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Abstract

Packers have long been a valuable tool in the toolbox
of offensive users for evading the detection capabilities
of signature-based antivirus engines. However, selecting
the packer that results in the most effective evasion of an-
tivirus engines may not be a trivial task due to diversity
in the capabilities of both antivirus and packers. In this
paper, we propose the creation of an online automated
service, called PolyPack, that uses an array of packers
and antivirus engines as a feedback mechanism to select
the packer that will result in the optimal evasion of the
antivirus engines. Towards understanding the utility and
efficacy of such a service, we construct an implementa-
tion of PolyPack which employs 10 packers and 10 pop-
ular antivirus engines. We show that PolyPack provides
258% more effective evasion of antivirus engines than
using an average packer and out-evades the best evalu-
ated packer (Themida) for over 40% of the binary sam-
ples.

1 Introduction

PolyPack is a web-based service that employs an array
of packers and antivirus engines to pack an input binary
with the packer that results in the maximal evasion of
detection by the antivirus engines. A typical usage of
the PolyPack service is as follows: (1) a user submits an
unpacked binary via PolyPack’s web interface, (2) the bi-
nary is packed using an array of packers and each packed
version is analyzed by an array of antivirus engines, and
(3) the detection results from the antivirus engines are
analyzed to select the optimally packed version to pro-
vide the most AV evasion and the results are returned to
the user.

1The PolyPack name is a spoof of the PolyUnpack research [20]
2The PolyPack service is available for restricted use at http://

polypack.eecs.umich.edu

PolyPack is targeted at providing a useful service for
penetration testers who require the ability to create pay-
loads that will evade the signature detection of a num-
ber of antivirus engines. For example, a penetration
tester may be unaware of the antivirus product running
on a target host/gateway and may desire maximal eva-
sion or may be faced with an infection vector where AV-
disabling shellcode may not be applicable. While it is
certainly possible to manually pack a binary and test it
against local antivirus engines, we believe that offering
an automated service can offload the burden of a man-
ual effort and offer advanced features and considerable
extensibility.

Beyond its legitimate utility for penetration testers,
PolyPack is an interesting concept with respect to the
crimeware industry. While crimeware such as Luck-
ySploit, Mpack, WebAttacker, phishing kits, and oth-
ers have traditionally been sold in an ad-hoc manner,
crimeware authors may find that a software-as-a-service
(SaaS) or subscription model is an attractive alternative.
Many of the benefits such as centralized development,
management, and updating that drive the SaaS model for
traditional software may translate effectively for crime-
ware tools as well. We believe that PolyPack represents
the sophistication and automation of a crimeware-as-a-
service (CaaS) deployment that is likely to emerge in the
underground in the near future.

As with many penetration testing tools, PolyPack’s of-
fensive capabilities may be used for both good and evil.
While unrestricted public access to such a service may
border on irresponsible, we believe that PolyPack can
be responsible deployed or licensed in a similar vein as
many of the existing penetration testing frameworks such
as CANVAS [7]. In addition to its offensive capabilities,
PolyPack allows defensive researchers to better under-
stand the current state of packer efficacy and the resulting
impact that packers may have on host-based protection
systems such as antivirus. Better understanding of the
offensive capabilities of attackers can lead researchers to
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create more effective and resilient defenses.
Towards these goals, our paper makes three primary

contributions:

• An analysis of a large dataset of malware of nearly
100,000 samples detailing the detection coverage of
23 antivirus engines against malware packed by 35
packer classes.

• The development of the PolyPack service, complete
with a backend of 10 popular antivirus engines, 10
common packers, and supplementary features such
as live updating.

• An evaluation of the increased evasion capabilities
of the PolyPack service using 208 distinct malware
samples compiled from source, each packed by 10
packers for a total of 2288 samples.

Our paper is structured around these contributions: In
Section 2, we explore the current use of packers by ma-
licious software and the diversity of antivirus detection
capabilities using a dataset of nearly 100,000 samples.
In Section 3, we describe the architecture and implemen-
tation of the PolyPack service. In Section 4, we evaluate
the efficacy of our current set of antivirus engines and
packers supported by PolyPack. Finally, we conclude in
Section 5.

2 AvP: Antivirus vs. Packers

In this section, we investigate the diversity of packer us-
age observed in the wild as well as the varying detection
capabilities of antivirus engines using a dataset of 98,801
malware samples from Arbor Network’s Arbor Malware
Library (AML) [12]. AML is composed of malware col-
lected in the wild using a variety of techniques such as
distributed darknet honeypots, spam traps, and honey-
client spidering. The 98,801 samples represent over a
year’s worth of AML collection.

2.1 Packer Classification
It is important to understand the current use of packers in
the wild before investigating their efficacy against mod-
ern antivirus engines. Many factors may influence the
diversity of packers used by malware authors including
their feature sets, resistance to antivirus and reverse en-
gineering, and availability of the packing tool.

Table 1 and Table 2 show the breakdown of packer us-
age in our dataset as determined by SigBuster [24] and
PEiD [2] respectively, both signature-based packer iden-
tification tools. While the usual suspects top the list of
the packers commonly used in the wild, the top 10 packer

SigBuster Identifier Count
Allaple 22050
UPX 11324

PECompact 5278
FSG 5080

Upack 3639
Themida 1679
NsPack 1645
ASPack 1505
tElock 1332

Nullsoft 1058

Table 1: The top ten packers classes in our AML dataset
as determined by SigBuster.

PEiD Identifier Count
UPX 11244

Upack 6079
PECompact 4672

Nullsoft 2295
Themida 1688

FSG 1633
tElock 1398
NsPack 1375
ASpack 1283

WinUpack 1234

Table 2: The top ten packers classes in our AML dataset
as determined by PEiD.

classes only represent 55.3% and 33.3% of the total sam-
ples respectively, indicating a substantial distribution of
packers.

In addition, a significant portion of the malware sam-
ples remain unidentified by SigBuster and PEiD, two of
the most common tools for identifying packers. Of the
98,801 samples, 28,827 and 39,731 were unsuccessfully
identified by SigBuster and PEiD (with BoB’s userdb.txt)
respectively. Of the 39,731 unidentified by PEiD, only
8,174 (20.6%) compress by more than 20%, indicating
that the vast majority of these samples are indeed packed
by unidentified packers. In addition, analysis of the over-
all binary entropy and the number of IAT entries when
comparing the malicious binaries with a set of legitimate
ones indicates that over 90% of all the samples in our
dataset appear to be packed.

2.2 Antivirus Detection
More interesting than packer diversity is the wide range
of detection capabilities that antivirus engine have when
analyzing packed binaries. Such information can help
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AV Detection Fractions By Packer
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Figure 1: The fraction of detected binaries for 23 anti-virus systems and 35 most popular packers.

us determine if there are antivirus engines that are more
effective against a wide range of packers or packers that
are effective at evading a wide range of antivirus engines.

Figure 1 shows a set of 23 antivirus systems (a sub-
set of those supported by VirusTotal [6]) crossed with
the top 35 most popular packer families determined by
PEiD in our malware dataset (including non-packed and
compiler classes such as Borland). Each square repre-
sents the detection coverage of the particular antivirus
engine against the malware samples packed by the par-
ticular packer. The greyscale shade of the square repre-
sents the percentage of samples successfully detected as
malicious, ranging from 0% (white) to 100% (black).

It is important to take caution while deriving defini-
tive results from the datapoints in Figure 1 as the overall
detection rate by an antivirus engine may depend on not
only the packer employed but also the underlying mal-
ware payload. Engines like AntiVir, which has a fairly
dark stripe, may appear to be quite effective at detect-
ing many packer classes, but this may be due to over-
aggressive heuristics flagging binaries with high entropy
as malicious and can lead to significant false positives.

More important than individual antivirus or packer
performance is observing the diversity of detection cov-
erages across the board. The detection ranges can vary
widely not only within a particular antivirus vendor
against different packers but also across vendors with a
particular packer. These results hint that the selection of
a packer to ensure optimal evasion of antivirus engines

may not be a trivial task and provide the primary mo-
tivation for our construction of the PolyPack service to
automate this process.

3 The PolyPack Service

In this section, we briefly describe the overall architec-
ture and implementation of the PolyPack service and
then discuss several of the service’s additional features
that may be beneficial to pen-testers or other offensive
parties.

3.1 PolyPack Architecture
The PolyPack architecture consists of three components:
the web frontend, the packer service, and the antivirus
service. An overview of the architecture is described in
Figure 2.

3.1.1 Web Frontend

Users of PolyPack interact with the system through a
simple web interface. The user can upload an unpacked
binary and have it submitted for processing. PolyPack
will process the binary with its collection of packers and
antivirus engines and return the packed binary for opti-
mal AV evasion to the user. Results from the PolyPack
service can either be displayed in real-time in the user’s
browser or simply emailed to the user for later retrieval.
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Figure 2: Conceptual overview of the PolyPack architecture.

3.1.2 Packer Service

Submitted binaries are first delivered to the packer ser-
vice to be processed by an array of packers before being
passed on to the AV service.

PolyPack’s packing service currently supports 10
packers: ASPack [22], FSG [1], NsPack [13], Null-
soft [14], PECompact [3], tElock [23], Themida [17],
UPX [9], WinUpack [5], and Yoda [4]. These packers
were chosen as they represent some of the most common
packers used by malware observed in the wild. While
choosing common packers may result in greater detec-
tion rate by antivirus than more obscure packers, it pro-
vides a more representative view of the detection cover-
age experienced in the real world. We plan to signifi-
cantly extend the set of supported packers in the future
as adding additional packers is a trivial task. Indeed,
only 32 lines of code on average are needed to support
a packer.

3.1.3 Antivirus Service

After submitted binaries are processed by the packer ser-
vice, they are fed into the antivirus service to be analyzed
by a number of antivirus engines. The results from the
various engines are collected and evaluated to determine
the optimal packing scheme.

PolyPack’s antivirus service is based on the CloudAV
architecture [16, 15] which supports a backend of 10
popular antivirus engines including Avast, AVG, BitDe-
fender, ClamAV, F-Prot, F-Secure, Kaspersky, McAfee,
Symantec, and Trend Micro. These engines are hosted in
disposable virtualized environments to maintain the in-
tegrity of the service. Again, the framework is designed
around being extremely extensible for new AV engines,
requiring only 42 lines of code on average to support an
engine.

3.2 PolyPack Features

While the use of antivirus engines as a feedback mech-
anism to ensure evasion before releasing malware is a
common practice among attackers, we believe that au-
tomating the process in a centralized service allows us to
offer considerable extensibility and unique features be-
yond what may be feasible by a manual effort.

3.2.1 Evasion Metrics

What constitutes “optimal” evasion may differ based on
the goals of the user of PolyPack. The default metric for
determining how effectively a particular samples evades
antivirus is by a simple count of the number of engines
that fail to detect it. However, in the real world, not all
AV vendors are deployed uniformly and some are signif-
icantly more popular and commonly deployed than oth-
ers. Therefore, PolyPack offers the ability to weight eva-
sion metrics by AV vendor market share size. In the fu-
ture, we will allow users to specify their own weighting
preferences based on the specific engines they would like
to evade.

3.2.2 Live Updating

Once a malware sample is released into the wild, it may
fall into the hands of an analyst or AV vendor that pro-
duces a signature to block it. Continually monitoring of
a large number of AV engines may be a tiresome task for
a malware author to determine if a new signature update
detects their malware. Since PolyPack possesses both the
submitted binary and the signature update feeds of the
AV engines, it can automatically re-pack and push out a
new optimally packed binary to the PolyPack user when-
ever a AV signature update is received. For up-to-the-
minute evasion, live binaries may even be pulled from
PolyPack directly and delivered to the victim via HTTP
for certain infection vectors instead of being pushed to
the PolyPack user.
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Packer Total Median Average
Unpacked 212 1 1.02
ASpack +128 +0 +0.61

FSG +39 +0 +0.19
NsPack +239 +1 +1.15
Nullsoft +646 +3 +3.11

PECompact +509 +2 +2.45
tElock +424 +2 +2.04

Themida +935 +5 +4.50
UPX +91 +0 +0.44

WinUpack +230 +1 +1.11
Yoda +654 +3 +3.14

Average +389 +2 +1.87
PolyPack +1005 +5 +4.83

Table 3: For each packer, we list the increase over the
unpacked binaries of the total number of AV evasions
across all binaries (out of 2080) and the median/average
number of evasions per binary (out of 10).

Packer Optimal Occurrences
Themida 122
Nullsoft 59

Yoda 24
PECompact 3

Table 4: The number of occurrences a packer produced
the optimal packing for each of the 208 distinct samples.

3.2.3 Submission Confidentiality

As payloads may contain sensitive information or tech-
niques, it is important that submissions to such a service
be kept confidential. Unlike services such as VirusTo-
tal [6] that share submitted samples with AV vendors,
PolyPack maintains the confidentiality of submitted bi-
naries. In addition, the backend AV engines are isolated
from the network to ensure that samples or hash identi-
fiers are not collected by the engine and leaked back to
the AV vendor.

3.2.4 Future Capabilities

While our current implementation offers useful function-
ality, we plan to extend PolyPack to support more sophis-
ticated capabilities:

• Additional Packers: Including additional exotic
and sophisticated packers and techniques [11] in
addition to the current set of well-known pack-
ers should significantly increase the flexibility of
PolyPack’s evasion.

• Additional File Formats: Besides the currently
supported Portable Executable (PE) binaries, it
would be useful to support additional binary for-
mats such as ELF and Mach-O, as well as other
common file types used to transport malcode such
as PDFs, documents, and media files.

• Automated Unpacking Resistance: A significant
number of projects have attempted to tackle the
problem of automated unpacking [10, 21, 8, 18, 20,
19]. Providing resistance to these tools, in addition
to AV engine evasion, is desirable.

• Behavioral Antivirus: Many antivirus engine aug-
ment their signature databases with runtime behav-
ioral detection of malware. Instrumenting the back-
end to provide feedback on whether a binary tripped
an AV engine’s behavioral detection would be valu-
able to the PolyPack user.

4 Evaluation

To evaluate the efficacy of the PolyPack service, we an-
alyze a dataset of 208 malware samples compiled from
source. Each of these unpacked binaries is fed through
the PolyPack service, resulting in a total of 2288 (208 un-
packed and 2080 packed) samples to be scanned by the
antivirus engines. Since we can analyze both the packed
and unpacked binaries, we can detail exactly how effec-
tive each individual packer is at evading the antivirus en-
gines and determine how much benefit the PolyPack ser-
vice provides.

Table 3 details the results of our evaluation. The first
row shows the baseline for the unpacked binaries. Across
all of the 208 unpacked binaries and the 10 antivirus en-
gines, a sample goes undetected only 212 times, out of
a total 2080 scan events. On average across the 208 bi-
naries, a sample only evades 1.02 of the 10 engines. Af-
ter establishing this baseline for the unpacked binaries,
we can measure how much additional evasion each in-
dividual packer provides. For example, the best individ-
ual packer, Themida, goes undetected in 935 more scan
events than the baseline and corresponds to an average
of evading 4.50 AV engines for a single sample. Table 3
also details the evasion efficacy if one were to choose a
packer that represented the average of the 10 common
packers in our evaluation.

At first glance, it may be tempting to select Themida
for packing all binaries since it appears to be the “best”
of our evaluated packers. However, while Themida has
the highest evasion overall, it is not the optimal choice
for all of the binaries. Since PolyPack is able to evaluate
the best packer choice for each binary individually, it is
able to achieve a greater evasion rate as seen in the last
row of Table 3.
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Table 4 breaks down the cases when packers other than
Themida provide the optimal packing (for 86 binaries
of the 208 binaries). Nullsoft provides the best evasion
for 59 of the binaries, Yoda for 24 of the binaries, and
PECompact for 3 of the binaries. These results clearly
indicate that one packer does not fit all and the variety
provided by PolyPack has a real and measurable effect
on a sample’s evasion of AV engines. As a more diverse
set of packers are added to PolyPack, we expect these
results to become even more pronounced.

5 Conclusion

In this paper, we have explored the construction and use
of a service for the packing of binaries for optimal eva-
sion of antivirus engines. We believe such a service is
of value to penetration testers and is likely to represent
the sophistication and automation that we will continue
to see in crimeware industry in the near future. Under-
standing the deficiencies of our current defensive mea-
sures and the ease at which attackers can offensively in-
novate in the asymmetric battle against malicious soft-
ware can aid our own efforts in developing adequate pro-
tection mechanisms.
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