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Role of eigen-analysis in Data Mining
 Prinicipal Component Analysis
 Latent Semantic Indexing
 Canonical Correlation Analysis
 Linear Discriminant Analysis
 Multidimensional Scaling
 Spectral Clustering
 Matrix Completion
 Kernalized variants of above

 Eigen-analysis synonymous with Spectral Dim. Red.

2



3

 Many heuristics for picking dimension 
 “Play-it-safe-and-overestimate” heuristic
 “Gap” heuristic
 “Percentage-of-explained-variance” heuristic

Mechanics of Dim. Reduction



Motivation for this talk
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 Large Matrix Valued Dataset Setting:
 High-Dimensional Latent Signal Variable + Noise 

 “Out intuition in higher dimensions isn’t worth a damn”
George Dantzig, MS Mathematics, 1938 U. of Michigan 

Random matrix theory = Science of eigen-analysis 



New Twists on Spectral learning
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 1) All (estimated) subspaces are not created equal

 2) Value to judicious dimension reduction

 3) Adding more data can degrade performance

 Incorporated into next gen. spectral algorithms
 Improved, data-driven performance!
 Match or improve on state-of-the-art non-spectral techniques



Analytical model
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 Low dimensional (= k) latent signal model
 Xn is an n x m Gaussian “noise-only” matrix
 c = n/m = # rows / # columns of data set
 Theta ~ SNR 



1) All estimated subspaces are not equal
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 c = # rows / # columns in data set
 Theta ~ SNR
 Subspace estimates are biased (in geometric sense above)



2) Value of judicious dim. reduction
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 “Playing-it-safe” heuristic injects additional noise!
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 Many heuristics for picking dimension 
 “Play-it-safe-and-overestimate” heuristic
 “Gap” heuristic
 “Percentage-of-explained-variance” heuristic

Mechanics of Dim. Reduction



What about the gap heuristic?
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 No “gap” at breakdown point!



Percentage-of-variance heuristic?
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 O(1) eigenvalues that look “continuous” are noise!
 Including those dimensions injects noise!
 Value of judicious dimension reduction!



3) More data can degrade performance
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 c = n/m = # rows / # columns
 Consider n = m so c = 1 
 n’ = 2n, m’ = m
 New critical value = 21/4 x Old critical value!
 Weaker latent signals now buried! 
 Value to adding “correlated” data and vice versa!
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New Twists on Spectral learning
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 1) All (estimated) subspaces are not created equal

 2) Value to judicious dimension reduction

 3) Adding more data can degrade performance

 Incorporated into next gen. spectral algorithms
 Match or improve on state-of-the-art non-spectral techniques
 Role of random matrix theory in data-driven alg. design
 http://www.eecs.umich.edu/~rajnrao/research.html


	New twists on eigen-analysis �(or spectral ) learning
	Role of eigen-analysis in Data Mining
	Mechanics of Dim. Reduction
	Motivation for this talk
	New Twists on Spectral learning
	Analytical model
	1) All estimated subspaces are not equal
	2) Value of judicious dim. reduction
	Mechanics of Dim. Reduction
	What about the gap heuristic?
	Percentage-of-variance heuristic?
	3) More data can degrade performance
	Role of eigen-analysis in Data Mining
	New Twists on Spectral learning

