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The Challenges

The “Data Flood”
Astronomical catalogs today contain about 1.5 billion objects 
(SDSS is ~300 million, IRSA is ~1 billion).

A factor of 20 smaller than the largest commercial DBs

LSST (~2020) will have ~50 billion objects
Large by today's standards. But average (or even small) by 2015

Astronomy has “Real World” DB challenges
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           Data volumes grow as well.....20 times increase from 2003-2005
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The Solutions

Astronomical data creates opportunities 
for Computer Science, Information 
Technologies, and Statistics

Astronomy provides the (interesting) 
datasets, the distributed network, and 
the scientific questions
IT connects the network 
CS handles the datasets and algorithms 
MATHEMATICS and STATISTICS quantifies 
the answers



The Solutions

 Possible Detection of Baryonic Fluctuations in the Large-Scale Structure Power Spectrum: Miller, Nichol, Batuski 
2001, ApJ

 Acoustic Oscillations in the Early Universe and Today: Miller, Nichol, Batuski 2001, Science

 Controlling the False Discovery Rate in Astrophysical Data Analysis: Miller, Genovese, Nichol, Wasserman, 
Connolly Reichart, Hopkins, Schneider, Moore, 2001 AJ

 A new source detection algorithm using FDR Hopkins, Miller, Connolly, Genovese, Nichol, Wasserman, 2002 AJ

 A non-parametric analyss of the CMB Power Spectrum  Miller, Genovese, Nichol Wasserman, ApJ

 Non–parametric Inference in Astrophysics, Wasserman, Miller, Nichol, Genovese, Jang, Connolly, Moore, 
Schneider,  2002

 Detecting the Baryons in Matter Power Spectra Miler, Nichol, Chen 2002 ApJ

 Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS Balogh, Eke, Miller, Gray  et al. 
2002, MNRAS

 The Clustering of AGN in the SDSS  Wake, Miller, Di Matteo, Nichol, Pope, Szalay, Gray, Schnieder, York   2004 
ApJ

 Nonparametric Inference for the Cosmic Microwave Background Genovese, Miller, Nichol, Arjunwadkar, 
Wasserman. 2004 Annals of Statistics

 The C4 Clustering Algorithm: Clusters of Galaxies in the SDSS  Miller et al. 2005 AJ

 The Effect of Large-Scale Structure on the SDSS Galaxy Three–Point Correlation Function Nichol et al. 2006, 
MNRAS

 Mapping the Cosmological Confidence Ball Surface Bryan, Schneider, Miller, Nichol, Genovese, Wasserman, 2007 
ApJ

 Inference for the Dark Energy Equation of State Using Type Ia SN data Genovese, Freeman, Wasserman, Nichol, 
Miller 2008, Annals of Statistics
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Confidence Balls: Pictorially

r

1. obtain experimental data
2. compute non-parametric 

fit
3. compute confidence ball
4. Iterate through 

parameters to determine 
confidence.



Deriving Confidence Intervals
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Cosmological Confidence Intervals

½σ   38%
1σ    68%
1½σ 86% 
2σ    95%

Color Key
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Including Assumptions (Bryan et al., ApJ 2007)

Assumes 60 ≤ H0 ≤ 75 
(km/s)/Mpc



95% χ2 confidence regions from based on Davis et al. (2007) data

What Does “Convergence” Mean?

 θ = {H0, ΩM, ΩΛ}

 p1 = {65, 0.23, ?}

 p2 = {0.02, 42, ?}

To prove p1 is within the 
confidence region:

∃ ΩΛ such that m(θ) is 
accepted

To prove p is not within 
the region:

∀ ΩΛ, m(θ) is rejected
can’t check all ΩΛ 
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Activities in Astronomy
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(PiCA Group). 

Membership expanded and members moved so that we changed the 
name to the INternational Computational Astrostatistics Group).

A loose group of committed researchers (no formal structure)
Astronomy provides the data and drives the science

Real work is done in developing, proving, and applying novel 
statistical methods and computational algorithms to astronomical 
datasets
Success is shared equally amongst the domains
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What are we interested in?
Parametrics

Dis-entangling multiple -components via Expectation Maximization 
Nonparametrics

Reducing the size of the error ellipse
Non-linear SVM-like spaces

Focusing the available model space
High-dimensional searches and surface fitting

Constraining (as opposed to finding) the truth


