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Role of eigen-analysis in Data Mining
 Prinicipal Component Analysis
 Latent Semantic Indexing
 Canonical Correlation Analysis
 Linear Discriminant Analysis
 Multidimensional Scaling
 Spectral Clustering
 Matrix Completion
 Kernalized variants of above

 Eigen-analysis synonymous with Spectral Dim. Red.
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 Many heuristics for picking dimension 
 “Play-it-safe-and-overestimate” heuristic
 “Gap” heuristic
 “Percentage-of-explained-variance” heuristic

Mechanics of Dim. Reduction



Motivation for this talk
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 Large Matrix Valued Dataset Setting:
 High-Dimensional Latent Signal Variable + Noise 

 “Out intuition in higher dimensions isn’t worth a damn”
George Dantzig, MS Mathematics, 1938 U. of Michigan 

Random matrix theory = Science of eigen-analysis 



New Twists on Spectral learning
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 1) All (estimated) subspaces are not created equal

 2) Value to judicious dimension reduction

 3) Adding more data can degrade performance

 Incorporated into next gen. spectral algorithms
 Improved, data-driven performance!
 Match or improve on state-of-the-art non-spectral techniques



Analytical model
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 Low dimensional (= k) latent signal model
 Xn is an n x m Gaussian “noise-only” matrix
 c = n/m = # rows / # columns of data set
 Theta ~ SNR 



1) All estimated subspaces are not equal
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 c = # rows / # columns in data set
 Theta ~ SNR
 Subspace estimates are biased (in geometric sense above)



2) Value of judicious dim. reduction
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 “Playing-it-safe” heuristic injects additional noise!
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 Many heuristics for picking dimension 
 “Play-it-safe-and-overestimate” heuristic
 “Gap” heuristic
 “Percentage-of-explained-variance” heuristic

Mechanics of Dim. Reduction



What about the gap heuristic?
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 No “gap” at breakdown point!



Percentage-of-variance heuristic?
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 O(1) eigenvalues that look “continuous” are noise!
 Including those dimensions injects noise!
 Value of judicious dimension reduction!



3) More data can degrade performance
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 c = n/m = # rows / # columns
 Consider n = m so c = 1 
 n’ = 2n, m’ = m
 New critical value = 21/4 x Old critical value!
 Weaker latent signals now buried! 
 Value to adding “correlated” data and vice versa!
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New Twists on Spectral learning
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 1) All (estimated) subspaces are not created equal

 2) Value to judicious dimension reduction

 3) Adding more data can degrade performance

 Incorporated into next gen. spectral algorithms
 Match or improve on state-of-the-art non-spectral techniques
 Role of random matrix theory in data-driven alg. design
 http://www.eecs.umich.edu/~rajnrao/research.html


	New twists on eigen-analysis �(or spectral ) learning
	Role of eigen-analysis in Data Mining
	Mechanics of Dim. Reduction
	Motivation for this talk
	New Twists on Spectral learning
	Analytical model
	1) All estimated subspaces are not equal
	2) Value of judicious dim. reduction
	Mechanics of Dim. Reduction
	What about the gap heuristic?
	Percentage-of-variance heuristic?
	3) More data can degrade performance
	Role of eigen-analysis in Data Mining
	New Twists on Spectral learning

