
Introducing CrossMapper: Another Tool for Mapping
Musical Control Parameters

Liam O’Sullivan, Dermot Furlong, Frank Boland
Trinity College Dublin

Electronic & Electrical Engineering,
Trinity College, Dublin 2,

Ireland.
lmosulli@tcd.ie, dfurlong@tcd.ie, fboland@tcd.ie

ABSTRACT
Development of new musical interfaces often requires
experimentation with the mapping of available controller inputs
to output parameters. Useful mappings for a particular
application may be complex in nature, with one or more inputs
being linked to one or more outputs. Existing development
environments are commonly used to program such mappings,
while code libraries provide powerful data-stream
manipulation. However, room exists for a standalone
application with a simpler graphical user interface for
dynamically patching between inputs and outputs. This paper
presents an early prototype version of a software tool that
allows the user to route control signals in real time, using
various messaging formats. It is cross-platform and runs as a
standalone application in desktop and Android OS versions.
The latter allows the users of mobile devices to experiment
with mapping signals to and from physical computing
components using the inbuilt multi-touch screen. Potential uses
therefore include real-time mapping during performance in a
more expressive manner than facilitated by existing tools.

Keywords
Mapping, Software Tools, Android.

1. INTRODUCTION
Interactive music systems (IMS) have been described in terms
of three functional stages; sensing, processing and response [3].
The processing stage must route the sensed input to the
response stage in order to provide feedback. Existing software
tools allow the experimentation with this mapping of control
inputs onto output parameters. However, in the course of earlier
research it became clear that space existed for a new approach
to existing mapping interfaces. The initial development of such
an interface is now presented.
1.1 Origins and Motivation
Research by the lead author involves tailoring surface-based
computer interfaces such as tabletops and multi-touch screens
for musical control [8]. This has required the investigation of
mappings between the properties of onscreen graphical shapes
and output sound parameters. During the course of a subjective

study exploring aspects of perceptual analogies across sense
modalities, it was necessary to vary and test the preferences for
such mappings [9]. This was carried out using a graphical
representation programmed in the Processing Development
Environment [25] communicating over Open Sound Control
(OSC) [21] with a sound synthesiser patch created in the
Max/MSP environment [17]. However, it was found to be
unwieldy to re-route control to parameters, as the functionality
of the program in either environment had to be modified. A
dynamically configurable node-based interface layer was
desirable. It was soon realised that such an implementation
would be useful in other aspects of the research into surface-
based interfaces used as musical controllers. Tangible
controllers and physical sensors can augment the native touch-
and object-sensing capabilities of such devices [11]. An ability
to map input from physical computing components and
hardware devices without hard-coding this into prototypes
would save time and effort.
It was also found that practitioners from related fields of
research (such as computer game audio) engaged with the idea
of dynamic mappings but were unfamiliar with the common
tools used within the computer music and NIME communities.
Even within the music-oriented fields, comments suggested a
need for “a MIDI-yoke type” mapping solution and that a
“standalone application with a light footprint could be very
handy”, particularly one that was “neater, more useable”.
It was therefore decided that space existed for an easy-to-use
interface with flexible, dynamic mapping and the ability to
accommodate various communications protocols. This paper
introduces a prototype software implementation that attempts to
address these needs.
The paper is organized as follows: A brief review of literature
discusses parameter mapping in musical interfaces to identify
the key design goals of the tool. The software prototype is then
presented, followed by an informal evaluation and discussion of
the implemented features. Future enhancements to the tool are
then suggested.

2. PARAMETER MAPPING
It has been said that the character of an interactive music
system is largely defined by the mapping of inputs to outputs
[4]. Much has been written on the subject that will not be
repeated here and good overview of key aspects is available in
a previous publication [5]. A pertinent observation made in that
article is the importance of complex mapping schemes in
developing expressive interfaces. A classic example of such a
mapping is given, referring to the control of pitch on a violin;
this may be approximated as a weighted sum of bow pressure
and finger position. The benefits of using an intermediate
mapping layer (possibly perceptually described) have also been
observed [1]. This project addresses an aggregate of these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’12, May 21-23, 2012, University of Michigan, Ann Arbor.
Copyright remains with the author(s).

mailto:lmosulli@tcd.ie�
mailto:dfurlong@tcd.ie�
mailto:fboland@tcd.ie�

issues while also considering the following aspect of control
mapping that has not attracted as much attention in the
literature.

2.1 Mapping as Music
As has been noted in the context of musical performance, the
legacy hardware arrangement of mouse, keyboard and video
display coupled with the Windows, Icon, Menu and Pointer
graphical user interface (GUI) is not always conducive to
creative play or engaging interactions analogous to the feeling
of ‘flow’ evoked by traditional instruments [5]. When
considering the new interface, the question arose as to why the
modification of mappings was not itself considered a creative
task. What new forms of expression could be uncovered from
exploring this added layer of abstraction, with mappings being
treated as musical elements? An analogy could be made to the
process of instrumentation, but with more flexibility as to the
mixing and scaling of parts to particular voices.
Such ideas have previously been touched upon, for example, in
a discussion of the mapping of control to digital audio effects
(DAFx) used as part of musical performance [10] and in a
review of composers’ views on mapping in algorithmic
composition [3]. While mappings are seemingly used as
musical elements, there has not been widespread examination
of the idea in practice. A real-time interface with expressive
capability would allow experimentation with the ‘playing’ of
mappings. A well-designed interface would be useful as visual
feedback to the performer, providing a clear representation of
the system state. Should it be desired (and with suitable
aesthetic modification), it could also impart heightened
audience appreciation of the evolving connections and
relationships between gesture and output that may be used
throughout a performance.

3. SIMILAR WORK
Several software systems exist that facilitate exploration of
input-output parameter mapping. While some of these are
sophisticated systems offering extensive functionality, it will be
shown that a gap exists for the approach being outlined here
due to the limitations described in each case.
A number of tools have origins in work on spatial interfaces for
the control of musical processes in real-time [7]. The IRCAM
MnM mapping toolbox, for example, is part of the FTM
external object library [14] for Max/MSP. The user builds
patches with existing Max/MSP GUI elements or programs
their own compatible objects. A strength of the toolbox is its
suitability for real-time play and use in performance. For
instance, an example patch allows the specification of two-to-
many mappings (useful for the control of a varied and nuanced
timbre-space with a typical physical input device) using a two-
dimensional controller and a set of linear sliders. The system
can associate points on the controller with particular slider
arrangements through a learning algorithm. The user is then
free to navigate about the planar space, with the system
interpolating between mappings. Similarly, the MetaSurface is
an interface for interpolating between mapping ‘snapshots’ for
two-to-many mappings [2]. An example implementation is
included with the AudioMulch software [12]. In this version,
communication is over OSC or MIDI only and is designed to
control sound generation and modification modules included in
the commercial software product. A more recent
implementation is the nodes object first included in version 5 of
Max/MSP. This allows many inputs to be weighted and
combined to a single output based on the positions of graphical
nodes, which may overlap. The distance to the mouse cursor
and the size of the node are used to determine the effect of an
input stream on the summed output.

The Input Devices and Music Interaction Laboratory at McGill
University have also done considerable work on interfacing
novel instruments with sound production systems. Their
mapping tools for digital musical instruments (DMIs) are
encapsulated in libmapper, a library of code in the C language
with a focus on distributed devices communicating as peers
over a network [16]. The Application Programming Interface
(API) is feature-rich, providing access to signal processing
functionality such as gesture analysis and the use of an
intermediate mapping layer to move from gestural semantics to
sound semantics. A web-based GUI allows quick selection of
parameters via namespaces and mapping can be easily patched
from inputs to outputs. The libmapper creators state that many-
to-one mappings are not yet implemented with dedicated
combining functions- input streams are simply interleaved
when connected to the same output. Reasons for this include
the difficulties in encoding the necessary relationships between
gestures in the intermediate mapping layer, suggesting this
should be done at the gesture analysis stage. There is also a
perceived lack of a requirement for such mappings in practice,
although the inclusion of combining functions was designated
as future work. In addition, the libmapper program is designed
to work with OSC-enabled devices and so does not support
input from other communications protocols.
Junxion is a fully-featured routing application that can handle
many signal types, including video [15]. It is a commercial
release, is available for OSX on Apple computers only and uses
traditional GUI elements such as sliders and pull-down menus.
While not strictly a mapping tool in the vein of the above,
OSCulator [23] provides connectivity to human interface
devices (HIDs) and software-emulated controllers such as
TouchOSC [27]. The application is a commercial release and is
solely available for OSX. Other software programs exist that
perform tasks related to parameter mapping, such as MIDI-to-
OSC conversion (e.g. OSC VST Bridge [24] and Moco [20])
and mouse event capture and conversion to MIDI (e.g.
MouseTrap [18]). In these simpler programs mappings are
generally simple, one-to-one routings and are modified using
conventional widgets.
The reacTable is a tabletop system that uses a modular
synthesis paradigm to generate and control sound output [6]. As
such, it does represent the routing of signals to and from
functional blocks using a patching metaphor and therefore
includes mapping functionality. However, it is a commercial
system and more closely resembles an instrument in its own
right than a mapping tool.
Some combinations of the above tools could conceivably
achieve most tasks desired in any mapping exercise. However,
it was felt that a single standalone application that addressed
key functionality would be advantageous for novices
experimenting with digital musical instruments and/or for
simpler interactive projects for audio-visual applications. In
addition, it was noted that almost all existing implementations
used mouse-based control for the specification and
administration of mappings and so did not readily support the
‘playing’ of mappings suggested in section 2.1.

4. SOFTWARE PROTOTYPE
4.1 Design Goals
The design goals which emerged from the initial motivations
for the project and subsequent consideration of similar work
were as follows:

• A minimal interface design, adhering to the design
adage ‘Keep It Simple, Stupid’.

• Ability to dynamically change complex mappings and
adjust weights of combined mappings.

• Connection of external devices/ multiple
communications protocols and messaging formats.

• Use as a performance instrument as well as an
experimental setup, through the provision of a multi-
touch-capable interface.

• Freely available, open source, cross-platform,
standalone application with a low computational
footprint.

Figure 1. The prototype CrossMapper interface running on

an Android device.

4.2 Implementation
A prototype software program named CrossMapper
implementing the mapping functionality has been developed
[21]. Versions of the application run on OSX, Windows and
Android. A screen shot of the Android edition of the interface
running on an Asus Eee Pad tablet is provided in figure 1. The
functions currently implemented are outlined below:

• Creation and removal of input- and output-nodes,
making and breaking of mapping connections.

• Dynamic weighted summing of inputs at outputs,
controllable via the relative positions of nodes.

• Intuitive visualisation of weighting coefficients.
• Input from OSC or Serial Bus, output to OSC.
• Calibration of inputs with auto-ranging to floating point

representation in range [0.0, 1.0].
• Mouse-based interface control for desktop use with

multi-touch mode for Android devices.
• Settings dialog for specification of OSC address

configuration (IP address and port).

Figure 2. Visualizations of input weightings.

The main functionality of the interface is currently provided
through the use of square input nodes and circular output nodes.
These may be patched together by tap-dragging (on the
Android version) from an input to an output. Existing

connections may be broken by tap-dragging from an output to
an input.
Multiple nodes may simultaneously be freely and
independently moved about the interface space. The weighting
of an input node may be modified through its position relative
to its connected outputs. As shown in figure 2, the relative
weighting is inversely proportional to distance between nodes
and is represented using the color of the connected inputs
(disconnected nodes appear white). In order to preserve the
ability to independently manipulate the effect of a single
parameter, an input may exist in several copies.
Node-specific settings appear from a pop-up menu when a node
is double-tapped, as shown in figure 3. A video demonstration
of the software is available online at the address specified in
Appendix A [21].

Figure 3. Pop-out of input node options.

5. EVALUATION
The prototype version has just recently been completed and so
evaluation is minimal at this stage. Subjective comments on the
system have been positive, particularly on the ability to
manipulate mappings spatially. The visualization of input
weightings has also drawn praise as it is easy to see at-a-glance
how inputs affect outputs.

5.1 Computational Performance
The application runs 16 nodes with < 10% processor utilization
on an average laptop computer running Windows 7 (Dell
Precision 2400, Dual CPU @ 2.67 GHz). This is a satisfactorily
‘lightweight’ draw on computer system resources for the
prototype version, but it is expected that the efficiency of the
system will increase with code revisions and optimisation. On
Android (Asus Eee Pad Transformer), the GUI runs 12 nodes
without drop-off in rendering performance from the designed
frame-rate of 30 Hz.

5.2 Discussion
This software is not intended to replace the sophisticated
systems discussed in section 3. The flexibility and depth of
functionality encapsulated in those examples offers the
computer music researcher powerful tools for the investigation
of advanced mapping schemes and large parameter spaces. It is
felt that the simplified layout offered by CrossMapper will be
useful for artists seeking to experiment with mappings in their
projects, as a pedagogical tool and as a performance interface.
In particular, the Android version seems well-suited to the live
control of DAFx, where output parameters are not as numerous
as in the case of some synthesis techniques [10]. The clear
presentation on a mobile tablet computer has benefits for some
performance environments, including low light and when
positioned on-stage. Perhaps more profoundly, it is hoped that
the interface design will lead to a broader exploration of
mapping-as-music. At present, the interface offers more
expressive opportunity than mouse-based input through the
direct manipulation capability of the multi-touch version.

6. CONCLUSION AND FUTURE WORK
This paper presented the motivations for the development of a
new mapping interface and its current prototype
implementation. As this is a first iteration of the software, the
immediate concerns are with beta-testing and debugging.
Features to be implemented as soon as possible include:

• Save and recall functions for system settings and
configuration presets.

• All node-specific settings including individual
namespace specification.

• Ability to zoom and scale the workspace to make
effective use of screen ‘real estate’ and allow use of
an increased number of nodes.

• Ability to use other communications protocols e.g.
input from Tangible User Input-Output, and devices
using MIDI, Android Accessory Protocol, Human
Interface Devices (HID) etc.

• Firmware for standardized Arduino connectivity,
similar to Firmata [13] and for Android Accessory
Mode devices (e.g. IOIO).

At the suggestion of several users, a Max 5 object
encapsulating the CrossMapper interface is being developed, to
be followed by an object for Pure Data [26].
A number of workshops are taking place to trial the software
and provide an evaluation of its use. It is envisaged that the
stable version will be incorporated into teaching practice on the
Music & Media Technologies post-graduate course at Trinity
College Dublin [19]. This will help to inform further
development of the system as a pedagogical tool and as a
performance interface.
It is not an immediate goal of the project to provide advanced
signal processing capability, such as gesture recognition, as
these needs are already being addressed by some of the more
sophisticated systems discussed in section 3. However, it will
be necessary to include some additional techniques for signal
conditioning (e.g. smoothing filters) and combination of inputs
(e.g. biasing, multiplication). These will be considered only if
the simplicity of the interface presentation can be maintained
and are currently being developed as options in the node pop-
out menu.
The goal of the project is the provision of an intuitive interface
with an easily understood modus operandi, yet with the
potential for expressivity. At present, the simplicity of the
interface and the ability to manipulate using multi-touch
interaction achieves this to some degree.

7. ACKNOWLEDGMENTS
Many thanks go to the beta testers involved in the early
versions of the software and to the computer music researchers
who have provided useful critique and encouragement. The
lead author’s PhD work is supported by the Irish Research
Council for Science, Engineering and Technology.

8. REFERENCES
[1] Arfib, D., Couturier, J. M., Kessous, L., and Verfaille, V.

Strategies of mapping between gesture data and synthesis
model parameters using perceptual spaces. Organised
Sound 7, 2 (2002), 127–144.

[2] Bencina, R. The Metasurface – Applying Natural
Neighbour Interpolation to Two-to-Many Mapping.
Proceedings of the 2005 Conference on New Interfaces for
Musical Expression (NIME’05) (Vancouver, BC, Canada,
May 26-28, 2005), 101-104.

[3] Doornbusch, P., Composers’ Views on Mapping in
Algorithmic Composition. Organised Sound 7, 2 (2002)
145–56.

[4] Drummond, J., Understanding Interactive Systems.
Organised Sound 14, 2 (2009), 124–133.

[5] Hunt, A. and Kirk, R., Mapping Strategies for Musical
Performance. Trends in Gestural Control of Music, M.
Wanderley and M. Battier, Editors, 2000.

[6] Jorda, S., Geiger, G. Alonso, M., and Kaltenbrunner, M.
The reacTable: exploring the synergy between live music
performance and tabletop tangible interfaces. Proceedings
of the first international conference on Tangible and
Embedded Interaction (TEI07) Baton Rouge, Louisiana.
15-17 February 2007.

[7] Momeni, A., Wessel, D. Characterizing and controlling
musical material intuitively with geometric models.
Proceedings of the 2003 conference on New Interfaces for
Musical Expression (NIME '03) (National University of
Singapore, Singapore, Singapore, 2003), 54-62.

[8] O'Sullivan, L. and Boland, F. Tailoring Tabletop
Interfaces for Musical Control. ACM International
Conference on Interactive Tabletops and Surfaces,
(Saarbrücken, Germany, November 7–10, 2010).
Available at: http://www.mee.tcd.ie/~lmosulli/pubs.html.

[9] O'Sullivan, L. and Boland, F. Visualizing and Controlling
Sound with Graphical Interfaces. Audio Engineering
Society 41st Conference: Audio for Games (London, UK,
2-4 February 2011). Available at:
http://www.mee.tcd.ie/~lmosulli/pubs.html.

[10] Verfaille, V., Wanderley, M., and Depalle, P. Mapping
Strategies for Gestural and Adaptive Control of Digital
Audio Effects. Journal of New Music Research, 35(1):71-
93, 2006.

[11] Wang, J., D’Alessandro, N., and Pritchard, B. SQUEEZY:
Extending a Multi-touch Screen with Force Sensing
Objects for Controlling Articulatory Synthesis.
Proceedings of the 2011 Conference on New Interfaces for
Musical Expression (NIME’11) (Oslo, Norway, May 30-
June 1, 2011), 531-532.

9. APPENDIX A: LIST OF URLS
[12] Bencina, R., AudioMulch interactive music studio.

http://www.audiomulch.com/.
[13] Firmata. http://firmata.org/wiki/Main_Page
[14] FTM & Co., IRCAM. http://ftm.ircam.fr/
[15] Junxion, Steim.org.

http://www.steim.org/steim/junxion_v4.html
[16] libmapper, IDMIL.

http://www.idmil.org/software/libmapper
[17] Max/MSP, Cycling 74.

http://cycling74.com/products/max/
[18] MouseTrap.

www.humatic.de/webapps/htm/app/doc/MouseTrap.htm
[19] Music and Media Technologies, Trinity College Dublin.

http://www.mee.tcd.ie/mmt/
[20] Moco.
[21] O’Sullivan, L., CrossMapper project information.

http://addi.tv/moco/

http://www.mee.tcd.ie/~lmosulli/
[22] Open Sound Control. http://www.opensoundcontrol.org
[23] Osculator, Wildora. http://www.osculator.net/
[24] OSC VST Bridge.
[25] Processing Development Environment.

http://oscvstbridge.sourceforge.net/

http://www.processing.org
[26] Pure Data: http://puredata.info/
[27] TouchOSC. http://hexler.net/software/touchosc

http://www.mee.tcd.ie/~lmosulli/pubs.html�
http://www.mee.tcd.ie/~lmosulli/files/LiamOSullivan_GraphicalInterfaces.pdf�
http://www.mee.tcd.ie/~lmosulli/files/LiamOSullivan_GraphicalInterfaces.pdf�
http://www.mee.tcd.ie/~lmosulli/pubs.html�
http://www.audiomulch.com/�
http://firmata.org/wiki/Main_Page�
http://ftm.ircam.fr/�
http://www.steim.org/steim/junxion_v4.html�
http://www.idmil.org/software/libmapper�
http://cycling74.com/products/max/�
http://www.humatic.de/webapps/htm/app/doc/MouseTrap.htm�
http://www.mee.tcd.ie/mmt/�
http://addi.tv/moco/�
http://www.mee.tcd.ie/~lmosulli/�
http://www.opensoundcontrol.org/�
http://www.osculator.net/�
http://oscvstbridge.sourceforge.net/�
http://oscvstbridge.sourceforge.net/�
http://www.processing.org/�
http://puredata.info/�
http://hexler.net/software/touchosc�

	1. INTRODUCTION
	1.1 Origins and Motivation

	2. PARAMETER MAPPING
	2.1 Mapping as Music

	3. SIMILAR WORK
	4. SOFTWARE PROTOTYPE
	4.1 Design Goals
	4.2 Implementation

	5. EVALUATION
	5.1 Computational Performance
	5.2 Discussion

	6. CONCLUSION AND FUTURE WORK
	7. ACKNOWLEDGMENTS
	8. REFERENCES
	9. APPENDIX A: LIST OF URLS

