Event-Based Stochastic Learning and Optimization

Xi-Ren Cao
Hong Kong Uni. of Science & Tech.
Example 1: Admission Control in Communication

n: number of all customers in network

n_i: number of customers at server i

$n=(n_1,...,n_M)$: state, N: Capacity

How do we choose the admission probability $b(n)$?
The Problem

- **Non-standard**
 - Not a Markov Decision Process (MDP)
 Action depends on the population \(n\),
 Different state \(n\) need to take the same action
 - Not a Partially Observable MDP (POMDP)
 When a customer arrives, know something about
 the next state (population will not decrease)

- **Additional New features**
 - Control only applied when a customer arrives
 - Relatively small policy space: \(n \to a\) vs \(n \to a\)

- **New formulation and approach**
 - Event based and sensitivity view
 Not traditional: MDP with constraints
 - Generally applicable to many other problems
A sensitivity view of Learning & Optimization

Markov Decision Process: Policy Iteration

Perturbation Analysis
i. Queuing sys.
ii. Markov sys.

Event-Based Optimization:

i. PA
ii. Policy Iteration

APPLICATIONS
Table of Contents

- Formulation of the Event-based Optimization
 - Formulating events
 - Event-based optimization
- Introduction to a Sensitivity-Based View of Learning and Optimization
 - The Problem
 - Two fundamental sensitivity-based approaches
 - Limitations of state-based approaches
- Solutions to the Event-Based Optimization
- Examples
- Summary and Discussion
Event-Based Approaches
The Markov Model

- $X=\{X_n, \ n=1,2,\ldots\}$, ergodic, X_n in $S=\{1,2,\ldots,M\}$.
- Transition prob. Matrix $P=[p(i,j)]_{i,j=1,\ldots,M}$
- Steady-state probability: $\pi=(\pi(1), \pi(2),\ldots,\pi(M))$.
- Performance function: $f=(f(1), \ldots, f(M))^T$
- Steady-state performance: $\eta = \pi f = \Sigma_i \pi(i)f(i)$

$Pe=e, \ \pi(I-P)=0, \ \pi e=1. \ e=(1,1,\ldots,1)^T, \ I: \text{identity}$
Formulating Events

An event may contain information about current state, and next state after transition.

A customer arrival:
population not reduced after transition

A transition: \(<i, j>\); An event: a set of transitions

\(n=(n_1, \ldots, n_M): \quad n_+=(n_1, \ldots, n_i+1, \ldots, n_M); \quad n_-=(n_1, \ldots, n_i-1, \ldots, n_M)\)

An arrival customer accepted: \(a_+ = \{<n, n_+>, \text{all } n \& i\}\)

An arrival customer rejected: \(a_- = \{<n, n>, \text{all } n\}\)

A customer arrival: \(a = a_+ U a_-\)

A customer departure: \(d_- = \{<n, n_->, \text{all } n \& i\}\)
Three Types of Events

Observable Event: Arriving customer finds population n:

1. We may observe the event
2. Contains some information

3 svr, 2 cust.
Controllable Event: Arriving customer accepted:
\[a_{n,+} = \{ < n, n_{+i} >, \text{ all } i \& n \text{ in } S_n \} \]
\[S_n = \{ n, \text{ with } \Sigma n_i = n \} \]

Arriving customer rejected:
\[a_{n,-} = \{ < n, n >, \text{ n in } S_n \} \]

We can control the probabilities of these events: \(b(n) = p(a_{n,+}|a_n) \)
Natural Transition Event: A customer entering server i:
\[a_{n,+i} = \{ < n, n_{+i} >, n \text{ in } S_n \} \]
Is this an arrival?

No. of customer n?

Determine b(n)

Accept

Reject

Customer joins sv j

Customer leaves

No

Do nothing

Observable Event

Action

Controllable Event

Natural transition Event
Three events, observable, controllable, and natural transition, happens simultaneously in time, but have a logical order

State dependent Markov model does not fit well
Event-Based Optimization

Underlying Markov process \(\{X_n, n=0,1,...\} \)

At time \(n \), we observe an observable event \(a_n \) or \(b, d \) (not \(X_n \))

Determine an action \(L(a_n) \) - controls the prob. of
Controllable event occurs - \(a_{n+} \) or \(a_{n-} \)

Natural transition event follows

Goal: find a policy \(L \) to optimize the performance.

Partially Observable MDP (POMDP)

Underlying Markov process \(\{X_n, n=0,1,...\} \)

At time \(n \), we observe a random variable \(Y_n \) (not \(X_n \))

Determine an action \(L(Y_0..Y_n) \) - controls state transition prob.
State transition follows

Goal: find a policy \(L \) to optimize the performance.
HOW
To Find a Solution?
A Sensitivity-Based View of Learning and Optimization
The System

Inputs $\alpha_t, t=0,1,...$ (actions)

Dynamic system (state x)

Policy: action = f (information), $\alpha = L(y)$

System Performance η

Output $y_t, t=0,1,...$ (Observations)

L may depend on parameters θ
Learning and Optimization

Optimization: Determine a policy L that maximizes η^L

Difficulties:
1. Policy space too large ($\# \text{ states: } N, \# \text{ actions: } M, \# \text{ policies: } M^N$)
2. System too complicated, structure/parameters unknown

Learning:
1. Observing /analyzing sample paths (with or without estimating system parameters).
2. Study the behavior of a system under one policy to learn how to improve system performance
A Philosophical Boundary

- We can study/observe only one policy at a time
- By studying or observing the behavior of one policy, in general we cannot obtain the performance of other policies

We can do very little!
Two Basic Approaches

- Continuous Parameters (policy gradient)
- Discrete Policy Space (policy iteration)

We can only start with these two sensitivity formulas!
Performance Difference Formula

For two Markov chains P, f, η, π and P', f, η', π', let $Q = P' - P$

Poisson equation and performance potentials g:

$$(I - P + e\pi)g = f$$

$\times \pi : \quad \pi g = \pi f = \eta \quad \eta' = \pi' f$

$\times \pi' : \quad \eta' - \eta = \pi' (P' - P)g = \pi' Qg$

Potentials g can be estimated from a sample path of (P,f)

$$g(i) = E\{\sum_{k=0}^{\infty} [f(X_k) - \eta] | X_0 = i\}$$
Policy Iteration

\[\eta' - \eta = \pi' Qg = \pi' (P' - P) g \]

1. \(\eta' > \eta \) if \(P'g > Pg \)

2. Policy iteration:
 At any state find a policy \(P' \) with \(P'g > Pg \)

3. Multi-chain (average performance):
 A simple, intuitive approach without discounting
Limitations of State-Based Approaches

- Curse of dimensionality: state space too large
- Independent actions: action at different states need to be independent
- Structural property lost
Event-Based Optimization

Event-based policy: \(a_n \rightarrow b(n) \)

Problem: Find a policy that maximizes steady-state perf.

Method: Start with perf. difference formula

How to derive PDF?

Construction method with performance potentials as building blocks.
Performance Difference Formula

Two policies: \(b(n) \) and \(b'(n) \)

1. PDF:
\[
\eta' - \eta = \sum_{n=0}^{N-1} \{ \pi'(n) [b'(n) - b(n)] d(n) \}
\]

\(\pi(n) \): prob. of event \(a_n \), arrival finding population \(n \)

Potential aggregation:
\[
d(n) = \frac{1}{\pi(n)} \left\{ \sum_{i=1}^{M} q_{0i} \left[\sum_{n_i = n}^{\sum} p(n) g(n_{i+}) \right] - \sum_{n_i = n}^{\sum} p(n) g(n) \right\}
\]

2. Performance deriv:
\[
\frac{d\eta}{d\theta} = \sum_{n=0}^{N-1} \{ \pi(n) \frac{db_\theta(n)}{d\theta} d(n) \}
\]

1 ➔ policy iteration: Reduced computation: \(N \) linear in size
action depends on states

2 ➔ gradient-based optimization (Perturbation analysis)

3. Learning and On-line implementation:
\(d(n) \) estimated with same amount of computation as \(g(n) \)!
Summary:

Why?
- Action taken when an event happens
- Same event may happen at different states, i.e., actions may be the same for different states

How?
- Event-based policy
- Perf. diff. formula for event based policies
- Utilize system structure (aggregation)

Benefit?
- Event-based policy iteration possible
- Reduce computation (e.g, linear in system size)
- Intuitive, clear physical meaning
Other Examples
Example 1: Admission Control in Communication

How do we choose the admission probability $b(n)$?

Events: A customer arrives finding a population n.
Example 2: Manufacturing

M products: $i=1,2,\ldots, M$
Operation of product i consists of N_i phases, $j=1,\ldots,N_i$
State: (i,j)

Two level hierarchical control
When a product i is finishes, how do we choose
The next product i', (probability $c(i,i')$)?

Events: product i finished
Example 3: Control with Lebesgue Sampling

LSC More efficient than RSC (Astrom, et al, for \(X = \{x_1\}\))

How to develop an optimal control policy for LSC with \(X = \{x_1, \ldots\}\)?

Events: System reaches a state in \(X = \{x_1, \ldots\}\)
Example 4: Large Communication Networks
Conclusion and Discussion

- Learning and optimization are based on two performance sensitivity formulas.
- They lead to two fundamental approaches: gradient-based (PA) and policy iteration-based.
- State-based model has limitations: State space too large, action independent, no structure.
- Event-based optimization:
 - Event: a set of transitions, extension of set of states.
 - Three types of events, logically related, structure properties.
 - Solution based on PDF.
 - Computation reduced, maybe linear in system size.
 - On-line implementation.
 - Widely applicable.
 - (Exs: some not fit Markov model, others utilize special features.)
Thank You!