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Data, Rules, Prediction:
Lessons from Tycho de Brahe, Kepler and Newton

The world of Tycho Brahe: DATA COLLECTION
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Data, Rules, Prediction: Lessons from Tycho de
Brahe, Kepler and Newton

Kepler: MATHEMATICAL but not predictive

Newton’s laws: PREDICTIVE
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The Rules Behind the Development of Patent
Citation Network

Analysis at the level of individual patents

• Patents: nodes; Citation: edges

• Very large data set (about 5 million patents between 1975 and 2011)

• Data available electronically (USPTO + NBER dataset)

• Its evolution reflects technological changes

• Relevance to patent policy

from the beginning to the end: United States Patent 7,930,766
Kley April 19, 2011
fluid delivery for scanning probe microscopy
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The Rules Behind the Development of Patent
Citation Network

Citation networks

• special directed networks

• edges and vertices are never deleted from the network

• all outgoing edges of a vertex are added right after the vertex itself

• we will assume that a single vertex is added to the citation network in each time step

• there are no loops
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The Rules Behind the Development of Patent
Citation Network
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Figure 3.1: Some snapshots for a citation network. Since the new vertices are

always added to the right and to the top of old vertices, all edges go to the

left or downwards. Here we show three snapshots, vertices 6-10 are added

between the first and the second and 11-19 between the second and the third.

Notice that all outgoing edges of a vertex are added with the vertex itself.
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The Rules Behind the Development of Patent
Citation Network

Kernel Function

• Property vector: (X), x-vertex: a vertex with property vector x

• Kernel function: A : X× X→ R

• Higher kernel function value → more probable the realization of the given edge

• The probability that a given edge e connects an x-vertex to a y-vertex:

P [c(e, x, y) = 1] =
A(x, y)N(t(e), x, y)∑

(x′,y′)∈X×X A(x′, y′)N(t(e), x′, y′)

[ c(e, x, y) are indicator random variables, (one for every edge–property vector triple.

c(e, x, y) = 1 if and only if edge e connects an x vertex to y-vertex; t(e) is the time step before

the addition of edge e; N(t(e), x, y) is the number of possible x-y connections in time step t(e). ]
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The Rules Behind the Development of Patent
Citation Network

Direct and Inverse Problems

Kernel-based
generator

Kernel function(s)
A(·, ·)

Network
(artificial)

Kernel-based
measurement

Kernel function(s)
A(·, ·)

Network
(real)

10



The Rules Behind the Development of Patent
Citation Network

Solving the Inverse problem
The Frequentist Method

The Maximum Likelihood Method
The goal is to extract a kernel function from the network evolution data.

The function to be maximized is the probability that a kernel function generates exactly
the observed network. i.e. (for citation networks):

∏
e

A(xe)
S(t(e))

=
n∏
i=1

A(i)Mi
∏
e

[
n∑
i=1

p
t(e)
i A(i)]−1

the S normalization factor is

S(t(e)) = N t(e)
n∑
i=1

p
t(e)
i A(i).

Existence and uniqueness were proved by Gábor Csárdi, and the whole procedure has
been generalized for non-citation networks.
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Variables: In-Degree and Age

A(d, l) = Ad(d)Al(l): linear preferential attachment times double Pareto age-dependent part

Sections from the in-degree and age based maximum likelihood fitted kernel function for the US patent

citation network. Both plots have logarithmic axes. From Gábor Csárdi.

in-degree dependent kernel function can be very well fitted with:
A(d) = dα + a; α exponent is close to unity (may lead to scale-free networks)

Al(l) =

(
(l/tp)

βp−1 if l ≤ tp,

(l/tp)
−αp−1 if l > tp.
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Some lessons learned from the ”microscopic”
analysis

• ”number of citations received’ and ”age” are relevant variables

• the functional forms of the ”attractiveness” of the patents on these variables were
found

• “stratification” – more and more nodes have very few citations and less and less
nodes have many citations

• “sleeper patents” matter: it may happen that old patents gain new significance in
light of later advances
(Upjohn’s 1969 patent #3, 461, 461 for minoxidil: initially developed to treat
hypertension, but it was later noticed that one of its side effects was hair growth.
Although the patent was issued in 1969, the bulk of its citations came in the 1980s
and 1990s, when inventors started developing hair loss treatments based on
minoxidil)

• changes in the laws of the patent review process and in the level of rigorousness of
the patent examinations over-accelerated the process
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Prediction of Emerging Technologies based on
Co-citation Clustering

• General Plan

• Background and Significance

• Methodology

• Results so far

• Conclusions and Plans
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General Plan

Conceptual frameworks

• to develop, validate and test a new technique about new directions of technological
development

• patent citation network

• predictive analytics

Working hypotheses

1. the evolution of the patent citation network reflects (if imperfectly) technological
evolution

2. a quantity, the citation vector, can be defined appropriately to play the role of a
predictor, i.e., to characterize the temporal change of technological fields

3. clusters of patents, which are the signature of new developmental directions, can be
identified based on patterns of similarity in the citations they receive
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General Plan

Technology classification systems

• USPTO: 450 classes, and over 120,000 patent subclasses

• new classes added; patents can be reclassified

• NBER: 36 sub-categories further lumped into

• six categories: Computers and Communications, Drugs and Medical, Electrical and
Electronics, Chemical, Mechanical and Others
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General Plan

Evolving clusters

Figure 1: Possible elementary events of cluster evolution. Based on Palla et al. (2007
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General Plan

Specific aims

1. to provide a general predictive analytic methodology, which is able to identify
structural changes in the patent cluster system and reveal precursors of emerging
new technological fields

2. to test and validate the predictive force of the new methodology based on historical
examples of new class formation

3. to identify specific mechanisms of the recombination process and formation
of new classes

4. to scan the database to identify ”hot spots” that may reflect incipient development
of new technological clusters
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Methodology

Definition of a predictor for the technological development

Figure 2: Illustration of citation vector calculation in case of four technological categories
denoted by the four different colors. The outgoing citations are weighted by the out-de-
gree of their source. The citations originating from the same category (blue in this case)
are excluded from the citation vector and the corresponding vector component is set to
zero. The received weighted citations are summed and normalized in order to obtain the
citation vector.
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Methodology

Algorithm for predicting for the technological development

1. Select a time point t1 between 1975 and 2007 and drop all patents that were issued
after t1.

2. Keep some subset of subcategories: c1, c2, . . . , cn – to work with a reasonably sized
problem.

3. Compute the citation vector. Drop patents with assortative citation only.

4. Compute the similarity matrix of patents by using the scalar product between the
corresponding citation vectors.

5. Apply a hierarchical clustering algorithm to reveal the functional clusters of patents.

6. Repeat the above steps for several time points t1 < t2 < · · · < tn.

7. Compare the dendrogram obtained by the clustering algorithm for different time
points to identify structural changes (as emergence and/or disappearance of
subcategories).

20



Methodology

Identification of patent clusters

- to select and test clustering and graph partitioning algorithms to produce sufficiently
good results for comparing and validating the clustering results

- time complexity: an unavoidable trade-off between accuracy and time-consumption

- the appropriate number of clusters are not known a priori : use hierarchical methods,
which do not require that the number of clusters to be specified in advance

- k-means and the Ward method, which are point clustering algorithms

- graph clustering algorithms: edge-betweenness random walks and the MCL method
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Methodology

Interplay: a new clustering algorithm in near linear time

• a new global graph clustering algorithm (”Risk”: under testing, generalization and
formal mathematical studies), to produce sufficiently good results for comparing and
validating the clustering results (Péter Volf )

• near linear time

22



Methodology

Figure 3: We used the LFR (Lancichinetti-Fortunato-Radicchi) benchmark to create the
test graphs. Every graph has approximately the same community structure (1̃4 com-
munities with different sizes), the same average degree (9-13), and the same degree
distribution (negative exponent: 2). The number of vertices grow from 1000 to 100000.
Based on these measurements, the time complexity of the algorithm is approximately
O((|V |+ |E|)1.1).
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Methodology

Figure 4: The algorithm reaches as high modularity scores as other well-known algorithms.
Since the community structures of the graphs are known, the results can be compared
directly to the actual community structures using Rand index. The table shows that
our algorithm reaches notably higher similarity scores (Rand index) on every graph, than
other well-known methods.
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Methodology

Detection of structural changes in the patent cluster system

- ASSUMPTION: the structure of dendrograms REFLECTS the structural relationships
between patent clusters

- In this hierarchy, each branching point is binary and defined only by its height on the
dendrogram, corresponding to the distance between the two branches.

- Temporal changes in the cluster structure can be divided into four elementary events:
1) increase or 2) decrease of the height of an existing branching point, 3) insertion of a

new and 4) fusion of two existing branching points.

- To find these structural changes, we will identify the corresponding branching points in
the dendrograms representing the consecutive time samples of the network and follow

their evolution through the time period documented in the database.

- Specifically, potential new classes can be found by comparing the dendrogram
structure with the USPTO classification.

- While some of the branching points of the dendrogram are reflected in the current
classification structure, there could be significant branches which are not identified by

the current system.
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Results so far

Local densities of patents exist in the citation space and can be found with
clustering

Figure 5: Cluster structure of patents in the citation space. Two-dimensional representa-
tion of patent similarity structure in the sub-category 11 by using the Fruchterman-Rein-
gold algorithm. Local densities corresponding to technological areas can be recognized by
naked eye or identified by clustering methods. The colors encode the US patent classes.
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Results so far

Changes in the structure of clusters reflects technological evolution

Figure 6: Temporal changes in the cluster structure of the patent system. Dendrograms
representing the results of the hierarchical Ward clustering of patents in the sub-category
11, based on their citation vector similarity in 1994 (graph A) and 2000 (graph B). The
x axis denotes a list of patents in sub-category 11, while the distances between them as
defined by the citation vector similarity, are drawn on the y axis. (Patents separated by
0 distance form thin lines on the x axis.) The 7 colors of the dendrogram correspond
to the 7 most widely separated clusters. While the overall structure similar in 1994 and
2000, interesting structural changes emerged in this period. The cluster 5 marked with
the red color approximately corresponds to the new class 442, which was established in
1997, but was clearly identifiable by our clustering algorithm as early as 1994.
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Results so far

The emergence of new classes: an illustration

Figure 7: An example of the splitting process in the citation space, underlying the forma-
tion of a new class. In the 2D projection of the 36 dimensional citation space, position of
the circles denote the position of the patents in subcategory 11 in the citation space in
three different stages of the separation process (Jan. 1,1994, Jan. 1,1997, Dec. 31,1999).
Red circles show those patents which were reclassified into the newly formed class 442,
during the year 1997. The rest of the patents which reserved their classification after
1997 are denoted by blue circles. Precursors of the separation appear well before the
official establishment of the new class.
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The emergence of new classes: an illustration

Figure 8: Separation of the patents by clustering in the citation space, based on the
Jan. 1,1994 data. A: Distribution of the patents issued before 1994 in the subcategory
11, within the 6 official classes in 1997 on the class axis (also marked with different
colors) and within the 7 clusters in the citation space. The clustering algorithm collected
the majority of those patents which were later reclassified into the newly formed class
442 (red line) into the cluster 5 (both are marked with asterisk). Vice-verse, the cluster
5 contains almost exclusively such patents which were later reclassified. Thus, we were
able to identify the precursors of the shaping new class by clustering in the citation
space. B: The dendrogram belonging to the hierarchical clustering of the patents in the
subcategory 11 in year 1994 shows that the branch which belongs to the cluster 5 is
the fourth strongest branch of the tree. The coloring here refers to the result of the
clustering, thus it is different from the colors in graph A.
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Conclusions and Plans

• Patent citation network is a good source of information for making predictions for
technological development

• Clustering methods should be tested and validated (help from patentologists would
be appreciated!)

• Mechanisms of new class formations will be studied

• Database should be scanned to detect ”hot spots” of emerging fields
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Research group

Collaborators in the US:

Katherine Strandburg, Phd in Physics, Law Professor: NYU

Jan Tobochnik, KCollege, Computer Simulation Methods, AJP

Kinga Makovi, PhD student, Columbia University
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Research group

Hungarian research group:

Zoltán Somogyvári, Péter Volf, László Zalányi; other researchers are also involved
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Research group

Lionshare of the preliminary work: Gábor Csárdi: (now Har-
vard): direct and inverse problems of evolving networks

Kinga Makovi: concept formation

Péter Volf: lionshare of the clustering, data mining
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