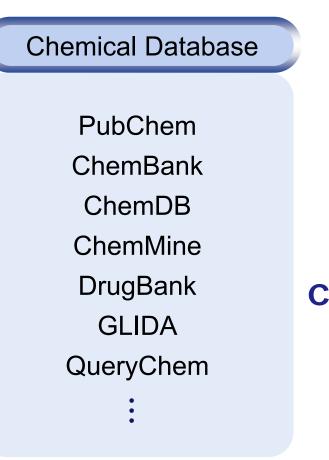
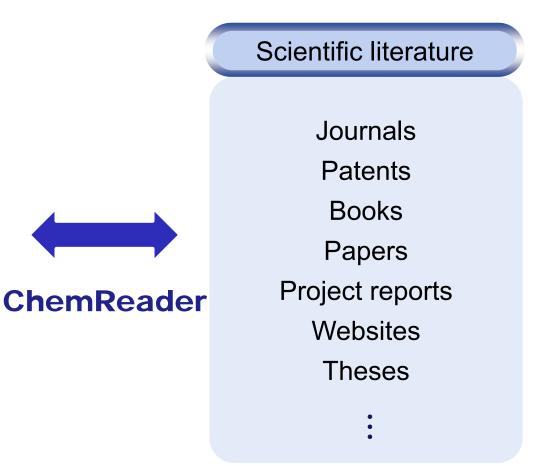
Text-based and Image-based Recognition and Extraction of Molecular Information from Figures and Figure Captions

Jungkap Park, Gus R. Rosania & Kazuhiro Saitou

University of Michigan, Ann Arbor

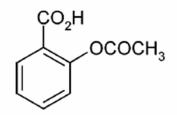



Outline

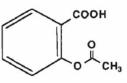
- Overview of Image-based Annotation
- ChemReader
- Annotation Strategy and Test Result
- Chemical Literature Database
- Preliminary Statistics
- Future Works

Why ChemReader?

Searching for chemical information


The problems:

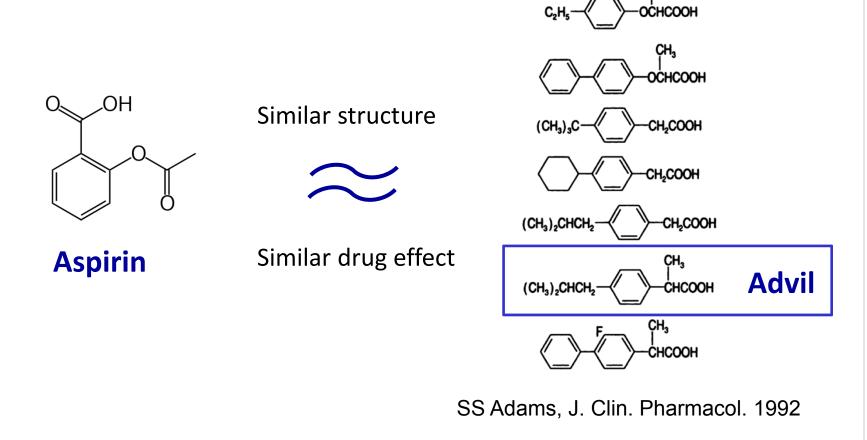
- Too many synonyms
- Often referenced by chemical structure diagrams


Ex) Aspirin

- Acetylsalicylic acid (ASA)
- 2-acetyloxybenzoic acid
- acetylsalicylate
- Acylpyrin
- Colfarit
- Ecotrin
- Enterosarein
- Acenterine
- Polopiryna

•

P Vishweshwar et al, J. Am. Chem. 2005


PJ Loll et al, Nat. Struct. Mol. Biol. 1995

Searching for chemical information

The problems

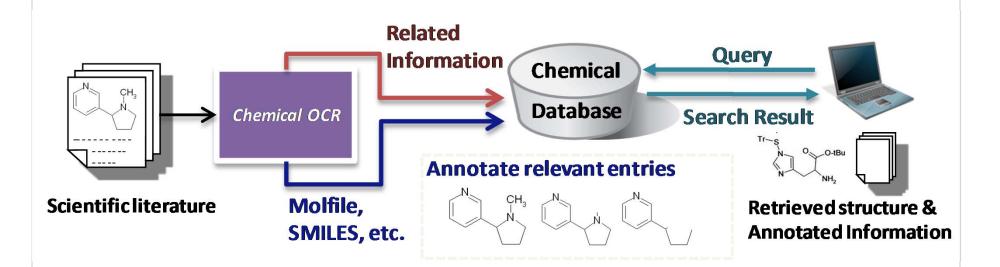
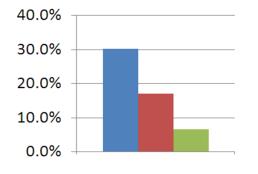
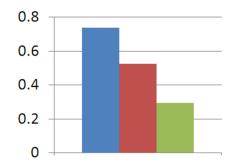
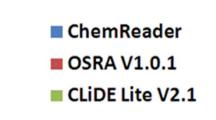

• Need to identify related compounds

Image Based Annotation

Chemical database annotation using Chemical OCR




- Chemical OCR system
 - Extract 2D chemical structure diagram from literature
 - Convert tem to a standard chemical file format
 - CLiDE, ChemOCR, OSRA and ChemReader



Test Result

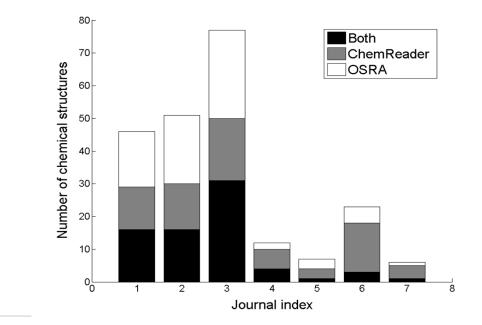
Recognition Test

% of correct outputs

Annotation Test

Tunable annotation strategy: Two different conditions for screening output structures

Avg. RecallAvg. PrecisionTest I0.690.8Test II0.80.88			
		Avg. Recall	Avg. Precision
Test II 0.8 0.88	Test I	0.69	0.8
	Test II	0.8	0.88

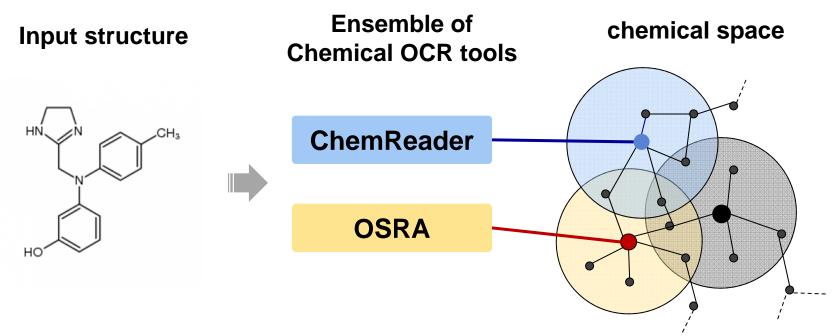

Ensemble Approach

Motivation

• Maximize the chance of including correct structure information by combining strengths of multiple chemical OCR systems

Rationale

• Different machine-vision algorithms could have different strengths in particular types of structures



Number of successful outputs produced by ChemReader or OSRA grouped by journal index.

Ensemble Approach

• Use of multiple chemical OCR tools

- Two output structures for the same input structure become members of the ensemble
- The ensemble approach enables to maximize chance of linking relevant entries in the annotation task

Annotation Test by Ensemble Approach

Result

• Total number of TP, FP and FN links

	TP	FP	FN
ChemReader	24592	30844	47631
OSRA	33105	21067	54995
Ensemble	45707	51535	55984

• Averaged recall and precision rates

	Avg. Precision	Avg. Recall
ChemReader	0.563	0.569
OSRA	0.491	0.568
Ensemble	0.544	0.619

The need of image-based annotation

Motivation of Image-based annotation

- Many molecules are referenced by 2D structure diagrams in chemical literature due to the lack of standard names
- Image-based mining can uncover knowledge on such molecules that is otherwise inaccessible in chemical databases

How to validate?

- How chemical entities are referred in research articles?
- Comparison of text-based annotation and Image-based annotation

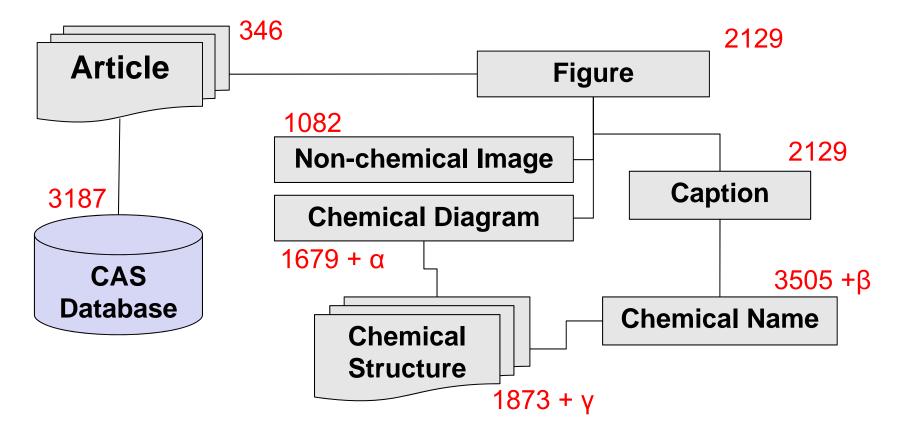
Ground truth for chemical literature mining

CAS Database

- The largest and commercially accessible chemical database
- Links to cited references (journals or patents) dating back to the beginning of the late 19th century

Sample set

- Keywords search: "Diabetes" and "small molecule"
 822 Journal articles
- Select 399 articles containing molecules being cited only once
- Download PDF files from publishers' website
 -Total **346** full-text articles in PDF format


Extraction of chemical info from figures

- All figures and captions are extracted from articles
- Image extraction
 - Export images without modification of color depth, size or resolution
 - Snapshot tool only for vector graphics
 - Separation of chemical structure images
- Chemical structure extraction
 - 2D Chemical structure diagram from image files
 - Chemical names from caption text
 - Extracted chemicals are indexed by CAS Registry numbers (or InChI strings)

Construction of chemical literature database

 Extracted data is stored in a relational database as traceable assertions

* Red numbers denote the number of records in the database

Preliminary statistics on current data

 Identifying chemical diagrams or chemical names on progress

Total number of linked molecules				
cited in captions	cited in diagram	cited in both		
657 + α	1326 + β	110 + γ		

 Over 278 molecules cited in chemical diagrams are missed by CAS

Text-based annotation using OSCAR3

OSCAR3

- Chemical documents processing tool (Corbett and Murray-Rust, 2008)
- Identify chemical names, ontology terms and chemical data

Chemical names in caption text

- Number of captions tested : 334
- Number of chemical names = 1087
- Number of chemical names extracted by OSCAR= 1814
- Number of correctly identified = 806
- **Precision = 0.444**
- Recall = 0.741

What we can do with the database

Statistical Analysis

- How molecules are cited first? By diagrams or names?
- How many molecules are cited only by diagrams?
- How many molecules are not indexed by CAS?

2D Chemical diagrams in articles are important data objects for mining chemical literature

Validation of Image-Based Annotation

ChemReader is effective?

- Chemical structures cited only by diagrams and missed by CAS
- Chemical structures incorrectly annotated by text-based approach

Image-based approach can uncover knowledge that are inaccessible otherwise

Integration of Image-based and Text-based

Multi modal extraction from chemical literature

- Text-based mining enables to extract textual descriptors as well as chemical names
- Graphical Mining
- Uncover the contextual scientific knowledge

Ensemble approach

- Strengths of image-based and text-based techniques
- Increase annotation accuracy

Conclusion

- Significant fraction of molecules is referenced by chemical diagrams only, and a chemical OCR system can be effective in annotating articles with these molecules
- Constructed database will facilitate research in chemical literature mining for the design, training and testing of algorithms for chemical structure extraction and chemical database annotation

Acknowledgement

- Polyergic Informatics, LLC
- Small Company Innovation Program, College of Engineering
- Michael Conlin
- Ye Li
- Christof Smith
- Caroline Yee
- Bethany Harris

Thank you!

