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Abstract. Intrusion detection and prevention systems have become es-
sential to the protection of critical networks across the Internet. Widely
deployed IDS and IPS systems are based around a database of known
malicious signatures. This database is growing quickly while at the same
time the signatures are getting more complex. These trends place ad-
ditional performance requirements on the rule-matching engine inside
IDSs and IPSs, which check each signature against an incoming packet.
Existing approaches to signature evaluation apply statically-defined opti-
mizations that do not take into account the network in which the IDS or
IPS is deployed or the characteristics of the signature database. We argue
that for higher performance, IDS and IPS systems should adapt accord-
ing to the workload, which includes the set of input signatures and the
network traffic characteristics. To demonstrate this idea, we have devel-
oped an adaptive algorithm that systematically profiles attack signatures
and network traffic to generate a high performance and memory-efficient
packet inspection strategy. We have implemented our idea by building
two distinct components over Snort: a profiler that analyzes the input
rules and the observed network traffic to produce a packet inspection
strategy, and an evaluation engine that pre-processes rules according to
the strategy and evaluates incoming packets to determine the set of ap-
plicable signatures. We have conducted an extensive evaluation of our
workload-aware Snort implementation on a collection of publicly avail-
able datasets and on live traffic from a border router at a large university
network. Our evaluation shows that the workload-aware implementation
outperforms Snort in the number of packets processed per second by a
factor of up to 1.6x for all Snort rules and 2.7x for web-based rules with
reduction in memory requirements. Similar comparison with Bro shows
that the workload-aware implementation outperforms Bro by more than
six times in most cases.

Keywords: Intrusion detection and prevention, deep packet inspection, work-
load aware, adaptive algorithm

1 Introduction

New critical software vulnerabilities are a common occurrence today. Symantec
documented 1,896 new software vulnerabilities from July 1, 2005 to December
31, 2005, over 40% more than in 2004 [1]. Of these, 97% were considered moder-
ately or highly severe, and 79% were considered easy to exploit. To address this
rapid increase in vulnerabilities, organizations around the world are turning to



Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) to
detect and prevent attacks against networked devices.

The core component of popular IDSs, like Snort [2], is a deep packet inspec-
tion engine that checks incoming packets against a database of known signatures
(also called rules). The performance of this signature-matching system is criti-
cal to the scalability of IDS and IPS systems, including packet per second rate.
The dominant factor in determining the performance of this signature matching
engine, whether implemented in software or hardware, is the number and com-
plexity of the signatures that must be tested against incoming packets. However,
both the number and complexity of rules appears to be increasing. For example,
the recent Windows Meta-File (WMF) exploit [3] required inspecting and decod-
ing more than 300 bytes into the HTTP payload which could quickly overwhelm
the CPU of the IDS or IPS, causing massive packet drops [4].

As a result, there has been significant effort in developing methods for efficient
deep packet inspection. Current IDSs like Snort and Bro attempt to evaluate as
few rules as possible in a highly parallel way. For example, Snort pre-processes
rules to separate them by TCP ports, and then parallelizes the evaluation based
on port. However, these groupings can be inefficient because all of the rules in
a given group do not apply to incoming packets. Moreover, separating rules by
multiple protocol fields in a naive way does not solve the problem because of the
additional memory overhead associated with managing groups.

In this paper, we argue that IDS and IPS should dynamically adapt the par-
allelization and separation of rules based on the observed traffic on the network
and the input rules database. That is, all IDS and IPS workloads are not the
same, and systems should adapt to the environment in which they are placed
to effectively trade-off memory requirements for run-time rule evaluation. To
demonstrate this idea, we have developed an adaptive algorithm that system-
atically profiles the traffic and the input rules to determine a high performance
and memory efficient packet inspection strategy that matches the workload. To
effectively use memory for high performance, the rules are separated into groups
by values of protocol fields and then these rule groups are chosen to be main-
tained in memory following a simple idea of “the rule groups that have a large
number of rules and match the network traffic only a few times should be sepa-
rated from others.” This idea follows our observation that if rules with value v
for a protocol field are grouped separately from others, then for any packet that
does not have value v for the protocol field, we can quickly reject all those rules,
and if only a few packets have that value, then those rules will be rejected most
of the time. Therefore, our workload-aware scheme aims to determine a small
number of effective groups for a given workload.

Our algorithm determines which rule groups are maintained in the memory
by choosing protocol fields and values recursively. It first determines the protocol
field that is most effective in rejecting the rules, and then separates those groups
with values of the chosen protocol field that reject at least a threshold number
of rules. After forming groups for each of these values, the algorithm recursively
splits the groups by other protocol fields, producing smaller groups. In this way,



we generate a hierarchy of protocol fields and values for which groups are main-
tained. By lowering the threshold, memory can be traded-off for performance.
Using this systematic approach for computing a protocol evaluation structure,
we automatically adapt an IDS for a given workload.

In this paper we develop a prototype Snort implementation based on our
workload-aware framework, which we call Wind. The implementation has two
main components. The first component profiles the workload (i.e., the input rules
and the observed network traffic) to generate the hierarchical evaluation tree.
The second component takes the evaluation tree, pre-processes the rules, and
matches incoming packet to the rules organized in the tree.

We evaluate our prototype workload-aware Snort implementation on the
widely recognized DARPA intrusion detection datasets, and on live traffic from
a border router at a large live academic network. We find that our workload-
aware algorithm improves the performance of Snort up to 1.6 times on all Snort
rules and up to 2.7 times for web-based rules. Surprisingly, we also find that
the algorithm reduces memory consumption by 10− 20%. We also compare the
workload-aware algorithm with Bro, and find it outperforms Bro by more than
six times on most workloads.

To summarize, the main contributions of this paper are:

– We propose a method for improving the performance of IDS and IPS systems
by adapting to the input rules and the observed network traffic.

– To demonstrate our idea, we constructed a workload-aware Snort prototype
called Wind that consists of two components: a component that profiles both
the input rules and the observed network traffic to produce an evaluation
strategy, and a second component that pre-process the rules according to
the evaluation strategy, and then matches incoming packets.

– We evaluate our prototype on publicly-available datasets and on live traffic
from a border router. Our evaluation shows that Wind outperforms Snort
up to 1.6 times and Bro by six times with less memory requirements.

The rest of the paper is organized as follows: Section 2 presents background
and related work. Section 3 presents the design of Wind, and Section 4 presents
empirical results comparing Wind with existing IDSs. Section 5 discusses tech-
niques for dynamically adapting Wind to changing workloads. We finally con-
clude with directions for future work in Section 6.

2 Background and Related Work

The interaction between high-volume traffic, number of rules, and the complex-
ity of rules has created problems for Intrusion Detection Systems that examine
individual flows. Dreger et. al. [5] present practical problems when Intrusion De-
tection Systems are deployed in high-speed networks. They show that current
systems, like Bro [6] and Snort [2], quickly overload CPU and exhaust the mem-
ory when deployed in high-volume networks. This causes IDS to drop excessive
number of packets, some of which may be attack incidents. Therefore, they pro-
pose some optimizations to reduce memory consumption and CPU usage which
are orthogonal to the Wind approach.



Lee et. al. [7] find that it is difficult to apply all possible rules on an incoming
packet. Therefore, they evaluated the cost-benefit for the application of various
rules and determined the best set of rules that can be applied without dropping
packets. However, they trade-off accuracy for achieving high bandwidth. Kruegel
and Valeur [8] propose to slice traffic across a number of intrusion detection (ID)
sensors. The design of their traffic slicer ensures that an ID sensor configured to
apply certain rules on a packet does not miss any attack packet.

Sekar et. al. [9] developed a high-performance IDS with language support
that helps users easily write intrusion specifications. To specify attack signatures
within a payload, they used regular expressions. This specification is different
from Snort in which attack signatures contain exact substrings, in addition to
regular expressions, to be matched with a payload. Using regular expressions is
a more generic approach than using substrings to specify an attack signature.
However, regular expressions are more expensive to evaluate than exact substring
matches. (The complexity of checking a regular expression of size m over a
payload of size n is O(mn) [10] and it is more expensive than checking for exact
substring within a payload, which has a time complexity of O(n) [10]). Aho-
Corasick [10] matches a set of substrings over a payload in O(n). Alternative
schemes like Wu-Manber [11] speed up matching by processing the common
case quickly. The multi-pattern optimizations to speed up an Intrusion Detection
System are complementary to our approach, as we speed up an IDS by reducing
the expected number of patterns to be checked with a packet.

Versions of Snort prior to 2.0 evaluated rules one by one on a packet. This
required multiple passes of a packet and the complexity of intrusion detection
grew with the number of rules. To eliminate redundant checking of protocol
fields, rules that have the same values for a protocol field can be pre-processed
and aggregated together. Then, a check on the protocol field value would equiv-
alently check a number of rules. By clustering rules in this way and arranging
the protocol fields by their entropy in a decision tree, Kruegel and Toth [12], and
Egorov and Savchuk [13] independently demonstrated that Snort (version 1.8.7)
performance can be improved up to three times. However, these papers only
examined the input rules to determine the rule evaluation order. In contrast, we
analyze the traffic, as well as the rules, to determine the rule evaluation order.
Secondly, they use entropy as an ordering metric, whereas we use a more intu-
itive metric for selecting as few rules as possible. Lastly, a naive arrangement
of protocol fields would drastically increase memory usage, and these papers
have not considered the memory costs associated with their approaches. Wind
improves performance and at the same time reduces the memory usage of an
intrusion detection and prevention system.

Snort 2.0 [14] uses a method in which rules are partitioned by TCP ports, and
a packet’s destination and source port determines the sets of applicable rules.
Then, the content specified by these applicable rules are checked in one pass
of the payload, using either the Aho-Corasick or the Wu-Manber algorithm, for
multiple substring search. If a substring specified in some attack rule matches
with the packet, then that rule is evaluated alone. We found that the parallel



evaluation significantly sped up Snort. Snort now takes 2-3 microseconds per
packet, when compared to earlier findings of 20-25 [13] microseconds per packet
for Snort versions prior to 2.0 1. This optimization significantly improved Snort
performance. Nevertheless, we further speed up a multi-rule Snort on many
workloads. This is achieved by partitioning the rules in an optimized evaluation
structure.

Recently, specialized hardware [15, 16] for intrusion detection in high-volume
networks has been developed. However, hardware-based solutions are complex
to modify (e.g., to change the detection algorithm). Nevertheless, the techniques
presented here will further enhance performance of these systems.

Our work is also related, and inspired, by database multi-query optimization
methods that have long been of interest to the database community (see [17–20]
for a partial list of related work). However, rather than finding common subex-
pressions amongst multiple SQL queries against a static database instance, the
problem that we tackle requires designing a hierarchical data structure to group
network rules based on common subexpressions, and using this data structure
in a data streaming environment.

3 Designing a Workload-Aware IDS

In this section, we first show that checking a protocol field can reject a large
number of rules, and the number of rejected rules varies significantly with the
protocol field. Then, we take this observation a step further and construct an
evaluation strategy that decomposes the set of rules recursively by protocol fields
and constructs a hierarchical evaluation tree. However, a naive strategy that
separates rules by all values of a protocol field will use too much memory. To
address this issue, we present a mathematical model that addresses the trade-off
between memory occupied by a group of rules and the improvement in run-
time packet processing. Finally, we present a novel algorithm and a concrete
implementation to capture statistical properties of the traffic and the rule set to
determine a high-performance and memory-efficient packet inspection strategy.

3.1 Separating rules by protocol fields

An IDS has to match a large number of rules with each incoming packet. Snort
2.1.3 [2] is distributed with a set of 2, 059 attack rules. A rule may contain
specific values for protocol fields and a string matching predicate over the rest
of the packet. For example, a Snort rule that detects the Nimda exploit is shown
below:

alert tcp EXTERNAL NET any -> HOME NET 139 (msg:‘‘NETBIOS nimda
.nws’’; content:‘‘|00|.|00|N|00|W|00|S";)

This rule matches a packet if the value of transport protocol field is TCP, the
value in the source address field matches the external network, the destination
address field contains an address in the home network, the value of destination
TCP port field is 139, and if the payload contains the string ‘‘|00|.|00|N|00|W|00|S".
1 difference in computing systems and rules not taken into account for rough discussion
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Fig. 1. Average number of rules (out of 2, 059) rejected by checking different
protocol fields for the DARPA dataset (99-test-w4-thu).

A simple approach for evaluating multiple rules on an incoming packet is
to check each rule, one-by-one. However, this solution involves multiple passes
over each packet and is too costly to be deployed in a high-speed network.
Therefore, the evaluation of the rules should be parallelized as much as possible
and evaluated in only a few passes over the packet. To evaluate a protocol field
in the packet only once, we need to pre-process rules and separate them by the
values of the protocol field. Then, by checking the value of just one protocol
field, the applicable rules can be selected. The advantage of separating rules by
the protocol field values is that a large number of rules can be rejected in a
single check. In Snort, the rules are pre-processed and grouped by destination
port and source port. The TCP ports of an incoming packet are checked to
determine the set of rules that must be considered further, and all other rules
are immediately rejected. The expected number of rules that will be rejected
by checking a protocol field of an incoming packet depends on two factors: the
traffic characteristics and the rule characteristics. Consider an input rule set with
a large number of rules that check if the destination port is 80. Assuming that
the rules are grouped together by the destination port, for a packet not destined
to port 80, a large number of port-80 rules will be rejected immediately. If only a
few packets are destined to port 80, then a large number of rules will be rejected
most of the time.

Figure 1 shows the number of rules that can be rejected immediately for an
incoming packet when rules are grouped by different protocol fields. For this
figure, we used the 2, 059 rules that came with Snort 2.1.3 distribution and
the traffic is from the Thursday on the fourth week of 99 DARPA dataset (99-
test-w4-thu). Figure 2 shows a similar graph, using the same set of rules on
a border router in a large academic network. The graphs show that checking
the destination port rejects the maximum number of rules, which is followed



by destination IP address and then by the check that determines whether the
packet is from a client. The source IP address is fourth in the list for the border
router traffic and seventh in the DARPA dataset. After this, most other protocol
fields reject a small number of rules. Therefore, the graphs show that the rule
set and the traffic mix cause varying number of rules to be rejected by different
protocol fields.
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Fig. 2. Average number of rules (out of 2, 059) rejected by checking different
protocol fields for data from the border router of a large academic network.

Now, checking whether a payload contains a particular string is a costly
operation, but checking the value of a protocol field is cheap. So, it is prefer-
able to check protocol fields to reduce the number of applicable rules. To use
multiple protocol fields for reducing the applicable rules, the rules have to be
pre-processed in a hierarchical structure in which each internal node checks a
protocol field and then divides the rules by the values of the protocol field. Fi-
nally, the leaf node is associated with a set of rules and a corresponding data
structure for evaluating multiple patterns specified in the rules. We are agnostic
to the multi-pattern search algorithm and the only objective of this hierarchi-
cal evaluation is to reduce the number of applicable rules, so that a packet is
matched with as few rules as possible.

Figure 3 shows an example of an evaluation tree in which protocol fields are
hierarchically evaluated to determine the set of applicable rules. It first checks
for destination port. If the destination port matches a value for which the set
of rules is maintained then those groups of rules are further analyzed, or else
the generic set of rules is picked. If the destination port is 21, the connection
table is checked to determine if the packet came from the client who initiated
the connection, and the corresponding rules are picked. If the destination port
is 80, then the destination IP address of the packet is checked. Then, depending
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Fig. 3. An example evaluation tree that checks protocol fields to determine the
set of rules for matching an incoming packet.

on whether the packet is destined to the Home Network or not, the correct set
of rules are picked to further evaluate on the packet. However, maintaining a
naive hierarchical index structure, in which every specific value of a protocol
field is separated, consumes a significant amount of memory for the following
two reasons:

1. Groups require memory: Multiple patterns from a set of rules have to be
searched in a payload in only one pass of the payload. Therefore, additional
data structures are maintained for fast multi-pattern matching. This struc-
ture can be a hash table as in the case of the Wu-Manber [11] algorithm,
or a state table as in the case of the Aho-Corasick [10] algorithm. These
structures consume a significant amount of memory.

2. Rules are duplicated across groups: If groups are formed by composing
two protocol fields hierarchically, then the number of distinct groups may
increase significantly. For example, assume that the rules are first divided by
destination port, and then each group so formed is further divided by source
port. A rule that is specific in source port but matches any destination
port has to be included in all groups with a particular destination port. If
the groups that are separated by destination port are further divided by
source port, then separate source port groups would be created within all
the destination port groups. For a set of rules with n source port groups and
m destination port groups, the worst number of groups formed, when rules
are hierarchically arranged by the two protocol fields, is n×m.

To investigate the memory consumed when rules are grouped hierarchically
by different protocol fields, we instrumented Snort to construct this structure
for a given list of protocol fields. We then measured the memory consumed for
different combinations of protocol fields. Figure 4 shows the memory consumed
when different protocol fields are hierarchically arranged, and a separate bin is



maintained for every specific value in a protocol field (trace data was 99-w4-thu
from DARPA dataset and the 2059 rules of Snort-2.1.3 distribution). This shows
that the memory consumed by the combination of destination port and client
check is 50% more than just the destination port. The memory required for the
combination of destination port and destination IP address is two times, and for
the combinations of destination port, destination IP address and client check, the
memory consumed is three times than only using the base destination port. From
the graph, the increase in memory is evident when the rules are hierarchically
grouped by destination port and source port. Therefore, constructing such a
hierarchy immediately raises two important questions:
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Fig. 4. Memory usage when rules are hierarchically arranged by protocol fields
in the specified order using the DARPA dataset (99-w4-thu).

1. What is the order in which the protocol fields are evaluated in the hierarchy?
2. What are the values of a protocol field for which groups are maintained?

In what follows, we first present a mathematical description of this problem,
analyzing the cost and benefit of different orders of protocol fields and the field
values for which the rules are maintained. We then argue that these questions
can be answered by capturing properties of the workload, namely the traffic-mix
characteristics and the input rule set characteristics.

3.2 Formal description

In this section, we formulate the problem of determining the order of evaluation
and the values of protocol fields for which the groups are maintained. As argued
earlier, the cost in maintaining a separate group is mostly the memory consumed
by the group. Intuitively, the benefit obtained by maintaining a group of rules
can be measured by how many rules this group separates from the rule set



and how frequently this group is rejected for an incoming packet. We begin by
formalizing the problem.

Consider n protocol fields F1, F2, . . . , Fn. Let vi
1, v

i
2, . . . , v

i
mi

be mi specific
values of the protocol field Fi present in various rules in the rule set. Let P =
(Fr1 = vr1

j1
) ∧ (Fr2 = vr2

j2
) ∧ . . . ∧ (Fri = vri

ji
) be the predicate for a group

that is picked only when the packet matches specific values for i protocol fields,
and f(P) denote the probability that the protocol fields for an incoming packet
matches the predicate P, i.e., vr1

j1
for protocol field Fr1 , vr2

j2
for protocol field Fr2 ,

. . . , vri
ji

for protocol field Fri . f(P) actually captures statistics on the network
traffic. The probability that an incoming packet does not have the values for
protocol fields as the predicate P is 1− f(P). Let the benefit of rejecting rule R
be measured by improvement of bR in run time. Then, every time a packet does
not have the values for protocol fields as P, benefit of

∑
R=rule with value P bR is

obtained by maintaining a separate group of rules with values P. Therefore, the
overall benefit of creating a group with specific values for protocol fields present
in the predicate P includes traffic characteristics in f(P) and rule properties in
the rule set as:

(1− f(P))×
∑

R=rule with value P

bR (1)

Assume that c(P) is the memory cost of creating a group for a set of rules
that satisfies the predicate P. Then, the problem of an effective hierarchical
structure is to determine the set of groups such that they maximize the benefit
measured by improvement in run time for a given total cost, measured by the
total amount of memory that is available. Formally, the objective is to determine
m and m distinct predicates P1,P2, . . . ,Pm that maximizes

m∑
i=1

[(1− f(Pi))×
∑

R=rule with value Pi

bR] (2)

with the cost constraint

m∑
i=1

c(Pi) ≤ maximum memory (3)

3.3 Our approach

In this section, we design an algorithm that captures the properties of input rules
and traffic characteristics to produce an effective set of rule groups, separated
by values of protocol fields. These groups are then arranged in a hierarchical
evaluation structure, which determines the order in which protocol fields are
evaluated on an incoming packet. We begin with some assumptions that simplify
the above mathematical model for a realistic treatment and then present our
algorithm.



Assumptions It is not easy to precisely determine the cost of creating a data
structure for matching multiple patterns and the absolute benefit achieved by
rejecting a rule. For some exact substring-match algorithms (like Aho-Corasick),
the memory space occupied by the data structure may not grow linearly with
the number of patterns. For hash-based algorithms, the memory consumed is
independent of the number of patterns. This makes estimating cost for a multi-
pattern-matching algorithm difficult. At the same time, for most algorithms that
perform multi-pattern matching, it is hard to estimate the benefit of excluding a
single pattern. Therefore, we will make two simplifying assumptions that allows
us to easily compute the cost and benefit:

1. The cost of creating a multi-pattern data structure for any group of patterns
is constant. This assumption is valid for hash-based matching algorithms,
like Wu-Manber, that allocate fixed hash space. However, this assumption
is incorrect for the Aho-Corasick algorithm in which the required space may
increase with the increase in the number of patterns.

2. The benefit of rejecting any rule is a one-unit improvement in run time (i.e.,
bR = 1) except for rules that have content of maximum length one. The rules
that have content length one significantly degrade multi-pattern matching
and should be separated if possible. Therefore, rules with a content length
of one are assigned a large benefit (mathematically infinity). It is possible
that other patterns may adversely impact the performance in multi-pattern
search, but we choose to ignore such interactions for simplicity.

It is important to note that our assumptions help us to easily estimate the
cost and benefit of creating a group, and more accurate estimates will only
improve our scheme.

The algorithm Instead of specifying a fixed memory cost and then maximizing
the benefit, we specify the trade-off between the cost and the benefit. We say that
any specific value of a protocol field that rejects at least a minimum THRESH-
OLD number of rules should be assigned a separate group and hence, memory
space. This specification allows us to more easily tune real-time performance.

The mathematical model allows us to compare two groups with specific val-
ues for a number of protocol fields. The problem is then to determine a set of
groups in which each group rejects at least a THRESHOLD number of rules and
the set maximizes the overall benefit. However, this may require generating all
possible sets, which is computationally infeasible. Therefore, we do not attempt
to produce an optimal set of groups, but instead to discover possible groups
heuristically. The main intuition behind our algorithm is to place all rules in a
bin and iteratively split that bin by the protocol field that produces the maxi-
mum benefit, and at each split separate values of the chosen protocol field that
reject at least a THRESHOLD number of rules on average.

We now explain our algorithm in detail. First, all rules are placed in a bin.
Then, a few packets are read from the network and protocol fields in each rule are
evaluated. Then, the benefit obtained by a value in a protocol field is computed
using the benefit Equation 1. For value vi

j of the protocol field Fi, f(P) reduces



to f(Fi = vi
j) and

∑
R=rule with value P bR reduces to SFi=vi

j
where SP indicates

the number of rules with protocol field values specified by the predicate P. This
simplification is possible because bR is one. The overall benefit of a protocol
field is the sum of benefit of all values, and the protocol field is chosen that
produces maximum benefit. Then groups are formed for each specific value in
the protocol field that rejects at least THRESHOLD number of rules, or has
a rule with content length one. Then, we partition the bin into those specific
values and recursively compute other protocol fields for each of these bins. We
stop splitting a bin if none of the protocol fields can reject at least THRESHOLD
number of rules.

When we partition a bin into specific values, we replicate a rule that may
match multiple of these specific values in all those bins. For example, if the rules
are divided by destination port, then a rule that matches ‘any’ destination
port is included in all of those bins. This ensures that when a set of rules with
a specific value for a protocol field are picked, other applicable rules are also
matched with the packet. This is essential for correctness. Generally a rule with
value vj for a protocol field is included in a rule set with specific value vi if
vj ∩ vi 6= 0. If there is an order in which the values are checked during run-time,
then a rule vj is included in vi only if it appears before it, and if it satisfies the
previous property.

Packets rejected by a protocol field may correlate with packets rejected by
another protocol field, and so computing protocol fields independently may give
misleading information. For example, a source port and a source IP address
may reject exactly the same packets, in which case we do not gain anything by
checking both of them. Our recursive splitting of a bin removes this problem of
correlated values. This is because for a bin, we evaluate the benefit of remain-
ing protocol fields only on those packets that match the values specified in the
bin. For example, to split a bin containing port-80 rules, we only evaluate the
remaining protocol fields on packets that have port 80. This ensures that the
remaining protocol fields reject only the rules that were not rejected by port 80.

By choosing the protocol field that produces maximum benefit for each bin,
we get an order in which the protocol field is checked for a packet. By choosing
values that produce benefit above a threshold, we get the values that determines
which groups should be maintained.

Implementation: We implemented two distinct components to develop a workload-
aware Intrusion Detection System. The first component profiles the workload
(i.e., the input rules and the live traffic) to generate the evaluation tree. The sec-
ond component takes the evaluation tree, pre-processes the rules, and matches
any incoming packet on the tree. These components are general enough to be
applied to any IDS. We implemented our algorithm that generates an evaluation
tree for a given workload over Snort 2.1.3. We chose Snort as it already provides
an interface to read the rules into proper data structures. It also provides an
interface to read the incoming traffic and check for different protocol fields.

As a second component, we modified Snort 2.1.3 to take the bin profiles and
construct a hierarchical evaluation plan. Snort 2.0 [14] introduced an interface for



parallel evaluation of rules on a packet. Our hierarchical evaluation tree provides
the set of applicable rules for a packet according to its values for different protocol
fields. We pre-computed the data structure required for parallel matching for
each of these groups. For every packet, we used our evaluation tree to determine
the set of applicable rules and allowed Snort to perform the evaluation. We
implemented three protocol fields by which the hierarchical structure can be
constructed, namely: destination port, source port, destination IP address, and
whether the packet is from the client. Since rules contain a large number of
distinct protocol fields and we want to immediately detect the applicable rules,
we implemented a check for destination port using an array of 65,536 pointers.
Source port and destination IP address was checked by looking for possible match
in a linked list. We did this because only a few destination IP addresses/source
ports have to be checked, and because maintaining a pointer for each specific
value consumes significant memory. For client checks the rules were divided into
two parts: those that required to check if the packet is coming from client, and
the rest were others. Every time a bin was split, we ensured that a rule was
included in all new bins whose specific value can match the value in the rule.
This ensured the correctness of our approach. We also validated our system by
matching the number of alerts that our system raises, when compared to the
number of alerts raised by unmodified Snort on a large number of datasets.

4 Evaluation

In this section, we evaluate Wind on a number of publicly-available datasets and
on traffic from a border router at a large academic network. On these datasets, we
compared real-time performance of Wind with existing IDSs using two important
metrics: the number of packets processed per second and the amount of memory
consumed. To measure the number of packets processed per second, we compiled
our system and the unmodified Snort with gprof [21] options and then evaluated
the dataset with each one of them. Then we generated the call graph, using
gprof, and examined the overall time taken in the Detect function, which is
the starting point of rule application in Snort. Finally, using the time spent
in Detect and the number of times it was called, we computed the number of
packets processed per second. To compute the memory used, we measured the
maximum virtual memory consumed during the process execution by polling
each second the process status and capturing the virtual memory size of the
process. We now describe the datasets and the computing systems that we used
for our experiments.

4.1 Datasets and computing systems

We evaluated the performance of our system on a number of publicly-available
datasets and on traffic from a large academic network. For publicly available
datasets, we used traces that DARPA and MIT Lincoln Laboratory have used
for testing and evaluating IDSs. We used two-week testing traces from 1998 [22],
and two-week testing traces from 1999 [23]. This gave us 20 different datasets



with home network 172.16.0.0/12. For evaluating the system on real-world, live
traffic, we chose a gateway router to a large academic network with address
141.212.0.0/16. This router copies traffic from all ports to a span port, which
can be connected to a separate machine for analyzing the traffic.

For DARPA dataset experiments, we used a dual 3.06 GHz Intel Xeon ma-
chine with 2 GB of main memory. The machine was running FreeBSD 6.1 with
SMP enabled. We connected the span port of the gateway router to a machine
with dual 3.0 GHz Intel Xeon processors and 2GB of main memory. The ma-
chine was running FreeBSD 5.4 with SMP enabled. The results that follow are
the averages over 5 runs and with the THRESHOLD value set to 5.

4.2 Processing time and memory usage

We compared Wind with Snort 2.1.3 for all rules included with the distribution.
There were 2, 059 different rules, and both Wind and Snort were run using default
configuration. Figure 5 shows the amount by which we improved the number of
packets processed per second by Snort. For most datasets, we find that our
system processes up to 1.6 times as many packets as Snort. We also compared
the memory used by our system with that of Snort. Figure 6 shows the memory
saved by our system when compared to Snort. We find that our system uses
about 10-20% less memory when compared to the unmodified Snort. In other
words, we perform up to 1.6 times better in processing time and save 10-20% of
the memory.

Wind and Snort were run on the border router for analyzing a million packets
at a few discrete times in the week. Figure 7 shows the amount by which Wind
improved the number of packets processed per second by Snort. It shows that
the improvement factor on this dataset varied from 1.35 to 1.65. During the
runs, Wind consumed 10-15% less memory than Snort.

4.3 Application-specific rules

Until now, all our experiments were conducted by enabling all rules that came
with the Snort distribution. However, in many networks, only application-specific
rules can be used. For example, in many enterprise networks, the only open
access through the firewall is web traffic. Since web traffic forms the dominant
application allowed in many networks, we compared our system with Snort for
web-based rules 2. Figure 8 shows the magnitude by which our system improves
Snort, in the terms of number of packets processed per second, for traffic at
the border router. We found that for web-based rules, our system improves
performance by more than two times when compared to Snort. Figure 9 shows
a similar graph for the DARPA datasets. We observed that Wind outperforms
Snort by a factor of up to 2.7 times. In this case, we saved 2-7% of the memory
when compared to Snort.
2 web-cgi, web-coldfusion, web-iis, web-frontpage, web-misc, web-client, web-php, and

web-attack rules with Snort 2.1.3
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Fig. 5. Factor improvement, in terms of number of packets processed per second,
when compared to Snort for the 1998 and 1999 DARPA testing datasets.
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Fig. 6. Percentage of memory saved for each of the 1998 and 1999 DARPA
datasets, when compared to Snort.
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router in an academic network.
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experiments were on traffic from a border
router at an academic network.
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when compared to Snort for web-based rules. The datasets include the 1998 and
1999 DARPA intrusion detection datasets.



4.4 Variation with threshold

In order to investigate how the threshold affects the performance of our system,
we evaluated the DARPA dataset, 98-test-w1-mon, for different values of the
threshold. Figure 10 shows the performance variation of our system with the
increasing threshold. As expected, the performance of the system decreases with
increasing cost assigned by threshold. However, we find that the changes are
more pronounced only for lower threshold values. We find that the memory saved
by our system increases with increasing threshold values, significantly only for
lower threshold values. Therefore, we find that increasing the threshold reduces
performance, but saves more memory, and this difference is more pronounced
for lower threshold values.
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Fig. 10. The change in number of packets
processed with the threshold for minimum
number of rules to be rejected, when com-
pared to Snort (dataset: 98-test-w1-mon).
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Fig. 11. Variation in memory saving with
the threshold for minimum number of
rules to be rejected, when compared to
Snort (dataset: 98-test-w1-mon).

4.5 Comparison with Bro

We also compared Wind with another IDS Bro [6]. We first converted Snort
signatures using a tool already provided by Bro [24]. However, only 1, 935 signa-
tures were converted and regular expressions in the rules were ignored. We then
compared Bro 0.9 with Wind and Snort for various DARPA workloads. As shown
in Fig. 12, Snort is faster than Bro by 2 to 8 times, and Wind is 3 to 11 times
faster than Bro. This result is partly because Bro uses regular expression for sig-
nature specification rather than Snort, which uses exact substrings for signature
matching. Bro uses a finite automata to match regular expressions [24], whereas
Snort uses the Wu-Manber algorithm for matching sets of exact substrings.

5 Dynamically Adapting to Changing Workload

The Wind system that we have described so far analyzes observed network traffic
and input rules to speed up the checking of network packets in an IDS in a
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Fig. 12. Factor improvement when comparing Bro with Snort and Wind for the
number of packets processed per second (dataset: 99-test-w1-wed).

memory-efficient way. However, traffic characteristics can change over time, or
the rule set can change as new vulnerabilities are announced. Therefore, we need
to adapt our evaluation structure dynamically without restarting the system.

To adapt to changing traffic characteristics, we plan to collect traffic statistics
in the intrusion detection system itself, and reorganize the evaluation structure
when necessary. It would be too intrusive and costly to update statistics for each
packet. Therefore, one could update statistics for a small sample of incoming
packets. Then, we can use these statistics to determine the utility of specific
groups in the structure, and determine the benefit that rules in the generic group
would provide if they are separated from other rules in the generic group. We
can then remove specific groups whose utility decreases over time and make new
groups for rules in the generic group that provide increased benefit. However,
to ensure the correct application of rules, these changes may require updating
a portion of the evaluation tree atomically, thereby disrupting the incoming
traffic. Therefore, one could develop algorithms that use the updated statistics
to dynamically detect a significant change in traffic and trigger reconfiguration
of the structure when the benefits far outweigh the disruption.

Vulnerabilities are announced on a daily basis. Sometime a number of vul-
nerabilities for a single application are announced in a batch, demanding a set
of rules to be updated with the intrusion detection and prevention system. One
naive solution is to add the set of rules to the existing evaluation structure,
and then let the reconfiguration module decide over time if there is a need to
create additional groups. However, this strategy may affect the performance sig-
nificantly if a large set of rule is added to the generic group. This performance
degradation would continue till new groups are created. Therefore, one could
add rules whose values match with already existing groups directly to those spe-
cific groups. If a large number of rules still remain to be added to the generic



group, then we can use our algorithm described in this paper to determine the
groups that should be separated. Then, additional groups can be created within
the existing structure and the new rules added into those groups.

6 Conclusions and Directions for Future Work

In this paper, we have argued that an intrusion detection and prevention system
should adapt to the observed network traffic and the input rules, to provide
optimized performance. We have developed an adaptive algorithm that captures
rules and traffic characteristics to produce a memory-efficient evaluation struc-
ture that matches the workload. We have implemented two distinct components
over Snort to construct a workload-aware intrusion detection system. The first
component systematically profiles the input rules and the observed traffic to
generate a memory-efficient packet evaluation structure. The second component
takes this structure, pre-processes the rules, and matches any incoming packet.
Finally, we have conducted an extensive evaluation of our system on a collec-
tion of publicly-available datasets and on live traffic from a border router at a
large academic network. We found that workload-aware intrusion detection out-
performs Snort by up to 1.6 times for all Snort rules and up to 2.7 times for
web-based rules, and consumes 10-20% of less memory. A Snort implementation
of Wind outperforms existing intrusion detection system Bro by six times on
most of the workloads.

In future, we believe application decoding will be more common in intrusion
detection and prevention systems [24]. As part of future work, we plan on evalu-
ating our workload-aware framework on such systems. We also plan on evaluating
Wind with more context-aware signatures, and porting it to other available IDSs
and IPSs. Finally, we also plan on developing a dynamically-adaptive IDS, and
deploying it in real networks.
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