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Abstract
Threats to the privacy of users and to the availability of

Internet infrastructure are evolving at a tremendous rate.
To characterize these emerging threats, researchers must
effectively balance monitoring the large number of hosts
needed to quickly build confidence in new attacks, while
still preserving the detail required to differentiate these at-
tacks. One class of techniques that attempts to achieve
this balance involves hybrid systems that combine the scal-
able monitoring of unused address blocks (or darknets)
with forensic honeypots (or honeyfarms). In this paper we
examine the properties of individual and distributed dark-
nets to determine the effectiveness of building scalable hy-
brid systems. We show that individual darknets are dom-
inated by a small number of sources repeating the same
actions. This enables source-based techniques to be effec-
tive at reducing the number of connections to be evaluated
by over 90%. We demonstrate that the dominance of lo-
cally targeted attack behavior and the limited life of ran-
dom scanning hosts result in few of these sources being
repeated across darknets. To achieve reductions beyond
source-based approaches, we look to source-distribution
based methods and expand them to include notions of lo-
cal and global behavior. We show that this approach is
effective at reducing the number of events by deploying
it in 30 production networks during early 2005. Each of
the identified events during this period represented a ma-
jor globally-scoped attack including the WINS vulnerabil-
ity scanning, Veritas Backup Agent vulnerability scanning,
and the MySQL Worm.

1 Introduction

Networks are increasingly subjected to threats that affect
the reliability of critical infrastructure. These include Dis-
tributed Denial of Service attacks, such as the SCO DDoS
attacks [2], and scanning worms, such as CodeRed [33] and
Blaster [3]. The impact of these threats is profound, caus-

ing disruptions of real world infrastructure [26] and cost-
ing individual institutions hundreds of thousands of dollars
to clean up [11]. To address the concerns raised by these
threats, researchers have proposed a variety of global early
warning systems whose goal is to detect and characterize
these threats.

Unfortunately, the properties of these threats make them
particularly difficult to address. First and foremost, they
are globally scoped, respecting no geographic or topologi-
cal boundaries. For example, at its peak, the Nimda worm
created 5 billion infection attempts per day, which included
significant numbers from Korea, China, Germany, Taiwan,
and the US [33]. In addition, they can be exceptionally vir-
ulent and can propagate to the entire population of suscep-
tible hosts in a matter of minutes. This was the case during
the Slammer worm, in which the majority of the vulner-
able population (75K+ susceptible hosts) was infected in
less than 30 minutes [21]. This virulence is extremely tax-
ing on network resources and creates side effects that pose
problems even for those that are outside of the vulnerable
population, such as the routing instability associated with
the Slammer worm [17]. To make matters worse, these
threats have the potential to be zero-day threats, exploiting
vulnerabilities for which no signature or patch is available.
For example victims of the Witty worm were compromised
via their firewall software the day after a vulnerability in
that software was publicized [31].

In order to address these properties, threat detection and
classification systems are needed to provide detailed foren-
sic information on new threats in a timely manner. As many
threats propagate by scanning the IPv4 address space, re-
searchers have turned to monitoring many addresses at the
same time in order to quickly detect these threats [33, 32].
By monitoring large numbers of addresses, these systems
can notably increase the probability of quickly detecting a
new threat as it attempts to infect other hosts on the Inter-
net [22]. However, as threats become increasingly com-
plex, interacting with the infected hosts to ellict the impor-
tant threat features, such as exploit, rootkits, or behavior,



may require increasingly complex host emulation. This,
coupled with the possibility of zero-day threats that may
provide little or no warning for creating these emulated
behaviors, may leave wide addresses monitoring systems
unable to identify the important threat characteristics. In
contrast, honeypot systems provide detailed insight into
new threats by monitoring behavior in a controlled environ-
ment [5, 34]. By deploying honeypot systems with mon-
itoring software, one can automatically generate detailed
forensic profiles of malicious behavior [16]. Unfortunately,
this detailed analysis comes at the expense of scalability,
and hence time to detection.

An interesting potential approach to this problem is to
forward requests destined to darknets back to an automated
bank of honeypots [15, 38, 30]. While this architecture pro-
vides the promise of quickly generating detailed forensic
information, there are still serious problems that need to be
addressed. In particular, there is still the very important
question of what requests to forward to the honeypots. For
example, a darknet consisting of an unused /8 address block
(roughly 16 million routable IP addresses) observes almost
4 Mbits/sec of traffic, much of which is TCP connection
requests. While seemingly a small amount of traffic, each
of these connection requests may require their own virtual
machine. This load can cause scalability issues for both
servicing the large number of requests and storing or eval-
uating the large quantity of data produced [38].

In this paper, we investigate the problem of filtering
darknet traffic in order to identify connections worthy of
further investigation. In particular, we analyze data from a
large, distributed system of darknet monitors. We charac-
terize the traffic seen by these monitors to understand the
scalability bounds of a hybrid monitoring system that con-
sists of distributed darknet monitors and a centralized col-
lection of honeypots (or honeyfarm). In addition, we use
these characterizations to guide the design of an algorithm
that is effective at reducing large traffic rates into a small
number of manageable events for the honeyfarm to process.

The main contributions of this work are:

• Measurement and analysis of a large, distributed
dark address monitor. The measurements and char-
acterizations presented in this paper are from a multi-
year deployment of over 60 darknets in 30 organi-
zations including academic institutions, corporations,
and Internet service providers. This deployment rep-
resents a tremendous amount of diverse address space
including over 17 million routeable addresses with
blocks in over 20% of all routed /8 networks.

• Identification of several key threat characteristics
that bound the scalability of a hybrid system. The
scalability of a hybrid system depends on limiting the
number of connections that need to be sent to the hon-
eyfarm for analysis. By examining the behavior of

threats at a large number of darknets we note two im-
portant characteristics:

– A small fraction of the total source IPs observed
at a single darknet are responsible for the over-
whelming majority of the packets.

– Most behavior consists of sources, and to some
extent target services, that are not observable
across darknets.

From these characterizations we show that source-
based filtering is an effective method of reduction
for individual darknets, but fails to provide addi-
tional benefits when multiple darknets are combined
together.

• Creation and deployment evaluation of an effective
algorithm for scaling hybrid architectures. We cre-
ate an algorithm that is both very effective in reducing
the large amount of traffic seen by darknets to a small
handful of events and is easily within the capabilities
of the most modest honeyfarms. A broad production
deployment of this algorithm over a three month pe-
riod in 2005 provided analysis of five major global
events, including the MySQL Worm and the scanning
associated with the WINS vulnerability, as well as the
Veritas Backup vulnerabilities.

The remainder of this paper is structured as follows: We
begin by reviewing the related work in section 2. In sec-
tion 3 we introduce our hybrid architecture and some of the
challenges in building any similar system. We then exam-
ine the behavior of threats at individual dark address blocks
in section 4. We observe these threats across darknets in
section 5, and based on the insights from these measure-
ments, we construct a filtering algorithm that we describe
in section 6. In section 7 we show how this algorithm is
effective at reducing large traffic rates to a small handful
of events through a broad production deployment. We then
finish with our conclusions in section 8.

2 Related Work

Historic approaches to the detection and characterization
of network-based security threats fall into two categories;
monitoring production networks with live hosts and moni-
toring unused address space (or darknets). In monitoring
used networks, systems may choose to watch traffic di-
rectly [20] or watch abstractions of the data, such as flow
records [13]. Security devices also provide an important
source of these abstractions, and alerts from host-based
anti-virus software [6], intrusion detection systems [10],
and firewalls have been used as an effective means of ad-
dressing certain security threats. In contrast to monitor-
ing live hosts, darknet monitoring consists of sensors that



monitor blocks of unused address space. Because there are
no legitimate hosts in a darknet, any observed traffic des-
tined to such darknet must be the result of misconfigura-
tion, backscatter from spoofed source addresses, or scan-
ning from worms and other network probing. Methods for
watching individual addresses with sacrificial hosts are of-
ten called honeypots [5, 34]. Techniques for monitoring
much wider address blocks have a variety of names in-
cluding network telescopes [22], blackholes [33], and dark-
nets [8]. It should be noted that a limitation of this ap-
proach is that it relies on observing the target selection be-
havior of threats. As a result, threats that do not scan for
new hosts, or threats that are specifically tailored to avoid
unused blocks are not observed. Nevertheless, these tech-
niques have been used with great success in observing de-
nial of service activity [23], worms and scanning [32], as
well as other malicious behavior.

In isolation, these techniques fail to completely address
the scalability and behavioral fidelity requirements needed
to monitor these threats. The scope of existing host-based
techniques, such as host-based honeypots, anti-virus soft-
ware, and host-based intrusion detection, is too small to
capture global information such as the size of the infected
population, or provide warning early in the growth phases.
On the other hand, globally-scoped network sensors, such
as network telescopes, do not interact sufficiently with the
worm. As such, they lack enough information to charac-
terize the vulnerability exploited and its effect on local ma-
chines. To be effective at assuring the availability of Inter-
net resources, it is necessary to combine information from
disparate network resources, each with differing levels of
abstraction, into one unified view of a threat.

Acknowledging this need for both host and network
views, two new approaches of combining these resources
have evolved, aggregating fine-grained sensor measure-
ments from a large numbers of sensors, and hybrid sys-
tems that use darknet monitors to concentrate connections
to a centralized honeyfarm. Projects that aggregate data
fall into two categories, those based on aggregating fire-
wall logs or Intrusion Detection System (IDS) alerts across
multiple enterprises [37, 36, 41], and those based on con-
structing and aggregating data from large numbers of hon-
eypots [35, 25]. Hybrid systems [15, 38, 30] vary in how
they perform the physical connection funneling, where and
in what way they choose to filter the data, and in the di-
versity and amount of address space monitored. Of partic-
ular relevance is the recent work on the Potemkin Virtual
Honeyfarm [39] in which the authors discuss a hybrid ar-
chitecture with emphasis on a novel set of techniques for
creating scalable per connection virtual machines. Their
scalability gains are achieved by multiplexing across idle-
ness in the network and by exploiting redundancies in the
per-host state of the virtual machines. The gains reported
vary widely based on work load (from a few hundred to a

Figure 1: A Hybrid architecture with the distributed Inter-
net Motion Sensor (IMS) with the centralized Host Motion
Sensor (HMS).

million destination IPs per physical host) but under realis-
tic workloads a single physical host can support 50k-100k
destinations IPs. This work is complimentary to ours in that
we focus on limiting the number of connections seen by the
honeyfarm while the Potemkin authors focus primarily on
servicing these connections as efficiently as possible.

3 A Hybrid Architecture for Monitoring In-
ternet Security Threats

To provide both behavioral fidelity and global, broad cov-
erage, we have proposed a hybrid architecture that is highly
scalable but still delivers very accurate detection. This
multi-resolution, hybrid architecture (shown in Figure 1)
consists of two components: a collection of distributed
darknet sensors (the Internet Motion Sensor or IMS), and
a collection of host sensors (the Host Motion Sensor or
HMS). In this architecture the IMS is used to monitor a
broad, diverse set of darknets. When new activity is de-
tected by the IMS, the connection is proxied back to the
HMS for further in-depth analysis. The connection is re-
layed to virtual machine images running the application
appropriate to the connection request. Thus, new and im-
portant threats are handed off and actually executed so the
resulting activity can be monitored for new worm behavior.

By watching darknets, the traffic seen by the Internet
Motion Sensor is pre-filtered to eliminate both the false
positives in identifying malicious traffic and the scaling is-
sues of other monitoring approaches. To analyze this traf-
fic, the IMS sensors have both active and passive compo-
nents. The active component responds to TCP SYN pack-
ets with a SYN-ACK packet to elicit the first data payload
on all TCP streams. When a packet is received by a dark-
net sensor, the passive component computes the hash of the
payload. If the hash doesn’t match any previously observed
signatures, then the payload is stored and the signature is
added to the signature database. The Internet Motion Sen-



sor architecture was introduced in 2005 [2], and it has been
used to track new threats [3, 1] and to evaluate the impor-
tance of distributed darknet monitoring [7].

The Host Motion Sensor (HMS) is designed to provide
additional forensic analysis in response to the changing
threat landscape. It consists of three components: a virtual
machine management module, a network detection mod-
ule, and a host resource module. The virtual machine man-
agement module runs the target operating systems on top
of a virtual machine. This module determines when to start
a clean OS image, when to save an infected host image to
disk, and it manages the working set of applications and
operating systems. The network module, like the outbound
connection profiling HoneyStat system [9], is responsible
for looking for infected host behavior. It profiles the orig-
inating traffic from the honeypot and alerts on any out-
bound connection attempt not part of its normal behavior.
Publicly available intrusion detection software [28] that
matches traffic against known malicious signatures is used
as an oracle for classifying any newly detected threats as
“known” or “unknown”. The final module is the host re-
source profiler. This system uses BackTracker [16] to build
file and process dependency trees to both detect violations
of policy and provide detailed forensic information on the
files and processes created by an possible infection. Again,
existing techniques are used to help identify new activities,
in this case host anti-virus software [6].

There are several research problems associated with this
or any hybrid approach that must be solved in order to en-
sure successful operation. These include:

• Filtering Interactions. Large darknets see staggering
amounts of traffic that can not simply be redirected to
a honeyfarm. In order to achieve scale, the amount of
data presented to the honeyfarm must be significantly
reduced.

• Emulating Real Host Behavior. As threats become
increasingly sophisticated, detection systems must be-
come correspondingly complex to elicit the proper re-
sponse and to avoid fingerprinting. Understanding this
arms race and the associated tradeoffs is key to any
successful deployment.

• Automating Forensics. At the speed new threats
are capable of spreading, the operational impact of
human-scaled forensic analysis is minimal. Auto-
mated techniques are needed for generating action-
able forensic information about a threat, including be-
havioral signatures describing activity at the network
and/or host levels.

• Managing Virtual Machines. Even with advanced
filtering mechanisms, the virtual machines are ex-
pected to handle a large number of requests and
must be managed efficiently (as is discussed in the

Potemkin Virtual Honeyfarm [39]). In addition, the
effectiveness of the entire system is dependent on its
ability to accurately represent the vulnerable popula-
tion of interest.

In this section we discussed both the IMS and HMS com-
ponents of our hybrid monitoring system as well as several
of the research problems associated with any such hybrid
system. In the next section, we focus on one of these re-
search problems, reducing and filtering the interactions be-
tween the darknets and the honeyfarm.

4 Hybrid Scalability at Individual Darknets

For hybrid systems to be effective, they must make intel-
ligent decisions about what darknet traffic to send to the
honeyfarm. An idealized mechanism achieves scale by
reducing redundant information and only forwarding one
instance of each unique threat to the honeyfarm. Unfor-
tunately, the mechanisms for determining what to hand-
off must make these decisions with the imperfect infor-
mation available at a darknet monitor. In order to mini-
mize overhead, a darknet monitor typically collects pack-
ets passively. As such, it has available elements from the
network packet including the standard 5-tuple (source IP
addresses, source port, destination IP address, destination
port, and protocol), as well as any payload data seen for
UDP, ICMP, or TCP backscatter packets. As mentioned
previously, the IMS darknet sensor also collects the first
payload packet for TCP connections through a scalable re-
sponder [2]. While other methods have been proposed for
eliciting additional application information (for example,
by building application responders via Honeyd [25]), in
this paper we fix the data available for determining what
to handoff and leave the issue of exploring more sophisti-
cated information sources for future work.

In the following section, we explore the characteristics of
these six elements (the five tuple and initial payload data)
in order to determine how they affect the scalability of a
hybrid system at individual darknets. We begin by exam-
ining the properties of individual darknets and in particular
the behavior of source IP addresses. We provide these char-
acterizations by looking at data from 14 darknet monitors
ranging in size from a /25 monitor to a /17 monitor over a
period of 10 days between August 18, 2004 and August 28,
2004. We then use these characterization to examine the ef-
fectiveness of proposed filtering techniques in reducing the
connection which need to be evaluated by the honeyfarm.

4.1 Characterizing Individual Blocks
We begin by evaluating the source IP addresses seen at
each darknet as a mechanism for determining bounds on
the number of unique connections to be evaluated. As with
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Figure 2: The contribution of individual IP to the total num-
ber of packets as seen at 14 darknets. Over 90% of the
packets are from 10% of the source IP addresses.

all the imperfect methods available at a darknet, source IP
addresses have limitations in their ability to represent the
number of unique attack sources. First, IP addresses do not
represent individuals, as multiple users may use the same
computer. Second, the mapping from IP address to com-
puter is not static, so a computer may be represented mul-
tiple times with different IP addresses [32]. As in other
studies [32, 24], we attempt to minimize these effects by
performing analysis across small time frames of less than a
day, or more often, less than an hour. However, the actual
impact of dynamic addresses is not studied here.

The number of source IP addresses seen at each indi-
vidual darknet varied greatly, with an inter-block mean of
75,530 sources and a variance of 92,843 sources over the 10
days. The minimum number observed in a single day was
1,345 sources with a maximum of 352,254 sources. Some
of the wide variability in sources seen can be attributed to
the effect of monitored darknet size. In our sample we had
a mean block size of 5,385 IPs (roughly a /22), with the
smallest darknet being a /25 and the largest a /17. How-
ever, even when normalizing to the smallest block size of
/25, we have an inter-block mean of 40,540 sources and a
variance of 30,381.

To understand how these source IP addresses behave, we
examined the number of packets sent by each source IP
address over the 10-day observation period at each of the
14 darknets. Figure 2 shows a surprising distribution: over
90% of the total packets observed at each darknet were sent
from less than 10% of the source IP addresses seen at that
darknet.

The other property that limits the number of unique con-
nections to be evealuated is the number and types of ser-
vices contacted. To explore this space, we examined the
unique destination ports contacted over our 10-day obser-
vation period. As with sources, ports are imperfect mea-
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Figure 3: The contribution of a port to the total number of
packets as seen at 14 darknets. Over 90% of the packets
target .5% of the destination ports.

sures. In particular, destination port analysis suffers from
the inability to differentiate activities to the same port and
to represent combinations of port activities (as is the case
in multi-vector attacks) into a single action. Nevertheless
these, serve as a coarse-grained approximation sufficient
for exploring the size of the destination service space.

In our analysis we again see a great deal of variability
based on darknet size, with a mean number of contacted
ports of 17,780 and a variance of 20,397. The minimum
number of ports seen was 1,097 at a /25 and the maximum
was 59,960 at a /17. With maximums approaching the to-
tal number of destination ports allowed, we conjecture that
many of the ports observed are simply due to ports scans.
Nevertheless, unless the scanning is uniform in some way
(e.g., sequential) it would be difficult for the darknet mon-
itors to treat these packets differently. To understand the
role these diverse destination ports play in darknet traffic,
we investigated the distribution of these destination ports
and their effect on the number of packets. Again we see a
very striking result: over 90% of the packets are from .5%
of the destination ports.

Despite the focused distributions, the cross product of
the total unique source IP addresses and total destination
ports is actually quite large. In order for us to efficiently
scale, the source IP addresses must repeat similar actions.
We therefore look at the behavior of the top 10% source
IP addresses in terms of the number of destination ports
they contact as well as the number of unique payloads they
send. Figure 4 shows the number of ports contacted by 10%
of the IP addresses at each of 14 darknets over a period of
10 days. At each darknet, over 55% of these source IP ad-
dresses contacted a single destination port, 90% contacted
less than six, and 99% of the source IP addresses contacted
less than 10. A very small fraction of these very active
source IP addresses contacted considerably more ports. As
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Figure 4: For the top 10 percent of IPs seen at each of
the 14 darknets, the cumulative distribution function of the
number of ports contacted.
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Figure 5: For the top 10 percent of IPs seen at each of
the 14 darknets, the cumulative distribution function of the
number of unique payloads sent.

expected, the fanout in the payloads sent is slightly larger,
with 30% sending only one payload, 70% sending two or
less, and 10 or less payloads seen by only 92%. In this
analysis only the first payload of an action is considered.
While a better differentiator of threats than ports, it may
still under-represent the total number of events, as many
services (e.g., Windows RPC) require multiple identical
initiation packets. Nevertheless, both methods show that
a significant fraction of the behaviors are the same for a
source IP address, with the vast majority of the attacks in-
volving multiple destination ports (multi-vector) and con-
sisting of less than 10 contacted destination ports.

In this section we explored the source IP address behav-
ior as seen by 14 individual darknets. We showed that a
small fraction of the total source IP addresses are responsi-
ble for the vast majority of packets and that these sources
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Figure 6: The reduction of Source-Connection, Source-
Port, and Source-Payload filtering. Average effectiveness
per hour for 14 darknets over a 10-day period with N=1.

are contacting the same, small handful of destination ports
repeatedly. In the next section, we examine the effect of
these results on several source-based filtering techniques
and evaluate the practical value of applying these tech-
niques to reduce packets seen at individual dark address
blocks into a smaller number of unique events.

4.2 Source-Based Filtering

Recently a small body of work has emerged on filtering
of the darknet traffic as a means to scale to large ad-
dress blocks. This work has been published in the con-
text of the iSink [38] project as well as the Internet Mo-
tion Sensor [2]. In the iSink work [38] the authors dis-
cuss two forms of filtering, random subnet selection and
a sample and hold method. In subsequent work [24],
the authors introduce four types of source-based filter-
ing: source-connection, source-port, source-payload, and
source-destination. The tradeoffs are discussed for each,
including the effect of multi-stage (multiple connections to
the same port) and multi-vector (multiple connections to
different ports) based attacks on their accuracy. However,
only source-connection is evaluated, and only at two dark-
nets for a two-hour trace. The IMS authors have also dis-
cussed [2] preliminary results in using the contents of the
first payload packets to reduce disk utilization and differ-
entiate traffic.

The effect of three of the source-based methods is shown
over a 10-day period at 14 darknets in Figure 6. In source-
connection filtering, N connections from a single source
are recorded, and all subsequent traffic from that source
is ignored. Source-connection filtering serves as a base-
line for determining the maximum reduction in any of the
source-based approaches, as each contains the source as a
component and is therefore limited to the number of unique
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Figure 7: The minimum reduction of Source-Connection,
Source-Port, and Source-Payload filtering. Minimum ef-
fectiveness per hour for 14 darknets over a 10-day period
with N=1.

sources in a period. In source-port filtering, N connections
are maintained for every source and destination port pair.
This method [24] eliminates the undercounting of events of
source-connection filtering in the case of multi-vector ac-
tivities, but multi-stage activities remain a problem, as con-
nections to the same port may not be visible with a small
number of N (e.g., N=1 will only record the first connec-
tion to a port). Finally, we have source-payload filtering
in which the first N payloads sent by a source are used
to define all future behavior by that source. We find that
the least differentiating view of an event is seen with the
source-connection filter. Because it counts any traffic from
the same source as the same, it is undercounting the num-
ber of real events and therefore has the greatest reduction,
a mean of 95%, across blocks. The more restrictive source-
port filtering results in a mean reduction of 93% of the
packets. Finally, the most differentiating view of events,
source-payload, showed a mean reduction of 91%. On the
whole, source-based techniques appear effective at reduc-
ing packets to a smaller number of events.

In comparing these results with the source-destination
results reported previously [24] we see less effectiveness
than the 99% reduction reported for values of N = 1, with
even the least restrictive methods. While there are several
possible explanations for this discrepancy, such as the dif-
ference in darknet block size (the blocks considered in [24]
are /16s) we also report a great deal of variance, not only
between darknets, but in a darknets over time. The intra-
hour standard deviation for source-connection reduction
was 2.7%, with source-port and source-payload at 3.1%
and 3.9% respectively. Perhaps of more interest is the min-
imum value during each bin, as this is the run-time value
that a hybrid filtering system would have to contend with.
We show the minimum values in Figure 7. Here the mini-
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Figure 8: The cumulative distribution function of connec-
tion length from a Windows 2000 honeypot over a three-
day period

mum values drop to as low as 53.8% for source-connection
filtering, and 46.7% and 49.1% for source-port and source-
payload. In practice, the reductions observed may be less
when applied to a runtime system that is making decisions
about reduction and handoff based on the current observa-
tion period.

4.3 Effects on Hybrid Scalability
In order to understand the effect of source-based filtering
on reducing the number of connections processed by a sim-
ple hybrid system, we considered the behavior at a single
darknet. We applied source-payload filtering to the largest
darknet over our 10-day observation window, a /17 darknet,
and counted the unique source-payload events in one sec-
ond bins. This analysis was designed to measure the total
number of events per second a hybrid system consisting of
a single darknet would be expected to handle. With aver-
ages less than 100, the system can expect to see bursts of
several times that, with a single burst above 500 events per
second being reported in the 10-day period.

Recall that the purpose of the hybrid system was to
identify new threats and receive detailed analysis of those
threats. As such, care must be taken to separate the cause
of a specific event on the honeypots from its effect (for
example, If a honeypot is processing several simultaneous
connections, how can do we know which one successfully
caused the infection?) In the worst case, we may need to
separate every event and send it to a separate virtual host
for processing. In this case, we now become bound not
simply by the event per second rate but also by the dura-
tion of the event. To evaluate the cost of event duration, we
examined the lengths of connections to an individual hon-
eypot host, as shown in Figure 8. While roughly 77% of the
connections were of zero length (a connection request and



no more), the remaining distribution is very heavy tailed,
with an average connection length of 400 seconds. In com-
bination, these results indicate that a honeyfarm for a sin-
gle /17 darknet block would need to handle from 40,000 to
200,000 simultaneous connections.

In the previous sections we explored the attack char-
acteristics, as observed by individual darknets including
the number of unique source addresses and destination
ports. We examined the distribution of packets among these
source IP addresses and destination ports and found that a
supprisingly small number of source IP addresses and an
even smaller number of destination ports dominated each
darknet. We showed that these distributions make source-
based filtering methods avery ppealing in reducing the traf-
fic at individual blocks, but that there was a great deal of
variance in the effectiveness of these methods over time.
Nevertheless, we believe that these methods can be very
helpful in reducing the number of packets at an individual
darknet to a much smaller handful of connections.

5 Hybrid Scalability in Distributed Dark
Address Blocks

For a hybrid system to be effective, our goals of detecting
new threats and providing detailed analysis of these threats
must be performed quickly when a new threat emerges.
While we showed in the previous section that source-based
filters could produce obtainable numbers of connections for
handoff, the size of these darknets (e.g., /17) may be to
small to provide quick detection of scanning worms. To
achieve even further detection time reductions, a darknet
monitoring system can choose to monitor a larger dark-
net, or combine multiple, distributed darknets. In practice,
however, there is a limit on the size of a darknet (e.g., /8)
and few of these large darknets exist. Moving beyond that
size when such a large darknet is not available requires ad-
ditional darknets to be aggregated together. This distributed
darknet monitoring approach also has several additional
benefits, including added resilience to fingerprinting, and
insight into difference between darknets. In this section, we
examine the properties of source IP addresses and destina-
tion ports across darknets to determine the effects of these
properties on a hybrid system consisting of a distributed
collection of darknet monitors.

5.1 Characterizing Distributed Darknets
We begin by looking at the number of source IP addresses
at each of the 41 darknets during a 21-day period, from
March 19th through April 9th, 2005. In Figure 9, we exam-
ine the cumulative unique source IP addresses seen per day.
We see that blocks receive traffic from a few hundred (the
/25 darknet) to a few million (the /8 darknet) unique source
IP addresses per day. There is some overlap with previous
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Figure 9: The number of cumulative unique sources per
day, as viewed by 41 darknets from March 28th, 2005 to
April 19th, 2005. Each line is a single darknet varying in
size from a /25 to a /8

days, however, the forward difference still involves hun-
dreds of thousands of hosts every day for the /8 darknet.
This order of magnitude difference in the number of source
IP addresses between the /8 and the /17 monitor discussed
in the previous section adds a considerably larger number
of events to evaluate for the larger darknet.

In order to see how the addition of darknets (each with
their own number of unique source IP addresses over time)
affects the aggregate number of sources in the hybrid mon-
itor, we computed the overlap in unique source addresses
between all darknets. Table 1 shows the average percent-
age of daily source IP address overlap (and standard devi-
ation) in several of the medium to large darknets from the
IMS system over a period of a month. A significant num-
ber of the source IP addresses seen at these darknets are
not globally visible. The largest of the monitored darknets,
the /8 darknet, consists mainly of source IP addresses not
seen at any of the other darknets, as seen in the D/8 row.
However, a much larger fraction of the source IP addresses
at the other darknets do appear in the /8 darknet, as seen in
the D/8 column. While this implies that many of the source
IP address seen at a local darknet are captured by the /8, a
significant faction of them are not; from 88% at one of the
/22 darknets to 12% at one of the /18 darknets. In addition,
the majority of the source IP addresses seen at the /8 are not
seen anywhere else. This does not bode well for the scaling
of a hybrid system, as the addition of each new darknet will
be add a significant number of new source IP addresses and
hence new connections to be evaluated.

Next we considered the space of the destination ports.
For 31 darknets, we examined the top 10 destination ports,
based on the number of packets, and compared these lists
across darknets. Figure 10 shows the number of darknets
that had a particular destination port in their top 10 list.



A/18 B/16 C/16 D/23 D/8 E/22 E/23 F/17 G/17 H/17 H/18 H/22 I/20 I/21
A/18 100(0) 25(2) 58(5) 4(0) 78(5) 2(0) 4(0) 55(5) 28(2) 36(3) 28(3) 3(1) 16(2) 12(1)
B/16 23(3) 100(0) 38(5) 3(0) 54(8) 1(0) 3(0) 36(5) 20(3) 25(3) 18(2) 2(0) 10(1) 8(1)
C/16 23(2) 17(1) 100(0) 3(0) 78(6) 0(0) 2(0) 45(4) 20(2) 28(3) 20(1) 1(0) 9(0) 7(0)
D/23 10(0) 10(1) 20(1) 100(0) 30(1) 0(0) 1(0) 20(1) 10(0) 15(0) 11(0) 1(0) 5(0) 4(0)
D/8 2(0) 1(0) 5(0) 0(0) 100(0) 0(0) 0(0) 5(0) 1(0) 3(0) 2(0) 0(0) 0(0) 0(0)
E/22 10(2) 8(1) 13(1) 1(0) 12(1) 100(0) 3(0) 11(1) 9(1) 7(1) 6(0) 1(0) 7(0) 5(0)
E/23 25(4) 20(3) 33(5) 3(0) 34(5) 5(1) 100(0) 30(5) 21(3) 20(3) 16(2) 3(0) 16(2) 13(2)
F/17 23(1) 17(0) 48(1) 3(0) 82(1) 1(0) 2(0) 100(0) 22(0) 29(1) 21(0) 1(0) 9(0) 7(0)
G/18 20(1) 16(1) 36(1) 3(0) 51(2) 1(0) 2(0) 38(1) 100(0) 24(1) 16(1) 2(0) 9(0) 7(0)
H/17 16(0) 12(0) 31(1) 2(0) 53(1) 0(0) 1(0) 31(1) 14(0) 100(0) 27(2) 1(0) 8(0) 6(0)
H/18 20(1) 15(0) 37(2) 3(0) 56(2) 1(0) 2(0) 37(2) 16(0) 45(2) 100(0) 2(0) 11(0) 8(0)
H/22 7(2) 5(0) 9(1) 1(0) 16(3) 0(0) 1(0) 9(0) 6(0) 8(0) 6(1) 100(0) 3(0) 2(0)
I/20 11(1) 8(0) 16(1) 1(0) 16(1) 1(0) 1(0) 16(1) 8(0) 12(1) 10(0) 0(0) 100(0) 14(2)
I/21 13(1) 10(1) 20(1) 1(0) 19(1) 1(0) 2(0) 19(1) 11(1) 16(1) 12(1) 1(0) 21(4) 100(0)

Table 1: The average (and stddev) percentage overlap in source IP addresses between (row, column) medium to large
darknets over a month period.
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Figure 10: The number of darknets (of 31) reporting a port
in the top 10 ports over a day, week, and month time frame.

The analysis is performed for the top 10 destination ports
over a day, top 10 destination ports over a week, and top
10 destination ports over a month. This figure shows that
there are over 30 destination ports that appear on at least
one darknet’s top 10 list. A small handful of these desti-
nation ports appear across most darknets (1433, 445, 135,
139), but most of the destination ports appear at less then
10 of the darknets. As with the result seen with source IP
addresses, the lack of consistency between darknets implies
a broader number of connections to be evaluated, because
of the broader number of non-overlapping destination ser-
vices being contacted.

5.2 Understanding the Overlapping Size
The lack of overlap between various darknets in terms of
source IP addresses, as well as destination ports, stems
from four properties of the monitoring technique and the
traffic.

The impact of monitored block size, scanning rate, and
observation time on the probability of identifying a ran-
dom scanning event. The effect of monitoring block size
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Figure 11: The duration of source IP address observa-
tions at the /8 darknet over a one week period for 4 known
worms.

on the detection time of remote events is a well-studied
phenomena [22]. Table 1 does show larger blocks with
overlapping source IP addresses. However, the largest of
these, although highly variable, only sees an average of
50% overlap.

The lifetime of the events. One possible explanation of
this lack of overlap is that the events being observed are
too short lived. To examine this, we looked at the behavior
of four familiar worms whose (random and non-random)
scanning behaviors are well known. Figure 11 shows this
result. We recorded the observation lifetime of the source
IP addresses across our /8 darknet. It should be noted that
this method can only approximate the actual lifetime as the
/8 darknet may only observe part of the worm’s propagation
behavior. With this caveat in mind, we note a significant
faction of the source IP addresses seen at this darknet had
a lifetime of less than a day. However, more than 50%
had lifetimes of over an hour, which is sufficient at most
scanning rates (greater than 10 connections per second) to
be observed at the bigger darknets.



Targeted attacks. While the above explanations explain
some of the lack of overlap, a significant number of source
IPs are still not overlapping. It is our conjecture that these
are representative of targeted behaviors and attacks. While
this conjecture is difficult to validate without monitoring at
the sources of these attacks, we can look at the distributions
of destination ports for some insight as to whether the same
services are being contacted across darknets. Recall that
Figure 10 showed the number of darknets that report a port
in their top 10 over increasing time frames of a day, week,
and month. The results show that, although there are a few
ports which are globally prevalent, a large number of the
ports are seen over these time frames at very few blocks.

Environmental factors. In [7] we showed that a variety
of factors, including filtering policy, propagation strategy,
darknet visibility, and resource constraints, affect the mix
of the global traffic a darknet should see. These properties
provide subtle influences beyond the impact of the targeted
behavior discussed above.

5.3 Effects on Hybrid Scalability

One of the drawbacks of any of the source-based tech-
niques discussed in the previous section is their reliance
on the source IP address as part of the filter. For a dis-
tributed technique based on these methods to be effective,
source IP addresses must be prevalent across darknets. Un-
fortunately, our analysis shows this not to be the case. In
order to quantify the effectiveness of source-based methods
across darknets we consider the same 14 darknets as in the
previous section. We choose source-port filtering and look
at the reduction in unique (source, port) pairs across dark-
nets over the same 10-day period. While this method was
effective at reducing the packet space by 95%, there is only
a modest 20% reduction when these methods are applied
across darknets.

In this section we examined the properties of distributed
darknets to understand the scaling properties of a hybrid
system. We evaluated the properties of source IP addresses
and destination ports across darknets and observed a sig-
nificant number of non-overlapping destination ports and
source IP addresses. While some of these differences are
the result of well-known size and rate effects of darknet
monitoring, other factors, such as the short on-time of ran-
dom scanning hosts and the targeted nature of attacks ob-
served at these darknets help to explain the additional dif-
ferences. The impact of these non-intersecting events is
that each individual new darknet added to a hybrid system
is likely to significantly increase the total number of con-
nections that need to be evaluated. If a hybrid system is to
scale in this type of environment, a new definition of events
and new methods of filtering are required.

6 Aggressive Distributed Filtering

In the previous sections, we discussed source-based filter-
ing at individual darknets and the application of those fil-
tering techniques to distributed darknets for the purpose of
building a scalable hybrid system. We noted that source-
based techniques were much less effective across darknets
for two main reasons: source IP addresses are not typically
visible across darknets in time frames that are useful and
many attacks may be targeted at individual darknets only.

In this section we examine techniques for filtering that
explicitly account for these observations. In particular, we
examine the number of unique source IP addresses per des-
tination port, and we examine the number of darknets re-
porting an event. We combine these variables with the
technique of threshold-based alerting to provide a filter that
passes traffic on global increases in the number of source
IP addresses contacting a destination port.

Alerting of traffic changes by observing traffic to live
hosts is a well studied area. Existing methods have alerted
once traffic has reached a static threshold [27] or for thresh-
olds that were adapted dynamically [14]. Further attempts
to model traffic behavior that can be used for detect-
ing changes include signal analysis [29], probabilistic ap-
proaches [18], and statistical approaches [12]. In this sec-
tion we extend the existing techniques to look at adaptive
threshold-based alerting for traffic to unused address space.
Similar in vein to other source address distribution alert-
ing mechanisms [40], we watch the distribution of unique
source IP addresses to a specific port. Our work differs
from this in several key ways: we modify the algorithm to
explicitly allow for varying notions of current and historic
behavior, we modify it to watch the distributions across
multiple darknets, and we incorporate the notion of global
versus local behavior.

Our current event identification scheme uses an adaptive
threshold mechanism to detect new events. Every hour,
each darknet is queried for the number of unique source
IP addresses that have contacted it with destination port x
(where x ranges over a list of destination ports we are mon-
itoring). The event identification algorithm looks at the col-
lected data and works as follows for each destination port x.
For each hour, add up the number of unique source IP ad-
dresses contacting destination port x at each darknet. Scan
over this data one hour at a time, comparing the average
(per hour) over the event window (last event window hours)
to the average over the history window (last event window
× history factor) hours. If the ratio of event window av-
erage to history average is greater than the event thresh-
old, an event is generated. These events are then filtered
based on whether they are global or local, via the coverage
threshold. The coverage threshold defines the number of
darknets that would have generated an event individually
for a threat. Events will not be generated more than once
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Figure 12: The effect of event window size on the number
of events generated.

in a single event window. To protect against false positives
on destination ports that have little or no traffic destined
to them, whenever the sum of unique source IP addresses
from all blocks to a specific destination port is less than
one, the data point for that hour is set to 0.6. The event gen-
eration algorithm then is parameterized by four variables:
the event window, the history window, the event threshold,
and the coverage.

7 Evaluation and Deployment Results

In this section, we investigate the parameter space of the
event identification algorithm and then evaluate it by com-
paring both the security events we identify and those iden-
tified by the community.

7.1 Parameterization

As discussed in the previous section, there are four basic
parameters that impact the generation of a new event. In
this section, we explore the tradeoffs associated with each
of these parameters using data collected at 23 of the 60 IMS
blocks from January 1st through April 30th, 2005.

The first parameter we explore is that of the event win-
dow. Recall that the event window defines the interval over
which the current value is computed via a weighted moving
average. Figure 12 shows the effect of the event window
size in hours on the number of events generated for fixed
window size and event threshold. The curve shows that the
number of events vary from over 700 to a nerarly steady
value of 100, with a significant reduction by a value of five
hours. One possible explanation for this reduction is that
many of the events are in fact short bursts, and longer event
window sizes reduce the impact of single hour bursts.
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Figure 13: The effect of history factor on the number of
events generated.
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Figure 14: The effect of event threshold on the number of
events generated.

History factor defines the period of time over which nor-
mal behavior is calculated via a weighted moving average.
The effect of various history factor values on the number
of events is explored in Figure 13. A history factor of two
appears to reduce the number of events greatly. It is also
interesting to note the crossover in event window size, with
an event window of 12 hours creating more events than a
smaller window of 6 hours. We find no significant dif-
ference in protocol or source distribution between these
two sets. We are continuing to investigate two additional
hypotheses: that sequential scanning activities need more
time to reach additional darknets, and that there are fre-
quency components of darknet traffic that are different than
that of other Internet traffic.

Figure 14 shows the effect of the event threshold on the
number of events. The event threshold indicates the de-
gree to which the current value is different than the historic
value. This parameter shows the largest impact on events
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generated.

of any of the parameters, with a parameter of one gener-
ating an event for nearly every event window (event when
the ratio of current to past is one). Drastic reductions in the
number of events are seen by event thresholds of three to
four.

Coverage represents the percentage of the total dark-
nets monitored that would have individually reported an
increase via our algorithm. Figure 15 shows the effect of
various coverage values as a filter on the number of events.
The majority of events generated by the algorithm are seen
at a very small handful of darknets. The majority of reduc-
tion in the number events occurs when only considering
events that are seen across more than 1/3 of the darknets.

7.2 Production Validation

To help validate our event generation algorithm, we com-
pared the events identified by our system with those iden-
tified by the broader security community. It is important to
highlight that our system has been in production use over
the past few months and has identified several critical new
threats. It is used by major network operators and govern-
ments around the world to quickly help identify new secu-
rity events on the Internet.

Over an observation period of four months, the IMS sys-
tem identified 13 unique events. Table 2 shows these events
grouped by port. Included in these events are the TCP/42
WINS scanning, the TCP/6101 Veritas Backup Exec agent
scanning, and the MySQL worm/bot on TCP/3306. These
events demonstrate the quick onset, short duration, and
global prevalence of many attacks. Figure 16 shows the
normalized number of unique source addresses detected at
the 23 IMS sensors for these events over time. As the oper-
ational test was underway before the completed parameti-
zation evaluation, the alerting algorithm used the following

Description Port Date Multiple Coverage
WINS tcp42 01/13/05 17:31 5.36 0.4815

tcp42 01/14/05 05:31 61.85 0.8889
tcp42 01/14/05 17:31 9.77 0.6667

Squid and tcp3128 02/05/05 11:31 7.73 0.4074
Alt-HTTP tcp3128 02/05/05 23:31 18.19 0.4074
SYN Scan tcp8080 02/05/05 10:51 7.53 0.4074

tcp8080 02/05/05 22:51 20.95 0.3704
MYSQL tcp3306 01/26/05 09:31 43.89 0.3704

tcp3306 01/26/05 21:31 8.2 0.4444
tcp3306 01/27/05 09:31 5.7 0.4074

Syn Scan tcp5000 01/08/05 14:31 3.42 0.6667
Veritas tcp6101 02/23/05 21:32 3.54 0.3704

tcp6101 02/24/05 09:32 3.81 0.3333

Table 2: The interesting features identified by the algorithm
since January of 2005. The “multiple” column specifies
how many times larger the current window is compared to
the history window. Coverage reports the percentage of
sensors which would have alerted independently.

non-optimal parameters: alert window of 12 hours, history
window of six days, and an alert threshold of three.

Beginning in December 2004, the IMS system observed
a significant increase in activity on TCP port 42. This
increased activity was notable because Microsoft had re-
cently announced a new security vulnerability with the
Windows Internet Name Service (WINS) server compo-
nent of its Windows Server operating systems. The ac-
tivity also followed a vulnerability report from Immunity
Security on November 24, 2004 describing a remotely ex-
ploitable overflow in the WINS server component of Mi-
crosoft Windows. Payloads captured on TCP port 42 dur-
ing the event include sequences that are byte-for-byte iden-
tical to exploit code found in the wild following the vul-
nerability announcement. Although the attack was very
broadly scoped, it involved a small number of hosts and
only lasted a day. Because the IMS was broadly deployed,
it was able to quickly identify this small-scale event in time
to enable additional monitoring capabilities.

Another quick attack occurred on January 11, 2005,
when IMS observed a substantial increase in TCP port 6101
scanning. Approximately 600 sources were identified as
aggressively probing many of the distributed IMS sensors.
TCP port 6101 is used by the Veritas Backup Exec agent, a
network service that allows for remote system backup. On
December 16, 2004, iDefense announced a buffer overflow
enabling remote system-level access. Then, on January
11, exploit code was published for the vulnerability and on
the same day, IMS observed a large increase in activity on
TCP/6101. Payloads captured from the attack include se-
quences that are byte-for-byte identical to the exploit code.
Once again we see a very quick onset, suggesting the need
for an automated system able to rapidly react to new threat
activity.

Finally, in late January of 2005 IMS detected a worm/bot
targeted at the MySQL database server [19]. The worm/bot
propagated by randomly scanning for the Windows ver-



Figure 16: The unique source IP addresses over time across
23 darknets to various TCP destination ports. Widely publi-
cized events are shown (from top to bottom TCP/42-WINS,
TCP/3306-MYSQL, TCP/6101-VERITAS).

sion of MySQL on TCP port 3306. The threat was unique
because it required interaction with a hidden IRC server
before a new instance would start to propagate. The IRC
channel was discovered by operators who shut it down, ef-
fectively eradicating the worm after a period of a few days.
This event shows the importance of having more detailed
information on a threat. Without observing the interaction
of the worm/bot with the IRC server, there would be no
way to discover the communication channel and thus find
the simple way to stop the worm.

These three events help substantiate the detection ap-
proach and illustrate the value of automated distributed
forensics. To further confirm these results and those listed
in Table 2, we searched for correlations between the port,
payloads, and time period of the events with reports from
other security data sources. With the exception of the Alt-
web and Squid SYN scans, each of these events has been
actively discussed in various security forums and corrob-
orated by other monitoring projects [37, 4]. There is also
evidence that the event identification algorithm did not miss
any important events. Analysis of the NANOG, ISN, BUG-
TRAQ, FULL-DISCLOSURE, as well as the operator logs
from ISC and CERT, do not show any major detectable
events that were missed by the IMS system. In summary,
there is strong evidence that the system was able to iden-
tify all the major events during the 4 month period. More
time is clearly needed to fully validate the system, but the
current data suggests the approach has excellent filtering

qualities.

8 Conclusion

Global threats are changing at an amazing rate, requiring
new innovative mechanisms for tracking and characteriz-
ing them. One approach to this problem involves hybrids
of darknets with honeyfarms. There are numerous hurdles
to this approach, but in this paper we investigated the most
important of these, scaling interactions between the dark-
nets and the honeyfarms. We examined several of the key
characteristics of traffic at individual darknets that affect
the scalability of a hybrid system. In particular, we showed
that darknets are dominated by a small handful of source IP
addresses contacting the same destination ports repeatedly.
These characteristics allow source-based approaches to be
quite effective at reducing the number of packets a block
sees to a much smaller number of connections. We then
showed, however, that this does not hold across darknets;
neither the source IP addresses, nor to a lesser extent the
destination ports, appear frequently across darknets. While
some of this behavior can be explained by existing work
on darknet size, scanning rate, and time to detection, we
showed that much of it is the result of the targeted na-
ture of the attacks observed as well as the short on-time
of many random scanning hosts. This lack of overlap im-
plies that every additional new block added to a distributed
darknet monitor will likely bring with it its own sensor-
specific events. For a large collection of darknets to be ef-
fective, a new view of events and new methods of filtering
are required. We then constructed a filtering mechanism
that takes these two factors into account by including dis-
tributions of source IP addresses, rather than the source IP
addresses specifically, and the number of darknets observ-
ing an activity. We showed that this algorithm is effective
by examining several recent events, such as activity associ-
ated with new WINS vulnerability, Veritas vulnerabilities,
and the recent MY-SQL worm.
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