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Abstract

A popular approach to detecting and characterizing
threats such as worms and botnets involves the use of sac-
rificial host collections called honeynets. These collections
are explicitly deployed to be scanned, compromised, and
used in attacks. Unfortunately, existing approaches to de-
ploying honeynets largely ignore the problem of configur-
ing operating systems and applications on individual hosts,
leaving the user to configure them in a manual and often ad
hoc fashion. In this paper, we demonstrate that such ad hoc
configurations are inadequate–they misrepresent the secu-
rity landscape of the networks they are trying to protect and
are relatively easy for attackers to discover. We show that
manually building configurations with good visibility and
resistance to discovery is hard, as each network has its own
unique threat and vulnerability spaces, and the potential
number of hosts to configure in the honeynet is quite large.
Therefore, we need automated systems to assist network and
security administrators in building honeynet configurations.
We argue that honeynets with individually consistent hosts
and proportional representation of the network will achieve
the two desired goals of visibility into network attacks and
resistance to discovery. We develop an automated technique
based on profiling the network and random sampling to gen-
erate these honeynet configurations. Through experimental
evaluation and deployment of configurations generated by
our technique, we demonstrate significantly more visibility
and higher resistance to discovery than current methods.

1 Introduction

The rapid growth in malicious Internet activity, due to
the rise of threats like automated worms, viruses, and recent
bots like AgoBot [10], has driven the development of tools
designed to protect host and network resources. The fun-
damental problem in instrumenting live (i.e., production)
hosts is that such instrumentation affects the performance

and availability of these systems. A security approach that
alleviates these problems is to create a non-productive host
(also called a honeypot) and place it at an unused or dark
address. Honeypots are host and network resources that do
not have production value and so any interaction with a hon-
eypot is suspicious. For example, a honeypot deployment
might consist of a mail server that is configured identical to
a production mail server and placed nearby to detect pos-
sible intrusions against the real mail server. Because no
legitimate clients are configured to use the honeypot mail
server, any traffic to it is the result of malicious activity or
misconfiguration.

Individual honeypots provide excellent visibility into
threats that affect specific host and operating system con-
figurations. However, detecting threats quickly with only
a few honeypots is difficult. In order to quickly capture
threat details, a number of commercial and non-profit or-
ganizations [2, 34], academic projects [6, 22, 36, 37], and
tools [4, 25] have started monitoring large numbers of un-
used and dark addresses. We collectively call honeypot sys-
tems that monitor multiple unused and dark addresses hon-
eynets.

Unfortunately, as systems have moved from a single hon-
eypot to a network of honeypots, the problem of determin-
ing the configuration of these systems has largely been ig-
nored. A single honeypot is easily configured with the op-
erating system and applications matching an existing pro-
duction system. However, for a large number of addresses,
the network administrator must make decisions about what
systems they want to protect and what attacks they wish to
observe. For example, a single academic network in this
study with 5,512 hosts had over 1,386 unique host and net-
work configurations (see Table 4), and over 3000 unused
addresses available for monitoring [11]. This effort is fur-
ther complicated as the number of vulnerable services and
potential attacks increase on the Internet. For example,
Symantec documented 1,896 new software vulnerabilities
from July 1, 2005 to December 31, 2005, over 40% more
than in 2004 [33]. In spite of the difficulty of the task, little
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work has been done on how to automate honeynet configu-
ration, leaving administrators to perform the task manually,
and often in a generic or ad hoc fashion.

In this paper, we show the potential limitations of generic
and ad hoc approaches to honeynet configurations, and
demonstrate that they lack visibility into network attacks.
As an example, Table 1 shows that the most popular ser-
vice on an example network is SSH, but attackers are fo-
cused primarily on nonexistent services such as Microsoft
SQL Server. The honeynets in this network report neither
of the two as the most critical security threat, indicating Net-
BIOS instead. As the example illustrates, these system do
not represent the services running on the network (i.e., the
vulnerable population) and fail to capture the existing at-
tacks observed at the network (i.e., the threat landscape).
Furthermore, we show that these honeynet configurations
present very unusual operating systems and service config-
urations in many production networks and are trivially easy
to detect, avoid, and corrupt (i.e., fingerprint). However,
configuring honeynets is not trivial, as we find that there is
lack of generality in vulnerable populations and threat land-
scapes over time and across networks. Furthermore, the po-
tential number of addresses to configure may be very large
and therefore, we require automated processes to configure
a honeynet.

In order to automatically generate honeynet configura-
tions with the goals to provide visibility into the vulnera-
ble population and avoid detection, we argue that honeynets
should be configured with individually consistent hosts and
proportionally represent the surrounding network. We pro-
vide a simple, automated approach based on profiling the
network and random sampling to generate honeynets with
individual host consistency and proportional representation
of the network. We evaluate our approach by applying it
to live networks and deploying the configurations gener-
ated. We find that the honeynets achieve the desired goals
of providing an accurate view of threats to the networks and
resistance to discovery. For example, the honeynets rep-
resentative to academic networks accurately show that SSH
brute force attacks are the most widely impacting threat, and
those representative to web server farms accurately show
web proxy attacks as the most widely impacting threat dur-
ing the period analyzed.

To summarize, the main contributions of this paper are:

• We show that ad hoc configurations do not provide vis-
ibility into the vulnerable population or into the threat
landscape, and they are highly unusual in many net-
works, causing easy detection and fingerprinting.

• We justify the need for automatic configuration meth-
ods and then identify visibility and resistance to fin-
gerprinting as the two goals of such a configuration
system.

• We develop a simple technique that achieves the two
critical goals automatically and we evaluate this tech-
nique through network monitoring and deployment of
honeynets in production networks.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses the current state-of-the-art in honeynet con-
figuration, and Section 3 shows the limitations of ad hoc
configurations. Section 4 provides the compelling reasons
for automatically generating configurations, and discusses
individual host consistency and proportional representation
of the network as important properties that make such a con-
figuration. Section 5 describes our algorithm for honeynet
configuration and its evaluation. Section 6 concludes our
work with directions for future work.

2 Background

The way in which honeynets are configured greatly im-
pacts their effectiveness. In an effort to understand how
honeynets are currently configured, we have examined pub-
licly available honeynet deployment data. We find that these
deployments are often tied with a specific honeynet tool or
technique. Each of these tools, in turn, has its own set of
configuration capabilities. One of the main factors that dis-
tinguishes each of these honeypot systems is their level of
interactivity [31]. Interactivity defines the degree to which
a honeypot behaves like a real end-host system, as a broad
spectrum of end-host behaviors can be emulated in order to
capture increasing amounts of attack details. Therefore, we
group these deployments by their level of interactivity and
discuss the configuration capabilities of each as well as their
limitations.

On the lowest end of interactivity, a passive monitor
logs incoming traffic to unused addresses without any re-
sponse [22]. For example, the Team Cymru [14] and Moore
et. al. [22] have deployed passive monitors in unused ad-
dresses. Passive monitors do not allow for any response and
have no service configurations. Because they do not emu-
late any services, they provide limited visibility into threats
and require advanced techniques to fingerprint [27].

A light-weight TCP responder replies with a TCP SYN-
ACK packet for every TCP SYN packet received on every
TCP port in order to recover the first payload from TCP
worms [6]. The Internet Motion Sensor project [13] has de-
ployed a lightweight TCP responder in 28 monitored blocks
within 18 networks, with sizes of these blocks varying from
/24 to /8 [5]. These systems emulate part of the network
stack, accept incoming connections on all ports, but pro-
vide no application-level response. They provide minimal
visibility into all applications, but are trivial to find. We call
this configuration All TCP Responder.

Honeyd emulates network stacks of multiple hosts on a



single machine and has a plug-in system for service em-
ulation modules [25]. The Brazilian Honeynet Team [32]
deployed numerous sensors of sizes from /28 to /24 with
Honeyd, and the German Honeynet Team has also deployed
a /18 honeyd sensor [20]. Finally, the French Honeynet
Project [17] and the Norwegian Honeynet Team [23] have
also deployed Honeyd sensors. Honeyd has a great deal
of flexibility in honeypot configuration, enabling arbitrary
personalities to be specified for each host. We call the de-
fault Honeyd 1.1 configuration [31] Generic Honeyd. To
simplify configuration of large addresses, Honeyd allows
declaration of default host configuration and ties it to all
dark addresses that have not been assigned any host config-
uration. To automatically generate Honeyd configurations,
RandomNet [30] allows operators to choose operating sys-
tems and emulated services, and constructs hosts with ran-
dom combinations of chosen OSs and services. We call this
configuration Random Honeyd.

Nepenthes emulates certain vulnerabilities to recover
more exploits for the vulnerabilities [4]. The Chinese Hon-
eynet Team has deployed a /24 Nepenthes sensor [8], the
UK Honeynet Team [35] has deployed two Nepenthes sen-
sors, the German Honeynet Team has deployed a /18 Ne-
penthes sensor [20], and the Georgia Honeynet Team [19]
has started experimenting with Nepenthes. While some
configuration of these systems exists, as various vulnera-
bility modules can be turned on or off, most deployments
are limited to those modules that already exist. We call the
default Nepenthes 0.1.7 configuration Nepenthes.

Numerous end-host systems can be run on the same
hardware platform by using virtual machine tools such
as VMWare [24]. A variety of academic projects
have deployed VMWare-based solutions including Georgia
Tech [15], UCSD [36], and Purdue [21]. The configuration
of end-hosts is limited only by the number of operating sys-
tem and application compatibilities. However, a common
approach is a vanilla operating system install, such as those
promoted in [24].

In summary, we find that most published honeynet de-
ployments use well-known techniques for honeynet con-
struction. These techniques have a variety of configuration
characteristics that range from no configuration to a fixed
configuration and finally, to fully configurable. When con-
figuration options exist, there is no automated system to
choose between these options and are left to the adminis-
trator for manual configuration.

3 Limitations of Ad Hoc Honeynet Configu-
rations

One of the original goals of deploying honeynets is to
provide protection to an organization by understanding the
means and motives of attackers. However, this important

goal can be achieved only if the honeynets are configured to
represent the network and services. In the previous section,
we showed that the configuration of honeynets has largely
been ignored by existing deployments and tools. In this sec-
tion, we argue that ignoring this problem is dangerous be-
cause lack of proper configuration impacts both the visibil-
ity that these honeynets can provide as well as their ability
to avoid detection.

3.1 Impact of ad hoc configuration on visibility

In the previous section, we observed that, while some
flexibility exists in how honeynets can be configured, the
absence of automated techniques has caused this process to
be manual. If careful attention is not paid to this manual
process, these configurations can drastically impact the ef-
fectiveness of the monitoring systems. The effectiveness
depends on the honeynet ability to protect important net-
work resources from the most likely threats. As a result,
improperly configured honeynets can fail to be effective if
they can not accurately represent:

• the vulnerable population. The vulnerable popula-
tion is the set of services on the network that can be
remotely accessed. It is important to note that this def-
inition of vulnerable population includes all services
on the network rather than only those with known vul-
nerabilities.

• the threat landscape. The threat landscape describes
the current attacks on the network.

To understand the impact of ad hoc configurations on
visibility, we compared them to the threat landscape and
the vulnerable population. Table 1 shows the top 10 open
TCP ports found on an academic /16 network together with
the top 10 attacked ports on a /24 honeynet in the net-
work, and several honeynet configurations. TCP ports rep-
resent broad characterization of the vulnerable population,
the threat landscape, and the threats a honeynet configura-
tion can capture. All TCP Responder provides minimal
visibility into all ports and is not shown in the table. The
results of the comparison are rather startling. The ad hoc
configurations of honeynets do a poor job of representing
both the attacks to the network as well as the potentially
vulnerable population. This lack of visibility has profound
implications, as the monitoring system will fail to provide
any insight into attacks at large numbers of vulnerable hosts
(e.g., those running TCP/106, TCP/311, TCP/427). In ad-
dition, these systems fail to capture the attacks prevalent
on the network (e.g., those targeting TCP/1433, TCP/1080,
TCP/1521, TCP/5900) and may make certain attacks (e.g.,
TCP/139) appear to be more important on the network than
they in fact are. Interestingly, it also appears that attackers



TCP % of % of Honeynet Configurations
Port Vulnerable Attacks % of % of % of

Population Nepenthes Generic Honeyd Random Honeyd
hosts hosts hosts

21 24 - 100 4 45
22 53 - 100 3 -
23 34 - - 3 65
80 26 0.4 100 4 62

106 14 - - - -
135 9 0.6 100 - -
139 17 0.5 100 96 74
311 14 - - - -
427 26 - - - -
445 10 1.4 100 1 40
497 28 - - - -
554 - 0.9 - - -
1080 - 1.7 - - -
1433 - 6.8 - - -
1521 - 0.9 - - -
4444 - 0.5 - - -
5900 24 0.9 - - -

Table 1. The lack of visibility into both the threat landscape, as well as the vulnerable populations for
a variety of different honeynet configurations.

do not necessarily target the most popular services. In fact,
only a small number of common ports are actually popular
across the threat landscape, vulnerable population, and con-
figurations including 80, 135, 139, and 445. We will show
in the next section that the threat landscape and the vulner-
able populations change over time and networks, and these
honeynet configurations will have difficulty in representing
them too.

3.2 Impact of ad hoc configuration on fingerprint-
ing

As we saw in the previous section, ad hoc honeynet con-
figurations do not represent either the exploit space or the
vulnerable population. In addition to reducing important
visibility, this behavior can be effectively used by attack-
ers to detect, or fingerprint, the locations of the honeynets
within a network. This type of activity is important to de-
fenders, as fingerprinted honeynets can be actively avoided
or corrupted by attackers. The key insight that makes this
fingerprinting possible is the observation that some combi-
nation of services and operating systems on an ad hoc con-
figured honeynet may seem highly anomalous when com-
pared with the rest of the network. In the next two sections,
we discuss a novel technique for fingerprinting honeynets
and show how ad hoc configurations are easy to spot within

productions network using this technique.

3.2.1 Fingerprinting algorithm

Honeynets configured in an ad hoc fashion provide incon-
sistent view of services on a network. Because we do not
know of any systematic approach to detect such configura-
tions in a network, we developed a general approach that in-
volves comparing service configurations within a subnet to
the configuration of the entire network. A naive approach,
such as examining each individual host in the subnet to see
if it is anomalous with respect to the rest of the network, will
only determine if that host has a unique configuration in the
network. In order to compare collections of host configura-
tions, we first perform active tests to detect host configura-
tions, aggregate these configurations by common operating
systems and services, and then compare the distribution of
a new service in the subnets with the network as a whole.

Consider a set of tests {T1,T2, . . . ,Tn} that can be per-
formed on an Internet host, with the result of test Ti being
any member of the set Ri = {r1

i ,r
2
i , . . . ,r

mi
i } of size mi. For

example, a test (or variable) that checks whether TCP port
139 is open or not on an Internet host has results (or val-
ues) in the set {open,closed} of size 2. The combination
of test values for an Internet host makes a host profile. For
example, checking port 139 and port 445 on an Internet host



might have host profiles in the set {(closed, closed), (closed,
open), (open, closed), (open, open)}. While the algorithm
is test-set independent, in this paper we utilize three sets
of tests. Tests constructed based on existing tools, such as
nmap [18], easily differentiate TCP software by exploiting
ambiguities in RFCs and implementations, and we call them
tcp. We similarly developed a set of 26 new tests to iden-
tify a web server and its configurations and call them http.
Finally, we test open TCP ports from 1-1024 with a simple
program that attempts connection to these ports that we call
ports.

Our main idea is to group hosts by test values and then
compare the subnet with the network as a whole for the val-
ues of a new test. First, we order tests by the increasing
value of their entropy, each of which is computed by the
distribution of test values among the hosts in the network.
The tests are ordered by increasing entropy because a test
with lower entropy has most certain values for the hosts on
the network and hence, a significant anomaly can be de-
tected if a subnet differs from the dominant values found in
the network. Second, we compare each subnet with the net-
work for the values of first test, then we aggregate by values
of this test and compare for values of the second test. We
iterate this comparison between the subnet and the network
over the determined test order until the last test.

To quantify anomalies for a new test, the values for the
test is arranged on a normal distribution curve using the fre-
quency associated with each value. Then, we measure the
anomaly using a test of significance called z-statistics [16]
because of three specific reasons. (1) The anomaly quanti-
fied by z-statistics is significant if the values of a new test
for hosts on the subnet are significantly different from those
on the network. (2) If the network exhibits significant vari-
ation in the values of the new test chosen for analysis, then
the anomaly is of low magnitude. (3) If only a few hosts
in the network are aggregated by test values, then it causes
an anomaly of smaller magnitude for the new test values.
For a formal definition and a small discussion of z-statistics,
please refer to Appendix A. A complete illustrative example
of the above algorithm is presented in Appendix B.

There are a wide variety of techniques for fingerprinting
honeypots. Our goal is not to enumerate all possible attacks
but rather to illustrate the importance of configuration arti-
facts in honeynet fingerprinting. One relevant approach for
detecting honeypots involves probing and analyzing pub-
lished records from honeypots [7] . However, this attack
is possible only when attack statistics from honeypots are
publicly available. Rajab et. al. [27] fingerprint passive
darknets that do not respond to any probe whereas we dis-
cover active honeynets without a prior knowledge of how
they are configured. This is achieved by comparing subnet
configurations with the surrounding network and detecting
anomalous configurations.

3.2.2 Detecting ad hoc configurations

In order to study the impact of ad hoc configurations in
terms of their ability to be discovered, we embedded dif-
ferent honeynet configurations into six network (A/16 and
B/16 are academic networks, and C#1/17, C#2/19, D#1/19
and D#2/19 are web-server farms) profiles. The network
profiles were created by probing live networks and storing
their configurations. The honeynet configurations were cre-
ated by a variety of existing approaches. We then applied
our fingerprinting algorithm to create a list of anomalous
subnet configurations in each of these networks and sorted
them into descending order of how anomalous they were
(i.e., by z-values). Ideally, each of the embedded subnets
(i.e., honeynets) should appear on the top of these lists.
Therefore, we will evaluate a honeynet resistance to finger-
printing by the position (or rank) in the lists.

Figure 1 presents the rank of the first honeynet anomaly
in six networks when the honeynet is configured using All
TCP responder, Nepenthes, Generic Honeyd and Ran-
dom Honeyd (average of ten random honeyd configura-
tions). We find that the ad hoc honeynet configurations sur-
face as the most anomalous configurations in almost all of
the networks for many set of tests. This result is perhaps
easy to realize for honeynets such as All TCP Responder
with all ports turned on, but quite surprising for honeynets
configured with individually consistent hosts (i.e., they look
like a real host). This is because Nepenthes, Generic Hon-
eyd, and Random Honeyd often emulate services or run
service combinations that are anomalous in many networks.
As was the case with visibility, the impact of ad hoc config-
urations can be profound, allowing attackers to easily fin-
gerprint honeynets.

4 The Properties of Honeynet Configuration

In previous sections, we have shown that existing meth-
ods for honeypot configuration are largely manual in nature.
We have shown that if proper care is not taken in the con-
struction of these configurations, they can produce honeynet
systems that fail to provide visibility and that are easy to fin-
gerprint. In this section, we describe the process of gener-
ating honeynet configurations. First, we motivate the need
to automate honeynet configuration by showing the lack of
temporal generality of exploits and spatial generality of vul-
nerable populations, the diversity of systems in networks,
and the large number of addresses to be configured. Sec-
ond, we present visibility into vulnerable population and re-
sistance to fingerprinting as the two desired objectives and
argue that a honeynet configuration with individually con-
sistent hosts and proportional representation of the network
will achieve the desired objectives.
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Figure 1. The rank of the first anomaly with ad hoc honeynet configurations in six networks for various
combinations of tests that identify operating systems and services. Most honeynets represent the
first, or most, anomalous subnet in a network

4.1 Need for automatic configuration

While we have clearly shown that ad hoc configurations
are a danger to the goals of any honeypot deployment, we
have not yet shown that the process of generating these
requires anything more than careful manual configuration.
We believe that two properties of the configuration space
motivate the need for automatic configuration:

4.1.1 Lack of generality

A major impact on the effort of manual configuration of
honeynets is the lack of temporal generality of attacks. Ta-
ble 2 shows the top five TCP ports and the number of pack-
ets observed over a day for last five months on the /24 hon-
eynet in the B/16 network. We find that new services were
targeted heavily each month. The TCP ports 6000 and 1080

were the unusual ones targeted in April, the TCP port 5000
was targeted in May, the TCP ports 22 and 5900 were tar-
geted in June, and TCP port 4444 in July. Moreover, the ex-
ploits observed vary significantly with locations, as demon-
strated by significantly different data observed on sensors
deployed in different networks [12]. Therefore, a highly
variable nature of threat landscape makes chasing the ex-
ploits really difficult for the defenders, who must manually
configure their honeynets.

Spatial generality also impacts the effectiveness of man-
ually generating honeynet configurations. Differences in at-
tack behaviors and vulnerable populations across networks
make sharing of configuration a near impossibility. For ex-
ample, Table 3 compares vulnerable population in various
networks in two ways, by the operating system and the TCP
ports. The second largest operating system in network A/16



04/19/2006 05/19/2006 06/19/2006 07/19/2006 08/19/2006
6000 445 22 135 1433
445 139 5900 80 1080

1433 5000 3128 4444 445
1080 1433 8080 445 5900
135 80 80 1433 1521

Table 2. The top 5 TCP ports observed in a /24 sensor in network B/16, over a period of 5 months.
Exploits change quickly over time.

Operating Networks
System A/16 B/16 C#1/17 D#1/19
Windows 44 25 76 77
Cisco IOS 14 7 - -
Apple 9 36 - -
Linux 9 7 15 6
HP printer 3 13 - -
Solaris 9 7 1 2
*BSD 1 - 8 15

TCP Networks
Port A/16 B/16 C#1/17 D#1/19
139 42 17 - -
22 41 53 30 25
135 39 10 42 69
23 27 34 4 5
445 27 11 - -
80 21 26 93 96
25 12 10 70 83
21 8 24 77 79
427 4 26 - -
497 3 28 - -
110 1 - 39 17

Operating Systems TCP ports

Table 3. Comparing the vulnerable population in four networks, by operating systems and TCP ports.
The vulnerable populations are different across networks.

is surprisingly Cisco IOS, which is found in the wireless
access points and routers in the academic campus. On the
other hand, Apple Mac OS is the dominant operating system
in network B/16. As expected, the web-server farms were
dominated by Windows servers. While SSH seems to be
predominant service found in A/16 and B/16, HTTP, FTP
and SMTP seems to be the dominant services in the web
server farms. Therefore, the vulnerable population varies
significantly with the nature of the networks making it dif-
ficult for a single honeynet configuration to represent the
vulnerable population across networks.

4.1.2 Scale of configuration

Traditionally, a small number of individual honeypots were
configured manually. For example, a dedicated host will
be configured as a clone of a valuable network resource,
such as a mail server. However, as the number of services
and the number of hosts running them on the network have
increased, defenders have been under increasing pressure
to manage and provide visibility into these new services.

Unfortunately, manual honeynet approaches for achieving
this visibility are difficult to apply. Consider the data pre-
sented in Table 4, which shows surprisingly large numbers
of TCP implementations, HTTP implementations, services,
and the complex associations between them in various pro-
duction networks. For example, in network A/16, we find
that the 5,512 hosts result in 352 unique TCP stack imple-
mentations. Of those 5,512 hosts, 1,237 were running Web
servers, and when probed, yielded 241 differing servers and
configurations. This included TCP stacks and Web-servers
from a bewildering variety of devices including NATs, wire-
less access points, printers, power switches, and webcam-
eras.

In addition to the diversity in the numbers and types of
individual host configurations, network administrators are
also required to configure a potentially large number of
unused addresses in order to maximize visibility. Tradi-
tional honeynet deployments of statically allocated network
blocks are giving way to dynamic discovery of all unused
addresses [11]. The number of addresses available can be
surprisingly large, even in small organizations.



Network Type Hosts Web- TCP HTTP TCP+ TCP+ TCP+
of servers Ports HTTP Ports+
organization HTTP

A/16 university network 5512 1237 352 241 1210 699 1386
B/16 university network 1289 169 156 73 392 249 463
C#1/17 web-server farm 11342 10080 256 862 1625 1764 3394
C#2/19 web-server farm 2438 2208 93 293 394 559 811
D#1/19 web-server farm 1859 1513 118 221 330 451 590
D#2/19 web-server farm 1652 1171 137 208 266 417 487

Table 4. The number of unique host configurations observed at six production networks for various
tests and their combinations. Each network has a surprisingly large number of unique configurations.

4.2 Individual host consistency and proportional
representation

A number of objectives can be used to define honeynet
configurations. For example, one may choose the easiest
set of configurations to deploy, or one may want to rep-
resent global host or threat distribution. In this paper, we
set our objective as providing visibility into the vulnerable
population on the defender’s network and resistance to fin-
gerprinting. We chose these objectives so that the honeynet
provides intelligence into zero-day threats to the network
quickly. Even though we chose specific objectives, we be-
lieve that the general approach described in this paper (sam-
ple and configure) can be applied to configure honeynets
representing other distributions (e.g., threat).

To provide visibility into network threats and resistance
to fingerprinting, we argue that a honeynet configuration
must have individually consistent hosts and should propor-
tionally represent the network. An individually consistent
host is one whose configuration appears in a live network.
Individual consistency is necessary for two reasons. First,
in order to provide visibility into threats that impact the de-
fenders network, the configuration must provide the same
opportunities for attackers as they occur in the real network.
It is obvious that in order to capture threats against a ser-
vice, you must run that service. Perhaps less obvious is
that sophisticated worms, like Slapper, attempt to identify
specific services and versions of operating systems to de-
liver the correct exploit [28]. In addition to visibility, indi-
vidual host consistency provides resistance to fingerprinting
against attackers that look for unusual services on the host.

In addition to individual consistency, we argue that vis-
ibility and resistance require proportional representation of
the network. Honeynets are primarily deployed for detect-
ing new threats. However, we do not know the operating
systems and the service configurations that will be targeted
by a new attack. Since we cannot anticipate any particular
configuration, the ratio of honeynet hosts for any combina-
tion of operating system and services should be equal to the

ratio of network hosts with those combinations. Proportion-
ality provides visibility in that the most prominent software
on the live network appear more frequently and hence can
capture new threats to the software quickly. This also helps
in prioritizing attacks by their widespread possible impact
on the network, and hence arranging attacks by the maxi-
mum number of honeynet hosts that observed each one of
them. Furthermore, when configuring large addresses with
realistic operating systems and services, proportionality en-
sures resistance to fingerprinting in that the system will not
add a number of configurations that skew the distributions
of these configurations in the network as a whole.

5 A Simple Technique for Honeynet Configu-
ration

Our algorithm for generating representative and consis-
tent configurations has two components: profiling the net-
work and generating configurations. Profiling the network
is the process of determining the configuration of the exist-
ing production network for which we want visibility. After
profiling the live network, we need to determine host pro-
files to be deployed on the honeynet. While we limit our dis-
cussion to the widest vulnerable population, our approach is
also valid for specific vulnerabilities scanned by a tool such
as Nessus [3].

The generated host profiles should be individually con-
sistent and proportionally represent the network for all com-
bination of tests values (as they identify operating systems
and services). For example, consider a network with three
hosts whose profiles for port (139, 445) tests are [(open,
open), (open, closed), (closed, closed)]. A honeynet pro-
portional to this network should meet multiple constraints.
When each port is considered separately, 2/3 of their hosts
should have port 139 open, and 1/3 of their hosts should
have port 445 open. When the ports are considered in com-
bination, 1/3 of their hosts should have both ports open, 1/3
of their hosts with port 139 open and port 445 closed, and



finally 1/3 of their hosts with both ports closed 1. Due to
resource (address space and machines) constraints, a hon-
eynet may only approximate the network. Therefore, we
need to develop an algorithm that best approximates pro-
portional representation for all combinations of test values,
and at the same time, produces individually consistent pro-
files. However, it is difficult to construct an algorithm that
minimizes error in proportional representation for all possi-
ble combinations of test values. Surprisingly a simple tech-
nique to select a random sample [9] of hosts in a network
ensures our two critical properties:

• Proportional representation. The probability that
a combination of test values (Ti1 = r j1

i1 ,Ti2 =
r j2

i2 , . . . ,Tik = r jk
ik

) is selected by the sampling algorithm
is equal to the fraction of live hosts that satisfy them.
Therefore, simple random sampling chooses host pro-
files with a probability distribution present in the actual
network and approximates it in the selection of hosts.
If n hosts are picked from a total population of N, then
the standard error in estimating the ratio on the hon-
eynet for a combination of test values with standard

deviation σ is equal to σ

√
( 1

n −
1
N ) [9]. Therefore, as

more and more hosts are picked up to be represented
on the honeynet, the better the honeynet represents the
actual network.

• Individual host consistency. To be effective in captur-
ing threats and in warding off possible fingerprinting
efforts, we would like the configuration for each host
on the honeynet to be individually consistent. This
means that none of the hosts should be assigned an
unusual configuration that is not possible in the real
world. Since a configuration is assigned to a host in
the honeynet only if there is a host with that particular
configuration in the network, every host in the hon-
eynet has a realistic configuration. Hence, for a subset
of configuration values, a honeypot host will match a
number of live hosts, yet represent a very specific live
host when all configuration values are considered to-
gether.

The simple random sampling is effective because we do
not know the host configuration that will be targeted by
a new attack. However, when we know certain tests are
more important than other ones, then we can achieve bet-
ter proportionality to the important tests. For example, if
we know that services are frequently being targeted, then
we can achieve better proportionality for the service dis-
tribution than say the operating system distribution. This
is usually achieved using stratified sampling [9]. Stratified

1an open port by may be preferred over a closed port, and we will
discuss this later.

sampling involves hierarchically separating the population
and allocating the size to be sampled proportionally at each
point in the hierarchy.

Previously we have assumed that all hosts in a network
are equally important. Situations can easily arise in which
this will not hold true. An operator might need better vis-
ibility to specific machines. For example, a system admin-
istrator may wish to weigh his DNS server, a single point
of failure, twice when compared to other hosts on the net-
work. To provide additional visibility to a machine when
compared to others, additional matching configurations are
added to the configuration pool before sampling. In addi-
tion, the operator might indicate a particular value for a test
variable as more important than other values. For exam-
ple, configuring a host with port80 open is more important
than when it is closed. To account for these cases, we allow
users to specify such preferences as input to tune honeynet
configuration. Then a host is replaced by a preferred host
before sampling. For example, if port 80 open is preferred
over closed, then a Windows XP host might be replaced
by Windows XP with IIS web server found in the network.
This ensures that honeynet hosts are individually consistent
even with user input.

Now we evaluate our approach to configuring hon-
eynets. Recall that our objective was to create configura-
tions that provide visibility into network attacks and resis-
tance against fingerprinting. To demonstrate this, we vali-
dated our configurations by comparing with the vulnerable
population and by applying the fingerprinting algorithm. To
evaluate visibility of honeynets into real network threats,
we created and deployed various honeynet configurations
in production networks. Then, we examined the attacks
observed by each of the honeynets, and show that non-
representative configurations provide skewed views of the
network threats. Finally, we deploy representative configu-
rations for various other networks in our academic network
and show that they provide different insights, even when
deployed in a single network.

5.1 Evaluating correctness of representative con-
figurations

In order to achieve visibility, we have argued that a con-
figuration needs to provide proportional representation of
the target network. Table 5 (a) shows the visibility that a
representative honeynet provides into the vulnerable popu-
lation. We find that the distribution of network services and
operating systems on the representative honeynet closely
match the vulnerable population. The combination of op-
erating systems and services between a representative hon-
eynet and the network also matched closely and we omit
those results here.

To evaluate honeynet configurations by their resistance



% of % of
Network Representative

Hosts Hosts

Operating Systems

Apple 36 35
Windows 25 23
HP printer 13 15

Linux 7 5
Solaris 7 6

TCP Ports

22 53 54
23 34 34

497 28 31
427 26 27
80 26 24

(a) Visibility into the vulnerable population
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(b) Resistance to fingerprinting

Table 5. Evaluating representative honeynet configuration by (a) visibility into vulnerable population
and (b) resistance to fingerprinting. The percentage of vulnerable hosts for the top five services
and top five operating systems in network B/16 match closely to the representative honeynet. The
representative honeynet is very resistant to fingerprinting as well.

Rank Exploit % Network Hosts % Representative Hosts
1 RPC portmap rusers request UDP 90 100
2 NETBIOS SMB-DS C$ share unicode access 7 10
3 NETBIOS SMB-DS IPC$ share unicode access 7 10
4 BARE BYTE UNICODE ENCODING 4 24
5 WEB-MISC robots.txt access 4 24

Table 6. The visibility of configurations into the exploits on the network. The percentage of network
hosts that observed each of the top five exploits in network B/16 is compared with the distribution
in the representative configuration.

to fingerprinting, the representative configurations for six
networks were embedded in the networks and the anomaly
detection algorithm from Section 3 was used on all of the
networks. Table 5 (b) shows the rank of the first honeynet
anomaly for six networks when the honeynet is configured
to be Representative to these networks. It shows that a
representative honeynet is very resistant to techniques that
attempt to detect network-wide anomalies.

5.2 Evaluating visibility of representative config-
uration by network monitoring

We demonstrated that the broad characterization of vul-
nerable population on the network matches the represen-
tative honeynet. In this section, we explore the visibility
of representative honeynet into specific exploits on the net-
work. For this, we capture exploits on the network B/16

using an intrusion detection system called Snort [29] and
then compare honeynet visibility to those threats.

We monitored the gateway router to B/16 via a span
port connected to a FreeBSD machine running Snort 2.1.3
configured with default signature distribution and recent
bleeding-snort [1] signatures. The experiment was con-
ducted for five hours on 2nd May, 2006. The detected ex-
ploits were ordered by spread of the attack i.e., by the per-
centage of network hosts that observed the attack. We then
grouped hosts that received a particular exploit and iden-
tified host characteristics necessary to receive the exploit.
Finally, we analyzed the honeynet profile to discover sus-
ceptible hosts on the Representative honeynet. Table 6
shows the top five attacks (server-based) discovered on the
network and compares it with the percentage of susceptible
hosts on the honeynet. Ninety percent of the network hosts
observed attempts to list currently logged users. This was



Configuration Exploits % of Honeynet % of Susceptible
hosts Network Hosts

Representative

1. SSH Brute-Force attack 41 53
2. NETBIOS DCERPC ISystemActivator
path overflow attempt 8 9
3. SHELLCODE x86 NOOP 6 9
4. NETBIOS SMB-DS C$ share unicode access 1 10
5. NETBIOS SMB-DS IPC$ share unicode access 1 10

All TCP Responder

1. NETBIOS DCERPC ISystem Activator
path overflow attempt 60 9
2. WEB-IIS view source via translate header 17 26
3. P2P GNUTella GET 5 0
4. LSA exploit 4 10
5. SHELLCODE x86 NOOP 4 9

Generic Honeyd

1. SSH Brute-Force attack 8 53
2. SCAN Proxy Port 8080 attempt 2 100
3. BACKDOOR typot trojan traffic 1 100
4. Behavioral Unusual Port 135 traffic 1 9
5. Squid Proxy attempt 1 100

Random Honeyd

1. WEB-IIS view source via translate header 21 26
2. LSA exploit 6 10
3. FTP anonymous login attempt 6 24
4. MS04011 Lsasrv.dll RPC exploit (WinXP) 3 10
5. MS04011 Lsasrv.dll RPC exploit (Win2k) 3 10

Table 7. The impact of different configuration approaches into threat visibility. Non-representative
configurations are misleading about the real threats to the network.

targeting UDP port 111 and would have been visible on all
honeynet hosts. Seven percent of network hosts observed
administrative access attempts to SMB service on TCP port
445 and would have been visible on 10% of the honeynet
hosts. The rest of the exploits were slow moving attacks
and were observed on a few hosts on the network. There-
fore, existing exploits on the network would be detected on
the honeynet depending on their impact on the network.

5.3 Evaluating visibility of honeynet configura-
tions by real deployments

In this section, we deploy honeynet configurations in
B/16 and evaluate them by the accuracy of threat view they
provide. First, we compare threat observed on different
honeynet configurations with the vulnerable population on
the network. Second, we deploy representative configura-
tions for various networks in B/16 and observe how rep-
resentative honeynets provide unique view of threats to a
network.

We deployed a real /24 honeynet (monitoring 256 ad-
dresses) with different honeynet configurations in the B/16

network and exposed it to the present day attacks. Each
honeynet configuration was deployed with Honeyd 1.0 [26],
for a period of one day using the service scripts for FTP,
SMTP, FINGER, HTTP and IIS-emulator, and the entire
experiment lasted from 22nd April, 2006 to 1st May, 2006.
We evaluated the results across two dimensions: the affect
of various configuration approaches on the threats observed,
and the impact of context in representative configurations. It
is important to note that comparisons across configurations
in this experiment are not valid due to temporal changes in
threat. Instead, our goal is to evaluate a honeynet configu-
ration by comparing it with the vulnerable population.

Table 7 compares a honeynet representative of network
B/16 with three other honeynet configurations. It shows the
top five exploits, ordered by the number of honeynet hosts
that observed the exploit. For the Representative configu-
ration, we found that the SSH Brute-Force attack was ob-
served on a large number of honeynet hosts and it matched
with the university network B/16, which has a significant
number of hosts configured with SSH service. An attack
on NETBIOS DCERPC service on port 135 was observed
on a small percentage of hosts, as only 9% of the network



A/16 C#1/17 C#2/19 D#1/19 D#2/19
1. SSH Brute-Force 1. Web Proxy GET 1. Web Proxy GET 1. NETBIOS 1.NON-RFC HTTP
attack Request Request DCERPC ISystem- DELIMITER

Activator path
overflow attempt

2. NETBIOS 2. WEB-IIS view source 2. NETBIOS 2. SSH Brute-Force 2. NETBIOS
DCERPC ISystem via translate header DCERPC ISystem attack DCERPC ISystem-
Activator path Activator path Activator path
overflow attempt overflow attempt overflow attempt
3. MS04-007 Kill- 3. NETBIOS 3. HTTP Challenge/ 3. WebDAV search 3. FTP anonymous
Bill ASN1 DCERPC ISystem- Response access login attempt
exploit attempt Activator path Authentication

overflow attempt

Table 8. The importance of context. The top three attacks captured on honeynets representatively
configured for five different production networks, but placed within the same network.

hosts were susceptible to this attack. On the other hand,
All TCP Responder observed a NETBIOS DCERPC at-
tack on a 60% honeynet hosts. The Generic Honeyd con-
figuration observed the SSH brute-force attack on only 8%
of the hosts, but 53% of the hosts were susceptible to this at-
tack. The Random Honeyd configuration observed an IIS
attack on 21% of the hosts, which was close to 26% of Web
servers in the network. However, around 50% of Random
Honeyd hosts were capable of receiving the exploit (much
higher than what actually received) but did not receive it
because of slow moving attacks. When examining these re-
sults, we find that the non-representative configurations bias
the threat view of a network away from the exploits that are
actually the most widely affecting, and hence most impor-
tant.

To analyze how well a representative configuration re-
flected attacks on a network, we deployed honeynet con-
figuration representatives for five other networks. Each of
them were deployed for one day in the /24 unused address
space in the B/16 network. Table 8 compares representa-
tive honeynet configurations with the susceptible network
population for five networks. We find that the SSH Brute
force attack was commonly observed on honeynet hosts,
and it coincided with the large number of hosts in the uni-
versity network A/16 that were configured with SSH ser-
vice. The dominant exploits found on the web server farms
were those impacting web service and the TCP port 135,
which are the dominant services in those networks. What
is interesting to note is that, although these configurations
were placed within the same network, the configurations
observed vastly different views depending on the network
vulnerability spaces.

In this section, we have examined a variety of different
aspects of visibility. We have shown that the representative

honeynet provides accurate view of threats on the network
than ad hoc configuration methods whose results are often
misleading. We also demonstrated that representative con-
figurations observes different threat views depending on the
network vulnerability space.

6 Conclusion

In this paper, we addressed the problem of honeynet con-
figuration. We showed that the existing approaches to con-
figure a honeynet are manual, causing honeynets to be con-
figured either in a generic or ad hoc fashion. We demon-
strated the limitations of generic and ad hoc configuration
in that they provide poor visibility into network attacks and
they are easy to discover. We show that providing visi-
bility into network attacks is not trivial because the threat
landscape and the vulnerable populations change with time
and across networks. Furthermore, large number of dark
addresses available in an organization requires automated
approaches to configure honeynets. We identify individ-
ual host consistency and proportional representation as two
properties required to achieve the desired goals of providing
visibility into vulnerable population and resistance to dis-
covery. We then described an automatic approach based on
profiling the network with active tests and random sampling
that achieves the desired goals. We evaluated the efficacy of
representative honeynets through deployment of these con-
figurations in a production network.

In this paper, we have explored and evaluated honeynet
configurations only for public facing networks. However,
the deployment of firewalls and NATs have led to the need
for internal honeynets [11] and we plan to evaluate the ef-
fectiveness of our techniques in these types of deployment.
There are numerous means of discovering honeynets, and



we by no means attempt to address all of them. In this pa-
per, we only examined configuration artifacts that can be
used to aid attackers. In future, we plan to deploy represen-
tative honeynets with high interaction honeypots and detect
exploits using host based intrusion detection systems.
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Appendix

A: Z-Statistics
Z-Statistics is formally defined as:

z =
average o f the sample−average o f the population

standard error per ob ject

where standard error is dependent on the standard devia-
tion and the size of the sample as:

standard error per ob ject =
standard deviation o f population√

size o f the sample

Therefore, a small sample will result in high standard er-
ror that will reduce z values. Furthermore, high standard
deviation implies significant variation in value for the new
test and would cause high standard error resulting in low z
value.

Z-Statistics is primarily used to measure the likelihood
of a predicted average when only the average of a sample
of population is known. However, this requires comput-
ing the standard deviation of the population. This is par-
ticularly difficult to estimate for many statistics problems

(e.g., predicting poll outcome, estimating number of peo-
ple suffering from AIDS) as it requires gathering the values
of each object in the population. Statisticians approximate
the standard deviation of the population by assuming that
the standard deviation of the population is the same as that
of the sample. We can compute the average and the stan-
dard deviation of the population easily, as we can probe the
entire network with lightweight tests. Hence, the z value ac-
curately measures the degree of inconsistency between the
subnet hosts when compared with the network hosts.

B: Illustrative example
Figure 2(a) shows the configuration of machines in

10.0.0.0/29 with different subnets. Figure 2(b) detects,
quantifies, and produces reasons for various anomalies on
the network using our algorithm. First, it orders the tests
by their increasing entropy values. The order of the tests
is 445, 497, 139, 22, and 135, which can be observed on
the successive depths of the tree. The values assigned to
test results are shown on tree edges. For port 445, the
subnet 0 has an average of 1/2 while the network has an
average of 1/8. The standard deviation for test 445 is√

1×(1−1/8)2+7×(0−1/8)2

8 = 0.33, and the standard error per
object is std.dev./

√
2 = 0.23. Therefore, the magnitude

of anomaly when subnet 0 is analyzed for the test 445 is
z = 1/2−1/8

0.23 = 1.6. Similarly, subnets 1, 2, and 3 produce
a very low z-value of 0.53. However, for hosts aggregated
by port 445=open, analyzing port 22 for subnet 3 produces
a strong z-value of 2.23. Hosts in subnet 0 with port 445
open, when analyzed for port 22, produce a subnet aver-
age of 0, a network average of 2/7, a standard deviation

of
√

5×(0−2/7)2+2×(1−2/7)2

7 = 0.45, a high standard error of
0.45 because of small sample size, and a low z-value of
−0.63 (only positive values shown in the figure). For sub-
net 2, hosts with port 445 open and port 22 closed, when
analyzed for port 135, raise a small anomaly with a z-value
of 1.1. Figure 2(c) presents the reasons and z-values for the
top three anomalies in the subnet. A node with single edge
does not classify reason for an anomaly and can be removed
from the reason. For example, the top anomaly, because of
22/445=open, 497=closed and 139=open, has been reduced
to just the reason 22/445=open.
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Figure 2. (a) Eight systems over the network 10.0.0.0/29 with configuration for different ports (un-
marked ports are closed). (b) The anomaly computed for different subnets at various aggregation
points in the graph (shown as subnet: z-value). (c) The top three anomalies in the network together
with the reason that triggered the anomaly.


