-up score assignment scheme.
This matching scores are used to guide the top-down search
to reach the best pose con®guration hypothesis. The result
is an ef®cient inference algorithm that reaches the optimal
solution in at most quadratic time.

Top-down Search strategy.The image is explored at dif-
ferent levels of decompositions (from coarse-to-®ne) using
a recursive strategy. At each level, the image is decomposed
into regions (windows) and each region is associated with a
part type. Based on the selected part type and the parent-
child relationship, each image region is further processed
and the next level of decomposition is initiated. The exam-
ple below clari®es this process.

Let us consider an APM for the objectperson(Fig.3). At
the ®rst (coarsest) level of decomposition only a single part
is considered. This corresponds to the whole object (per-
son). Part types are different human poses (sitting, jumping,
standing, etc). The image is explored at different locations
(i.e., a score is assigned at different locations following a
sliding window approach) and a part type (hypothesis) is
associated to each window location. E.g., the white win-
dow in Fig. 3(b) is associated with the part type jumping.
Following the structure of the APM, jumping is a parent
of a number of child parts (head, torso, left arm, etc), and
the goal is to identify each of these child parts within the
current working window. Now the next level of decompo-
sition is initiated. Let us consider the child left-arm part as
an APM. The area within the current working window is
explored at different locations and each of these are associ-
ated to a left-arm part type (hypothesis). At this level, part
types are, for instance, stretched or foreshortened. E.g., the
white window in Fig.3(b) is associated with the part type
stretched. Following the structure of the APM, left-arm is
a parent of a number of child parts (upper-arm, lower arm),
and the goal is to identify each of these child parts within
the current working window. This initiates the next level of
decomposition. The process terminates when all the image
windows are explored, all parts are processed and no addi-
tional decompositions are allowed. In the Fig.3, the active
part types across levels are highlighted by red edges. Notice
that the levels of recursion depends on the structure design
of the model.

Bottom-up matching score assignment.While the best
hypothesis is found using a top-down strategy, the process
of assigning a matching score to each hypothesis follows a
bottom-up procedure. The bene®t of such procedure is that
all the scores can be computed in time at most quadratic to
the number of hypothesis per part. Notice that special forms
of geometric relationship can even be computed in linear
time as in [9]. In details, each matching score is computed
by combining an appearance score and a deformation score.
The appearance score is obtained by matching the evidence

within the working image window against the learned part
type appearance model. The deformation score is obtained
by: i) computing the parent-child geometrical con®gura-
tion - that is, the location and orientation (angle) of a part
within its parent reference frame; ii) matching this con®g-
uration with the learnt parent-child geometrical con®gura-
tion. These scores are collected and combined bottom-up so
as to obtain a ®nal score that indicates the con®dence that an
image window (at the coarsest level) contains a person with
a certain pose and part con®guration. Details are explained
in Sec.3.2.

3.2. Matching Scores
Let us ®rst introduce the parameterization of a part hy-

pothesis in an APM. A part hypothesis is described by the
locationh = ( x; y; l; µ) and types of the part, where(x; y)
is the part reference position (e.g.,the top-left corner of the
part), (l; µ) are the part scale (coarse-to-®ne) and 2D ori-
entation, respectively. The task of joint object detection
and pose estimation is equivalent to ®nding a set of part
hypothesesH = f (h0; s0); : : : ; (hk ; sk ); : : : g such that the
locationh = ( x; y; l; µ) and types is speci®ed for all parts.

As previously introduced, the matching scores can be di-
vided into two classes:appearanceanddeformationscores.
The appearance score of a speci®c part-type is obtained
by matching the featureÃa(h; I ) extracted from the image
within the window speci®ed by the part locationh against
the learned appearance modelA, and the score is de®ned as

f A (h; I ) = AT Ãa(h; I ) (1)

The deformation score is obtained by: i) computing the
parent-child geometrical relationship - that is, the difference
Ãd(h; ĥ) = (¢ x; ¢ y; ¢ µ) of position and orientation be-
tween the expected child hypothesisĥ and the actually child
hypothesish at the child reference scale; ii) matching this
relationship with the learnt parent-child deformation model
d. The score is de®ned as,

f D (h; ĥ) = ¡ dT Ãd(h; ĥ) = ¡ (d1 ¢(¢ x)2 + d2 ¢(¢ x)

+ d3 ¢(¢ y)2 + d4 ¢(¢ y) + d5 ¢(¢ µ)2 + d6 ¢(¢ µ)) (2)

whered = ( d1; d2; d3; d4; d5; d6) is the model parameter
for parent-child deformation.

The ®nal score for each person hypothesis is recursively
calculated by collecting and combining scores associated to
AAPMs into scores associated to APMs from bottom to up-
per levels. In details, the scoref i;s i (hi ; I ) for an APM with
index i and typesi , is obtained by aggregating:i ) its own
appearance scoref A

i;s i
(h; I ); ii ) the scores from each child

APM f c;s c (hc; I ); iii ) the deformation scoref D (hc; ĥc)
calculated with respect to its child APM as de®ned in Eq.2.

This process of estimating the scoref i;s i (hi ; I ) by ag-
gregating the scores from its child APMs is achieved by



performing the following three steps: i) Child Location Se-
lection step. Given an expected child part hypothesisĥc

with index c and part typesc, we select among all the lo-
cation hypotheseshc for this part the one associated to the
largest score. The score associated to partc of type sc is

then:f c;s c (ĥc; I ) = max h c

³
f c;s c (hc; I ) + f D (hc; ĥc)

´
.

ii) Child Alignment step: we need to align score con-
tributed from each part child. Let us indicate bysc the type
of cth child part. Then, the expected location of the child
partc is given byT(hi ; tsi ;sc

i;c ), such thatT(h; t ) = h ¡ t =
(x ¡ tx ; y ¡ ty ; l ¡ t l ; µ ¡ tµ), wheretsi ;sc

i;c is the expected
displacement between typesi of parti and typesc of partc.
iii) Child Type Selection step: For each child part, we need
to select the part type corresponding to the highest score as
follows:

f c(hi ; I ) = max
sc 2S c

¡
f c;s c (T(hi ; tsi ;sc

i;c ); I ) + bsi ;sc
i;c

¢
(3)

whereSc is the set of types for partc, bsi ;sc
i;c is the bias

between typesi of i th part and typesc of cth part. Such
biases capture the property that some types may be more
descriptive than other and therefore they can affect the rele-
vant score function differently. We learn such biases during
the learning procedure (Sec.4).

Finally, the scoref i;s i (hi ; I ) is obtained asf i;s i (hi ; I ) =
f A

i;s i
(hi ; I ) +

P
c2 C i f c(hi ; I ), whereC i is the set of child

APMs. Notice that the scoref i;s i (hi ; I ) for an atomic
APM (AAPM) is simply given by its own appearance score
f A

i;s i
(hi ; I ). These are computed ®rst as they are the pri-

mary elements of the overall object APM structure. Using
this way of aggregating the scores, the matching scores for
all the parts in the APM structure can be calculated once the
scores of its child APMs are computed. Notice that the time
required to compute the scores is linearly related to the total
number of part-types in the APM.

3.3. Model Properties (APM)
In the following, we discuss the important properties of

our APM: i) Sublinearity. As illustrated in Fig.3, a com-
plex APM is constructed by reusing all APMs at ®ner levels.
If an APM containsM parts and each part containsN types,
such APM can representN M unique combination of part-
types (poses) with the cost of storingN £ M appearance and
deformation parameters, respectively (i.e., in Eq.4, A; d are
indexed by parti and typesi ). As a result, the number of
parameters in APM grows sublinearly with respect to the
number of distinct poses;ii) Ef®cient Exact Inference.De-
spite the complex structure of APM, the ªbottom-upº pro-
cess is ef®cient, since the scores of different part-types are
reused by parent APMs at higher levels. Once the match-
ing scores are assigned, the ªtop-downª process is ef®cient
as the search for the best part con®guration can be done in
linear time. Compared to most of the other grammar mod-
els which only ®nd the best con®guration among a smaller
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Figure 4.Visualization of a learned APM. Panel (a) shows the learned
Histogram of Oriented-Gradient (HOG) templates with the corresponding
example images for each part-type. Panel (b) shows the parent-child geo-
metric relationships in our model, where different parts are represented as
color coded sticks. Panel (c) shows samples of object poses obtained by
selecting different combinations of part-types from the APM.

subset of the full con®guration space, our method can ef®-
ciently explore the full con®guration space (e.g., inference
on a640£ 480image across» 30scales and24orientation
in about2 minutes) making exact inference tractable.

4. Model Learning
The overall model parameterw = ( A; : : : ; d; : : : ; b : : :)

is the collection of appearance parametersAs, deforma-
tion parametersds, and biasesbs. In this section, we il-
lustrate how to learn the model parametersw. Since all the
model parameters are linearly related to the matching score
(Eq.1, 2, 3), the score of a speci®c set of part hypothesesH
can be computed aswT ª( H ; I ), whereª( H ; I ) contains
all the appearance featuresÃa(:), geometric featuresÃd(:).
The matching score can be decomposed into

wT ª( H ; I ) =
X

i 2V

AT
( i;s i ) Ãa(hi ; I ) +

X

( i;j )2 "

³
b(si ;s j )

i;j ¡ dT
( j;s j ) Ãd(hj ; T(hi ; t (si ;s j )

ij ))
´

(4)

whereV is the set of part indices," is the set of parent-child
parts,A ( i;s i ) specify the appearance parameter for typesi of
part i , d( i;s i ) specify the deformation parameter for typesi

of part i , andb(si ;s j )
i;j andt (si ;s j )

ij specify bias and expected
displacement of selecting partj with typesj as the child of
parti with typesi .

Consider that we are given a set of example images and
part annotationsf I n ; H n gn =1 ;2;:::;N . We can cast the pa-
rameter learning problem into the following SSVM [18]
problem,



minw, »n ¸ 0 wT w + C
X

n

»n (H )

s.t. »n (H ) = max
H

(4 (H ; H n ) +

wT ª( H ; I n ) ¡ wT ª( H n ; I n ))

, 8n , 8H 2 H (5)

where4 (H ; H n ) is a loss function measuring incorrect-
ness of the estimated part con®gurationH , while the true
part con®guration isH n , andC controls the relative weight
of the sum of the violation term with respect to the reg-
ularization term. The loss is de®ned to improve the pose
estimation accuracy as follows,

4 (H ; H n ) =
1

M

MX

i =1

4 ((hm ; sm ); (hn
m ; sn

m ))

=
1

M

MX

i =1

(1 ¡ overlap((hm ; sm ); (hn
m ; sn

m ))) (6)

whereoverlap((hm ; sm ); (hn
m ; sn

m )) is the intersection area
divided by union area of two windows speci®ed by the
part locations and types. Here we use a stochastic sub-
gradient descent method within the SSVM framework
to solve Eq.5. The subgradient of@w »n (H ) can be
calculated asª( H ¤; I n ) ¡ ª( H n ; I n ), where H ¤ =
arg maxH (4 (H ; H n ) + wT ª( H ; I n )) . Since the loss
function can be decomposed into a sum over local losses
for each individual parti , H ¤ can be solved similarly to the
recognition problem in Sec.3.1.
Analysis of our learned model. Fig. 4(a) shows learned
part appearance models from a person APM with 3 lev-
els of recursion with typical part-type examples. Since all
the part-type appearance models are jointly trained by min-
imizing the same objective function (Eq.5), the appearance
model captures the shapes of the part-type examples as well
as the strength of the HOG weights re¯ecting the impor-
tance of each part-type (See Fig.4 for learned HOG tem-
plates). Fig.4(b) illustrates a few parent-child geometric re-
lationships in the APM. For example, our model learns that
a head appears on the upper-body of a person with differ-
ent orientations (Fig.4(b)-Left), and learn the stretched and
bent con®gurations for the left-arm (Fig.4(b)-Middle). No-
tice that these parent-child geometric relationships indeed
capture common gestures that appear in daily person activi-
ties, like ºarms akimboº (Fig.4(c) red box). Fig.4(c) shows
more object poses by selecting different combinations of
part-types.

5. Implementation Details
Feature representation: We use the projected His-

togram of Oriented-Gradient (HOG) feature implemented
in [8] to describe part-type appearance.Manual supervi-
sion: In order to train an APM, a set of articulated part

(a) Poselet [4] (b) IIP [15]
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Figure 5.Panel (a) shows that our detector applied on Poselet dataset
[4] slightly outperforms the state-of-the-art person detector [3] (dashed
curves). Panel (b) shows that APM signi®cantly outperforms [3] on chal-
lenging Iterative Image Parsing dataset [15]. Recall-vs-FPPI curves are
shown for each human part (with different color codes) by using our
method (solid curves).

annotations is required. For people, we use the 19 key-
points provided in the poselet dataset [4] as the part supervi-
sion. We manually annotated cats and dogs with 24 and 26
keypoints, respectively.Type discovery: We use the key-
points con®guration and part length to object height ratio to
initially group parts into different types. After this initial
grouping, each example can be discriminatively assigned
into different groups according to the appearance similarity.
Discretized part orientation: We follow the common con-
vention to divide the part orientation space into 24 discrete
values (15± each).

6. Experiments
We evaluate our method on three main datasets, all

of which contain objects in a variety of poses in clut-
tered scenes. Object detection datasets that contain objects
with very restricted poses (e.g., TUD-UprightPeople, TUD-
Pedestrians [1]) are not suitable for evaluation here, since
we are interested in datasets that make the detection and
pose estimation equally challenging. First, we compare our
object detection performance on the poselet [4] and Iter-
ative Image Parsing [15] datasets with the state-of-the-art
person detector [3] and demonstrate superior performance,
especially on [15] which contains challenging sport images
with unknown object scale. We introduce a new evalua-
tion metric called recall-vs-False Positive Per Image (FPPI)
to show joint object detection and pose estimation perfor-
mance. More detail about the recall-vs-FPPI can be found
in the technical report [17]. Second, on the ETHZ stickmen
dataset [5], we show APM outperforms state-of-the-art pose
estimators [16, 5] using detection results provided by APM.
In order to prove that our method can be used to detect ar-
ticulated objects other than humans, we test our method on

(a) APM (b) Eichner et. al. [5] (c) CPS [16]
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Figure 6.Joint object detection and pose estimation performance com-
parison between our method (a) and [5, 16] (b,c) using recall vs. FPPI
for 4 upper-body parts on stickmen dataset. ºobjº indicates the detection
performance of our object detector.
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Figure 7.Comparison with other methods for recall/P CP0:5 @ 4 FPPI.
Red ®gures indicate the highest recall for each part. We perform better
than the state-of-the-art in term of recalls for every part except lower arms.

the PASCAL 2007 cat and dog categories [6], and obtain
convincing joint object detection and pose estimation per-
formance on these extremely dif®cult categories.

6.1. Comparing with Poselet [3]
The Poselet dataset [4] contains people annotated with

19 types of keypoints, which include joints, eyes, nose, etc.
We use the keypoints to de®ne 6 body parts at 3 levels: at
the coarsest level, the whole body has 6 types; at the mid-
dle level, head has 4 types, torso has 4 types, left&right-
arms both has 7 types; at the ®nest level, left&right-lower-
arms both has 2 types. By assuming that body parts and
object bounding boxes annotations are available, we train
our APM on the same positive images used in [4] and neg-
ative images from PASCAL'07 [6]. Fig. 5(a,b) shows that
our object detection performance is slightly better than [3]
(which achieves the best performance on PASCAL 2010 -
human category) on poselet dataset [4] but signi®cantly out-
performs [3] on [15], respectively. We observed that [3]
tends to fail when the aspect ratios of the object bound-
ing boxes vary due to severe articulated parts deformations.
Fig. 5(a,b) also show our joint object detection and pose es-
timation performance using part recall vs FPPI curves on
these challenging datasets. Typical examples are shown in
the1 » 2 rows of Fig.9.

6.2. ETHZ Stickmen dataset
The original ETHZ stickmen dataset [5] contains 549

images, and it is partially annotated with 6 upper-body parts
for each person. In order to evaluate the joint object de-
tection and pose estimation performance, we complete the
annotation for all 1283 people. Previous algorithms eval-
uated on this dataset are just pose estimators, which rely
on an upper body detector to ®rst localize the person. Be-
cause of this, the PCP performance is only evaluated on the
360 detected people that were found by the upper body de-
tector (see [17] for more details). In order to obtain a fair
comparison of the joint object detection and pose estima-
tion performance, we use recall/PCP0:5 (same as [5]) vs.
FPPI curves for all parts. We believe this is a better per-
formance measure than PCP at a speci®c FPPI. Indeed PCP
ignores to what degree the pose estimation performance is
affected by the accuracy of object detectors. Notice that
PCP at different FPPI can be easily calculated from the part
recall v.s. FPPI curves by dividing the recall of each part by
the recall of the object. As an example, the latest PCP from
[16] is equivalent to the sample points (indicated by dots)
at 4 FPPI shown in Fig.6(a). Notice that our method sig-
ni®cantly outperforms [16] for each body part (except for
lower arm where [16] and ours are on par).

(a) Cat (b) Dog (c) System Analysis
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Figure 8.Joint object detection and pose estimation performance shown
in recall (following theP CP0:7 criteria as de®ned in [5]) vs. FPPI for cats
(a) and dogs (b) on the PASCAL VOC 2007 dataset. Both performances
are compared with [8]. Panel (c) compare our dog-APM with a Baseline-
APM with no ®ner parts.

We apply our APM learned from the Poselet dataset [4]
to jointly detect objects and estimate their poses on the
stickmen dataset (Fig.6(a)). For a more fair comparison,
since APM detects 846 people which is much more than
the 360 people detected by the upper body detector [5], we
show the performance of [16, 5] by using APM's detection
results (Fig.6(b)(c)) Even though [16, 5] incorporate addi-
tional segmentation information and color cues, our method
shows superior performance for almost all parts. We be-
lieve that the main reason is because that [16, 5] assume
accurate person bounding boxes are given both in train-
ing and testing. Our method overcomes such limitation by
performing joint object detection and pose estimation. A
recall/PCP0:5@4FPPI table comparison is also shown in
Fig. 7 with the winning scores highlighted in red. We also
found that our detector detects92:5%of the 360 people de-
tected by the upper-body detector. Among them, without
knowing the object location and scale, our PCPs for torso,
head, upper-arm, and lower-arm are91:9%; 73:0%; 60:7%,
and31:1%, respectively. Typical examples are shown in the
3 » 5 rows of Fig.9.
6.3. PASCAL 2007 cat and dog

From the PASCAL 2007 dataset, 548 images of cats
were annotated with 24 keypoints and 200 images of dogs
were annotated with 26 keypoints including ears, joints,
tail, etc. Similar to the training procedure of the person
model, we train 5 parts at 2 levels1 APMs for cats and
dogs independently on a subset of the data and evaluated on
the remaining subset. Fig.8 shows that APM outperforms
the state-of-the art object (LSVM) detector [8] trained on
the same set of training data using the voc-release4 code2.
We further conduct a system analysis on the dog dataset
(Fig. 8(c)). By adding articulated parts, the performance
increases compared to a baseline model with only a whole
object part. Typical examples are shown in the last 2 rows
of Fig. 9.

7. Conclusion
We propose the Articulated Part Model (APM) which is

a recursive coarse-to-®ne and multiple part-type representa-
tion for joint object detection and pose estimation of artic-

1Whole body at the coarsest level. Head, torso, left-foreleg, right-
foreleg, and tail at the ®nest level.

2The code trains a model with 6 root components and 8 latent parts per
components.
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Figure 9.Typical examples of object detection and pose estimation. Sticks with different colors indicate different parts for different object categories. Blue bounding boxes
are our prediction and green ones indicate missed ground truth objects. The ®rst 2 rows show the results on Poselet dataset [4] and Iterative Image Parsing dataset [15]. Rows
3 » 5 show the comparison between our method and [5, 16] on the stickmen dataset [5]. The last two rows show the ground truth and our results on PASCAL'07 cats and dogs
[6], respectively.

ulated objects. We demonstrate on four publicly available
datasets that our method obtains superior object detection
performances. Using a novel performance measure (the part
recall vs. FPPI curve) we show that our part recall at all
FPPI are better than the state-of-the-art methods for almost
all parts.
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