
Musical Interaction Design with the CUI32Stem:
Wireless Options and the GROVE system for

prototyping new interfaces

Dan Overholt
Department of Architecture, Design

and Media Technology
Aalborg University, Denmark
Niels Jernes Vej 14, 3-107

dano@create.aau.dk

ABSTRACT
The Create USB Interface is an open source microcontroller
board that can be programmed in C, BASIC, or Arduino
languages. The latest version is called the CUI32Stem, and it is
designed to work ‘hand-in-hand’ with the GROVE prototyping
system that includes a wide range of sensors and actuators. It
utilizes a high-performance Microchip® PIC32 microcontroller
unit to allow programmable user interfaces. Its development
and typical uses are described, focusing on musical interaction
design scenarios. Several options for wireless connectivity are
described as well, enabling the CUI32Stem to pair with a
smartphone and/or a normal computer. Finally, SeeedStudio’s
GROVE system is explained, which provides a prototyping
system comprised of various elements that incorporate simple
plugs, allowing the CUI32Stem to easily connect to the
growing collection of open source GROVE transducers.
Keywords
Musical Interaction Design, NIME education, Microcontroller,
Arduino language, StickOS BASIC, Open Sound Control,
Microchip PIC32, Wireless, Zigflea, Wifi, 802.11g, Bluetooth,
CUI32, CUI32Stem

1. INTRODUCTION & BACKGROUND
The CUI32Stem follows in the footsteps of the author’s
previous circuit board designs, such as the original Create USB
Interface (CUI) [10] that utilized a PIC18F4553 microcontroller
(an older 8-bit MCU), and the currently available CUI32 [2].
The CUI32 utilizes a PIC32MX440F512H, which is a modern
32-bit MCU (Microcontroller Unit) running at 80MHz. This
allows the system to perform much faster, and the use of a free
RTOS (Real-Time Operating System) has been implemented
which includes an on-chip compiler for BASIC-language
programs.

The RTOS is called StickOS [15], and was created by Rich
Testardi. The CUI32 also includes a bootloader pre-installed.
This allows advanced users to program it via either the Arduino
language, or Microchip’s free C-development environment and
compiler (MPLAB X / C32) without having to purchase a
separate programmer. The CUI32 circuit board was designed
by the author as an improved version of the original CUI, and is
sold by SparkFun electronics and other online retailers, as
shown in figure 1 (lower right corner).

2. OBJECTIVES & INNOVATION
One of the main objectives in the development of the
CUI32Stem is to pursue the author’s own long-term research
focused on the development of new electronically enhanced
(augmented) musical instruments. The aim of this research is to
explore the potentials that such instruments have in the context
of new compositions and new methods of performance. The
overall goal is to add new dimensions and expressive
possibilities to the capabilities of traditional electronic and/or
hybrid acoustic instruments, exploring these in contemporary
music, or in fact any performance setting. The research can be
seen as a process of discovery, investigating the extension of
musical instruments’ expressive and performative ranges. In
addition, through research-based teaching, students are exposed
to the common issues that may arise in the field, and are asked
to build significant projects through their semester work.
 A complete discussion of the larger research challenges and
innovations is not included here. However, a recent example of
an augmented musical instrument created by the author is the
Overtone Fiddle [11], which utilizes some of the technology
described herein. This document is intended to serve as
collection of useful technical information for those interested in
working with the CUI32Stem, the GROVE system, and their
corresponding methodologies.

2.1 A New Board: CUI32Stem
The first prototype of the newest member of the CUI family,
the CUI32Stem (Figure 1, lower left corner and Figure 2)
incorporates changes to the board design to accommodate the
GROVE system’s 4-pin connectors for sensors and actuators, as
well as incorporate a more powerful microcontroller along with
an updated bootloader that supports the Arduino language.

The design details can see found on the SeeedStudio wiki1
(distributor of the CUI32Stem and GROVE systems), including
more information about functionality and availability. The
CUI32Stem board can be connected to a wide range of GROVE
elements. More data about each of the individual GROVE
elements is also available online, including schematics and
related files. All of the GROVE elements can be acquired
individually – for a specific design – or experimentation kits
will be available which will include an assortment of various
GROVE elements together with the CUI32Stem. These bundles
are provided simply as a convenient way of obtaining a
collection of various sensors and actuators that support musical
(and other) interaction design processes. It is hoped that the
ease of use of such bundles will facilitate rapid prototyping of
many ideas within physical interaction design, a process that is

1 CUI32Stem and GROVE system on SeeedStudio wiki:

http://www.seeedstudio.com/wiki/CUI32Stem

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’12, May 21-23, 2012, University of Michigan, Ann Arbor.
Copyright remains with the author(s).

sometimes referred to as sketching in hardware. Within musical
interaction design specifically, this may include performance
oriented systems, composition interfaces, interactive
installations, and other types of designs in the context of lab /
experimental / educational use.

Figure 1. Historical progression of Create USB Interface
(CUI) boards, clockwise from top left: The original CUI
hand-built in 2004, the first surface-mount CUI in 2005

(black), the CUI32 as currently sold by SparkFun and other
distributors (red), and a prototype CUI32Stem (green)

While the microcontroller (PIC32MX795F512H) on the

new CUI32Stem is in the same family as the CUI32, and runs
at the same clock speed (80MHz), it has more internal memory
as well as an internal Ethernet controller (however, an add-on
board would still necessary to plug in an Ethernet cable). A
benchmark showing the performance of this microcontroller
can be seen via its Coremark rating [3]. When compared to a
well-known microcontroller in the research community, the
CUI32Stem’s Coremark is 203, while a standard Arduino has a
Coremark of 18. This is with native C-code compiled with full
optimization on both; clearly, some of the ‘extra’ speed of the
CUI32Stem is lost when running BASIC code in StickOS – the
tradeoff in this case is for ease of use (not needing to install an
IDE on your laptop, etc.).

An example musical project worth noting in terms of the
processing power of the PIC32, is Philip Burgess’ open source
project to build a self-contained polyphonic synthesizer [1].
Using piezo sensors as trigger inputs, this project was done
with the ChipKIT MPIDE [8] (which allows the Arduino
language to be used with PIC32-based boards such as the
CUI32Stem). It implements a sample-playback polyphonic
synthesizer including real-time effects. Such a project would be
impossible on an Arduino, due to lack of sufficient internal
memory (and adding a ‘wave-shield’ or similar to an Arduino
in order to access external memory would make it difficult, if
not impossible, to achieve the polyphony of overlapping
musical notes/sounds, as demonstrated with Burgess’ project).

2.2 Integration with the GROVE system
SeeedStudio, Inc. is the purveyor of the GROVE system for
prototyping electronic interfaces. SeeedStudio is a Chinese

‘open hardware facilitator’ where design contributions are
encouraged from around the world – via the internet – to add to
their increasing collection of 50+ GROVE elements [5]. These
elements include a wide range of sensors and actuators that
may be useful in different fields of research. Those of primary
interest within musical interaction design may be the type of
sensors that capture human input (rather than environmental
sensors, or others). One of the goals of the GROVE system is to
provide accessibility to as many people around the world as
possible, and as such the price points set for the GROVE
elements (as well as the CUI32Stem) are rather aggressive
(inexpensive).

Figure 2. Top and bottom renderings of the latest

CUI32Stem – it is very similar to the current CUI32, but
swaps the generic prototyping area in favor of 4-pin

connectors for SeeedStudio’s GROVE system, allowing
sensors and actuators to be attached - no need for solder

There are many concepts similar to this GROVE system.

For example, Teenage Engineering’s ‘Oplab’ [9], Teague’s
‘Teagueduino’ [14] as well as Microchip’s own ‘Digilent
Cerebot with P-MOD’ (Peripheral-Modules) system [4] all
allow non-soldering approaches to rapid physical interaction
design prototyping. While the Opblab is specifically focused on
musical interaction design, the Teagueduino and Microchip
offereings are not. CUI32Stem and the GROVE system are also
general-purpose interaction design toolkits, but the author’s
focus nonetheless lies primarily in musical interaction design
research. Nonetheless, this generic approach facilitates teaching
within many areas, and the need for a more general-purpose
system arises commonly among educational programs.

3. WIRELESS OPTIONS
 One of the major issues that always tends to arise when
designing a NIME, is that of wireless connectivity to a laptop
and/or other systems, such as an iPhone/iPad/Android device.
The CUI32 has many options for wireless capabilities, of which
three have been explored by the author, and are described here.

3.1 Bluetooth
The first wireless option is Bluetooth. Bluetooth can have a
maximum of 7 devices paired to one master node, and latency
is usually on the order of 10s of milliseconds, both of which are
potential problems in musical scenarios. Also, re-connections
(if range is inadvertently exceeded, etc.) can be problematic
with Bluetooth. Nevertheless, three different Bluetooth
modules have been tested with the CUI32 to various degrees of
success. Each of them requires some configuration to set them

up correctly according to their datasheets (baud rate and other
communication parameters).

The “BlueSMiRF Gold” from SparkFun Electronics has
100 meters range (‘class-1’ Bluetooth), and costs $65 USD.
Another Bluetooth module is available that has only 10 meters
wireless range (‘class-2 Bluetooth), but is much cheaper at $6
USD2. This inexpensive module works acceptably under very
constrained circumstances (specifically, unidirectional data
transmission), but exhibits a serious problem with bi-directional
communication. For example, transmitting data to a master
Bluetooth controller (host computer or smartphone) can be
achieved without problems, but when interleaving the
transmission and reception of data streams, there is
unacceptable latency introduced (a full second or more). This
seems to be caused by the internal firmware of the cheap
Bluetooth module, and is not present with the more expensive
BlueSMiRF Gold. Both of these modules work in the same way
as would a standard USB-cable connected between the
CUI32Stem and a computer, as is explained on the CUI32
website3 (with downloadable examples for PureData and
MaxMSP), including the ability to log into StickOS via
terminal program and re-program the CUI32Stem wirelessly if
desired.

There is also a ‘Serial Bluetooth’ module4 available that is a
part of SeeedStudio’s GROVE system. The price of this
module falls between the other two Bluetooth options at $20
USD, and similarly, its performance lands midway between
them. More specifically, it does not have the internal firmware
issue limiting bidirectional communications, however it only
provides 10 meters range. As part of the GROVE system, this
module is the only one that can be connected to the CUI32Stem
without soldering a some wires to the Bluetooth module. In
addition to Bluetooth, the GROVE system includes other (only
unidirectional) radio modules, however these will not be
covered here.

3.2 ZigFlea
Another wireless option is ZigBee. The CUI32Stem and
StickOS support a subset of ZigBee nicknamed “ZigFlea”,
which has less bandwidth than Bluetooth (only 250Kbps), but
can actually achieve slightly lower latency (due to more
efficient firmware stacks), and automatically re-connects when
devices have lost contact for some reason. This implementation
of ZigFlea utilizes an add-on board for the CUI32Stem
designed by Øyvind Nyborg Hauback, which is based on a
Freescale (Motorola) MC13201 wireless transceiver. It is
programmed as described in the StickOS User’s Guide5.

Two very short BASIC programs are shown in Figure 3,
exemplifying how easy it is to use this ZigFlea implementation
to set up two CUI32Stem boards to communicate wirelessly
with each other. A potentiometer is connected to one of the
analog input pins (‘an0’) on the first CUI32Stem, and this knob
is used to control the brightness of an LED (via PWM) on an
output pin (‘rd0’) of the second CUI32Stem via a “remote
variable” as declared on line 20 of the BASIC code. As can be
seen, remote variable wireless updates take place completely
transparently to the user. As long as the remote variable has the
same name on both of the CUI32Stems, nodeID 2 in this

2 Inexpensive Bluetooth modules are available on e-bay, etc…
3 http://overtone-labs.ning.com/profiles/blogs/cui32-analog-

inputs-in-1
4 GROVE “Serial Bluetooth” module,

http://www.seeedstudio.com/depot/grove-serial-bluetooth-p-
795.html

5 StickOS users’s Guide: http://cpustick.com/stickos.htm

example has nothing to do in its main ‘while-1-do loop’, yet the
brightness of the remote LED will still change corresponding to
the rotation of the knob on the first CUI32Stem.

Figure 3. example BASIC programs for a simple

ZigFlea wireless connection between two CUI32Stems - the
computer is no longer needed after these BASIC programs

are saved on the two CUI32Stem boards

Figure 4. the ZigFlea addon for the CUI32, developed by

Øyvind Nyborg Hauback at the University of Olso, Norway,
soon to be sold by www.seeedstudio.com

The actual ZigFlea board design was designed in the form

of an add-on that plugs onto the top of the CUI32Stem, as
shown in figure 4. A ‘CUI32 ZigFlea starter kit’ software
download is available at the Google Code website6, and
includes the necessary StickOS BASIC code as well as a
MaxMSP patch for receiving data from a remote node when
ZigFlea add-ons are attached to both CUI32Stems. It should be
noted that the maximum data rate of ZigFlea in StickOS is
somewhat limited currently [16], but that this will be optimized
in future StickOS releases.

3.3 WiFi – 802.11b/g
The final option for wireless connectivity on the CUI32Stem is
802.11b/g – commonly known as WiFi. It uses a module called
the WiFly (see Figure 5) made by Roving Networks [13] that
can be configured to broadcast its own ‘AdHoc’ 802.11 base-
station, which can then be chosen as the wireless network to
join in the ‘WiFi settings’ of your computer, iOS, or Android
device. This allows the CUI32Stem to send raw UDP and/or
TCP-based OSC packets, and communicate easily with any
software that supports Open Sound Control. One of the
strengths of this approach is that the CUI32Stem can be used
directly with any iOS or Android device, without having to use
a laptop as a ‘bridge’.

6 ZigFlea starter kit for the CUI32Stem,

http://code.google.com/p/cui32/downloads/list

The measurements from sensors attached to the CUI32Stem
(GROVE or otherwise) can be used to control any parameters
of real-time processes running on a mobile device, such as
audio synthesis or effects algorithms in Pd (RjDj [11], LibPd
[6]) or SuperCollider [7] (ports to iOS and Android exist). The
mapping of such controls to real-time parameter updates is of
course a major task given to a composer / performer / developer
of the system, as well as any haptic feedback for the user that
should be controlled by the CUI32Stem.

Figure 5. The WiFly 802.11b/g radio module.

 A major advantage of using WiFi 802.11b/g over either
ZigFlea or Bluetooth, is the much greater bandwidth and lower
latency it offers. Two examples of sending data to an iOS
device include one that sends raw UDP data to RjDj (Pd-vanilla
running on iOS), and another that sends Open Sound Control
(OSC) packets to SuperCollider running on the iOS device.

As mentioned, it is possible to send raw UDP data to RjDj,
which receives it via the [netreceive] object in Pd. While this is
specific to RjDj (as it uses PureData internally), the same
functionality can be achieved with other iOS or Android
applications that are capable of receiving Open Sound Control
messages. For example, SuperCollider requires the use of OSC-
format strings in order to receive UDP data. Tests have shown
that is possible to add the proper OSC syntax (string identifiers
and 4-byte boundaries) to a BASIC program on the CUI32Stem
to do this. Only 4 wires are necessary to connect the
CUI32Stem to the WiFly: V+/GND/TX/RX. These connections
will all be made via a single GROVE plug soon (no soldering
necessary), as a simple board is being designed to turn this
WiFi module into a GROVE element.
 In order to use the sensor data from the CUI32Stem with
most interactive music programming environments, the data
must be sent either via OSC, serially via USB, or use another
format that the host application understands (MIDI, HID, etc.).
I have focused here on wireless connectivity, but the
CUI32Stem website provides many USB examples and
corresponding MaxMSP and Pd patches that capture sensor
values on the 16 analog input pins on the CUI32Stem. There
are also many different types of analog sensors that can be used
with CUI32Stem, in addition to those in the GROVE system.
The author has online documentation of further examples that
incorporate the control of LEDs, small motors, or other
actuators for user feedback. See www.overtone-labs.com for
more information.

4. CONCLUSION
It is the hope of the author that the system of electronics for
new interface development described herein – with a focus on
sketching in hardware for musical interaction design – is useful

to others in the discourse and teaching of NIME-related
programs. It is shown in the examples provided, that the use of
a high-performance microcontroller and a free RTOS bring
about an ease-of-use that can be good for fluid development
processes (as well as end users), including students and
researchers who do not wish to get ‘lost in the details’.

The methodology is intended to encourage us to transcend
some of the nuts and bolts of the technological issues
encountered when building NIMEs, thereby leaving more time
and effort to concentrate on advanced concepts for interaction
design, and actual musical practices. While the CUI32Stem and
GROVE system are of course general-purpose toolkits, this
paper has focused specifically on musical interaction design
scenarios for their use. Further explorations of this will be
undertaken during the workshop offered at this year’s NIME
conference in Ann Arbor, Michigan, USA.

5. REFERENCES
[1] Burgess, Phillip. chipKIT Sketch: Mini Polyphonic

Sampling Synth. http://hackaday.com/2011/06/08/chipkit-
sketch-mini-polyphonic-sampling-synth/, accessed
February 7, 2012.

[2] CUI32, as sold by SparkFun Electronics,
http://www.sparkfun.com/products/9645 See also: open
source firmware at http://code.google.com/p/cui32/ Both
accessed February 7, 2012.

[3] Coremark benchmarks, online at
http://www.coremark.org/benchmark/, accessed February
7, 2012.

[4] Digilent Cerebot and P-MODS system,
http://www.microchipdirect.com/searchparts.aspx?q=cereb
ot&resperpage=10, accessed February 7, 2012.

[5] GROVE system, from SeeedStudio Inc.,
http://www.seeedstudio.com/wiki/GROVE_System#Grov
e_elements accessed February 7, 2012.

[6] LibPd, http://gitorious.org/pdlib/ accessed February 7,
2012.

[7] McCartney, J. Rethinking the Computer Music Language:
SuperCollider. Computer Music Journal, 26(4), 61-68.
2002

[8] MPIDE, from ChipKIT,
http://www.chipkit.cc/wiki/index.php?title=MPIDE_Instal
lation accessed February 7, 2012.

[9] Oplab, from Teenage Engineering,
http://www.teenageengineering.com/products/oplab/
accessed February 7, 2012.

[10] Overholt, D. Musical interaction design with the CREATE
USB Interface: Teaching HCI with CUIs instead of
GUIs. Proc. of the 2006 International Computer Music
Conference, New Orleans, 2006.

[11] Overholt, D. The Overtone Fiddle: an Actuated Acoustic
Instrument. Proc. of the 2011 New Intefaces for Musical
Expression conference, Oslo, Norway, 2011.

[12] RjDj, http://www.rjdj.me/ accessed January 29, 2012.
[13] Roving Networks (WiFly GSX module),

http://rovingnetworks.com/ accessed January 29, 2012.
[14] Teagueduino, from Teague Labs, http://teagueduino.org/,

accessed January 29, 2012
[15] Testardi, R. (StickOS), http://cpustick.com/stickos.htm

accessed January 29, 2011.
[16] Tørresen, J., Hauback, Ø.N., Overholt, D., and Jensenius,

A.R., Development and Evaluation of a ZigFlea-based
Wireless Transceiver Board for CUI32. Proc of the 2012
New Interfaces for Musical Expression conference, Ann
Arbor, Michigan USA 2012.

