
Graphic Score Grammars for End-Users

Alistair G. Stead
University of Cambridge

Computer Laboratory
Cambridge, UK

ags46@cam.ac.uk

Alan F. Blackwell
University of Cambridge

Computer Laboratory
Cambridge, UK

alan.blackwell@cl.cam.ac.uk

Samuel Aaron
University of Cambridge

Computer Laboratory
Cambridge, UK

sja55@cam.ac.uk

ABSTRACT
We describe a system that allows non-programmers to spec-
ify the grammar for a novel graphic score notation of their
own design, defining performance notations suitable for draw-
ing in live situations on a surface such as a whiteboard. The
score can be interpreted via the camera of a smartphone,
interactively scanned over the whiteboard to control the
parameters of synthesisers implemented in Overtone. The
visual grammar of the score, and its correspondence to the
sound parameters, can be defined by the user with a sim-
ple visual condition-action language. This language can be
edited on the touchscreen of an Android phone, allowing
the grammar to be modified live in performance situations.
Interactive scanning of the score is visible to the audience as
a performance interface, with a colour classifier and visual
feature recogniser causing the grammar-specified events to
be sent using OSC messages via Wi-Fi from the hand-held
smartphone to an audio workstation.

Keywords
Graphic Notation, Disposable Notation, Live Coding, Com-
puter Vision, Mobile Music

1. INTRODUCTION
Graphic scores were a regular feature of contemporary com-
position and performance practice from the 1950s onward.
The intention in graphic scores is both to circumvent the
limitations of common music notation, and to allow more
interpretive freedom to the performer (e.g. offering gener-
ative rules or systematic constraints within which impro-
visation can be directed or coordinated). A key element
in the use of graphic scores is that the ‘grammar’ of the
score – the syntax and semantics of its visual elements –
is invented by the composer, as part of the creative pro-
cess. The invention of new notations allows both increased
structural abstraction, and conceptual release from the an-
alytic systems associated with conventional notations. In
this respect, use of graphic scores resembles those practices
in creative computer science research, where the first step
in a project is to invent one’s own programming language,
after which it will be possible to explore design problems
from a new conceptual perspective.

The starting point for our work was to create a digital

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’12, May 21 – 23, 2012, University of Michigan, Ann Arbor.
Copyright remains with the author(s).

performance interface that incorporated both elements of
performance practice with graphic scores: the ability for the
composer to define their own syntax and semantics; and the
ability for a performer to interpret the score freely, in ways
that can be appreciated by an audience. Ideally, we would
like the composer and performer to be the same individ-
ual, creating a new digital artform that combines elements
of composition and improvisation, as in Live Coding [1].
We wanted to enable both of these elements via a digital
channel, with an interactive programming language used to
define the syntax of the score, and an interactive machine
vision system used to recognise and ‘perform’ it, under user
control on a sufficiently large scale that it can be recognised
by an audience watching a stage performance.

The use of computer vision as a component within musical
performance systems has been commonplace for many years
-(e.g. BigEye MIDI controller [12] or CV.jit for Max/MSP
+ Jitter [7]). Many of these systems have been oriented
toward detecting the location, pose or gestures of the per-
former as a real-time control device that can be used on
stage or in an installation. In these applications, the main
challenges are background subtraction and object tracking
– challenges that are likely to become somewhat reduced as
depth cameras and fast body part recognition of the type
used in the Xbox Kinect become ubiquitous. However, there
have also been some experiments in using live computer vi-
sion to produce musical sounds directly from recognition of
sketched drawings, as in the case of McLean’s Acid Sketch-
ing [6]. Such systems can rely on simple and robust ap-
proaches to 2D sketch interpretation.

Despite machine vision systems being developed specif-
ically for simplicity and use by artist-programmers, many
are still relatively complex to create and configure, requir-
ing technical training and understanding of the underlying
infrastructure. Our goal was to create a machine vision sys-
tem that could be used to define novel visual grammars, and
to interpret them sufficiently quickly and robustly that they
could be created by a musician with no prior programming
experience, possibly even on stage in front of an audience.
The scenario we imagined was that the graphic score could
be drawn on a physical surface at large scale – for exam-
ple on a whiteboard – so that an audience could see the
components of the notation and gain an impression of the
planned structure of the piece. The performer would then
use a hand-held camera to scan over parts of this nota-
tion, modifying the musical output in response to his or her
camera-movement gestures. If the camera is mounted on a
touchscreen device such as a smartphone, then the touch-
screen itself could be used to ‘program’ the grammar that
interprets the score, and even modify that grammar while
on stage, without having to interrupt the performance to
move to a desk and sit behind a laptop.



2. BACKGROUND
Musical notation is typically used for communication and
reuse/reference. Both humans and computer systems need
an interpretation model to read and understand it. Quick
human comprehension of notation usually takes years to
learn. The notation system typically needs to be a broad
‘one fits all’ solution to be worth the learning effort required.
Computers are capable of learning more quickly and there-
fore do not necessarily face this problem.

Figure 1: Current Limited Notation Model

We believe that the ability to create a disposable nota-
tion is extremely powerful and only now possible due to
advances in notational schema definition. Existing systems
such as Acid Sketch and reacTable usually use fixed no-
tation schemas; they require reasonable learning and are
fundamentally limited to the scope of the schema (see Fig-
ure 1). Grammar specification allows construction of nota-
tion that is appropriate for the piece the performer intended.
By referring to the notation as ‘disposable’, we mean a fast
construction (within minutes) and a minimal cost in effort.

2.1 Live Coding
Live coding is a growing approach to computer music per-
formance [2] in which performers use dynamic program-
ming environments to describe sound output. Properties
of sound and algorithms modifying sound parameters are
edited by the performer in response to audience reaction,
other performers, or evolving artistic intention. At present,
live coding generally involves programming on laptops. As
demonstrated by the reacTable system, a performer physi-
cally moving over a large notation space is likely to provide
more audience entertainment or energy than simply using a
projected screen or laptop. Furthermore, the use of a sim-
ple notation, rather than complex programming structures,
may reduce audience information overload and provide a
simpler visualisation from which to infer mappings between
the sound and notation.

There have been recent efforts to control musical param-
eters using smartphones [13]; in particular, using data from
users’ interaction with a touch screen, accelerometer and
microphone. Mobile camera data has been used to control
MIDI parameters in systems such as CaMus [9]. Whist it
is not possible to ‘program’ with these systems, it is clear
there is unrealised potential for live coding environments on
smartphones, with collaborative performance, mobility, and
sensory interaction being just a few potential benefits.

2.2 Grammar Specification
Our grammar specification tool was intended to fulfill sev-
eral design requirements: be powerful enough to express a
wide range of grammars, simple enough for non-programmers
to understand; use flexible syntax; encourage experimenta-
tion; and be fast enough to use in a live coding scenario.
The small screen of a smartphone renders text-based lan-
guages unsuitable for programming. Direct manipulation
is one approach to reduce cognitive load, making the tool
itself “disappear” [10]. A visual language is suitable for
our purposes as semantics can be encoded in visual objects
and users can directly manipulate them using touch. Vi-
sual languages exist in many forms [4]. Holz and Baudisch

[5] claim that users have a touch accuracy of 95% on tar-
gets of over 8.6mm. We intend to use visual objects of this
size or greater; an iconic language fulfills our requirements.
We draw from the simple concept of condition-action rules,
as used in popular end-user programming systems such as
Agentsheets [8].

3. ARCHITECTURE
Figure 2 shows the relationship between the ‘main menu’,
and the three stages. The menu is intended to allow users
to move quickly between stages.

3.1 Conceptual Architecture
The system architecture, conceptually, is composed of three
successive stages: ink capture, grammar specification and
performance. The ‘ink capture’ and ‘performance’ activi-
ties both use computer vision techniques to detect coloured
blobs on a lightly coloured background (e.g. a whiteboard).

Figure 2 shows how musicians interact with the notation
system. After specifying a grammar, users are able to draw
desired notation and scan the smartphone over it to per-
form. During performance, they can continue writing no-
tation, direct another performer to add extra notation, or
reuse existing notation by scanning the phone over it.

Users can specify notation grammar using a grid, on which
they place tiles. The tiles are moved onto the grid from a
‘palette’, which contains the set of available tiles. When a
tile is directly next to another, it is connected and forms
part of a rule. Tiles can be connected in any order or shape
(see Figure 3b). Performance only takes place with a valid
grid. A valid rule has the following syntax: one or more
‘identifier’ tiles; one or more ‘trigger’ tiles; one ‘value’ tile;
and one or more ‘property’ tiles. Flexibility in the ordering
and shape of rules allows users to customise their grid and
focus on semantics rather than syntax.

The ‘identifier’ tiles represent unique OSC streams, of
which there can be several. One or more streams can be
affected by the same rule. The ‘trigger’ tiles are conditions
that have to be met for the rule to execute (e.g. a red blob
is in view). If multiple triggers are used in a single rule,
all triggers must be satisfied. The ‘value’ tiles represent a
number that can be applied to a ‘property’ of the audio
output. Currently, ‘value’ tiles can either be a single value,
derived from area, or an envelope over time.

For example, refer to the bottom left rule in Figure 3b,
which has a single tile of each type: An ‘identifier’, referring
to stream alpha; a ‘trigger’ , which executes the rule if the
camera view contains a grey blob; a ‘value’ tile, which is
a single value somewhere in the middle of the scale; and a
‘property’ tile representing pitch. The result of the rule is
that when the grey blob is in the camera view, the system
plays a middle note on stream α.

Parameters of tiles can be changed by double tapping
on a tile. A dialog will appear, allowing modification of
properties specific to that tile type, such as colour, value or
time. Figure 3a shows the settings dialog for the ‘value’ tile,
which represents a percentage or a piano note. A ‘trigger’
tile can be modified to refer to a particular blob colour.

3.2 Technical Architecture
The application makes use of Java and C++ via the An-
droid Native SDK, allowing us to use OpenCV, a compre-
hensive and widely available vision library. The vision sys-
tem detects, recognises and tracks coloured blobs by us-
ing simple white balancing, background removal and image
segmentation techniques. Colour data collected during the
first stage is used to train a classifier, which recognises new,
unseen notation (blobs) during performance. Notation is



Figure 2: Conceptual Architecture

tracked to allow the system to trigger appropriate events.
We use a frame-by-frame comparison of blobs, together with
a probability model to measure the likelihood of these events
(e.g. enter, exit). The events are then propagated to the
grammar interpreter.

Figure 3: a. Settings Dialog for a ‘value’ tile. b.
The same rule in four different possible positions.

3.2.1 Open Sound Control Messages
During performance, each frame is processed by the vision
subsystem, which then returns the state of the set of known
blobs (entered, exited, visible) and their properties (area,
orientation, position etc.) The appropriate OSC messages
are then dispatched to the remote server via UDP. A remote
server is used so that audio can be produced at very high
quality using external speakers. The use of Wi-Fi allows
the phone to be moved a great distance from the remote
machine without limiting movement. Currently, there are
two property tiles (pitch and volume), and therefore two
types of OSC message required:

/set-volume {Identifier, Time, Value%}

/set-frequency {Identifier, Time, Note}

For instant changes, the time parameter is 0, and over-
rides any current changes for the targeted synth. If the
value is an envelope (a change over time), pitch changes at
a linear rate. We use piano notes for our purposes (e.g.
D3), rather than frequencies, to increase usability for musi-
cal novices and to allow construction of chords and melodies
for experts.

Our audio server was implemented using Overtone [1],
an open source audio toolkit with a strong focus on col-
laborative programmable music. Overtone combines Su-
perCollider’s sophisticated synthesis capabilities with Clo-
jure’s linguistic flexibility, advanced concurrency semantics
and full Java interoperability. On initialisation, the audio
server defines and triggers a number of synths. An OSC
server listens for incoming control messages, which are then
dispatched to functions that modulate the current note and
volume of the specified synth. Clojure’s immutable datas-
tructures and lock-free mutable references allow the audio
server to coordinate an arbitrary number of concurrent OSC
clients whilst avoiding classic concurrency problems such as
deadlock and blocking writers.

Table 1: Experimentation Period Metrics
Participants No. of Sessions Max No. of Rules

P1 2 4
P2 1 2
P3 2 3
P4 1 3
P5 1 3
P6 1 3
P7 4 2
P8 1 7

4. EVALUATIVE STUDY
Our system is intended for users without substantial musical
experience. Ideally, we would like there to be little usabil-
ity difference between experienced digital music performers
and non-musicians. We also do not expect programming
experience to affect the competence of users due to the un-
conventional style of programming. To determine the re-
sults of these hypotheses, we carried out an evaluative user
study. We discuss the study briefly – for more information
see [11]

4.1 Design
The study was between-subjects, using two groups: digital
music performers and non-digital music performers. The
two groups of 4 participants were given 4 tasks, followed by
15 minutes of free experimentation. Sessions were recorded,
with participants being encouraged to mention any prob-
lems. Grammar specification time; performance time; the
largest rule size in each performance; the number of rules
constructed in each performance; and the number of colours
used in each performance were also recorded.

Participants were supplied with a whiteboard and several
coloured markers. A short tutorial was given to familiarise
participants with concepts in the application. Each task fo-
cused on a separate type of tile, allowed usability evaluation
of tiles in isolation and reducing learning effects.

After personal experimentation participants were given
a Cognitive Dimensions of Notation Questionnaire [3], in
which they were asked questions relating to grammar spec-
ification. Each question is directly related to a CD – a
design principle for programming languages. The question-
naire data was cross-referenced with the recorded audio to
strengthen the validity of our conclusions.

4.2 Discussion of Study
Group 1 (P1-P4) are digital music performers, with experi-
ence with systems such as Supercollider, Pure Data, Chuck
and Max MSP. Group 2 (P5-P8) have no similar system
experience. The level of programming experience varies be-
tween basic and intermediate. Half of all users had smart-
phone experience; this varied across both groups.



Due to the nature of the study, statistical analysis of
qualitative data from the questionnaire would be of limited
value. However, metrics recorded during the exploratory
experiments can be used to make some observations of the
amount of expression and experimentation the language en-
courages. Table 1 shows that participants from both groups
were similar in the number of rules used. P8 (a non-digital
performer) was very confident, using 7 rules, twice the mode
of the other participants. Table 1 shows that both groups
collectively had equal numbers of sessions, although P7 was
very confident, carrying out 4 experimental sessions (using
different sets of rules).

4.3 Questionnaire Results
We obtained interesting qualitative results from the ques-
tionnaire, and verbally during the experiments: P2 described
the screen as being ‘small’ and later mentioned double tap-
ping was difficult and that tiles ‘don’t fall accurately’, even
though the tile drag-and-drop system highlights the destina-
tion square in yellow. This participant also pressed several
external buttons by mistake, indicating a lack of smart-
phone experience, which may be a barrier to using the sys-
tem. Conversely, P7 also had no smartphone experience,
but became familiar with the system very quickly and had
the most sessions during the experimentation period.

P4 stated that it is ‘not always easy [to compare or com-
bine tiles] as the screen only has a finite area’. It is possi-
ble for rules to extend off the grid. Flexible ordering and
positioning of tiles was intended to address this. It was
recognised that tiles with values are difficult to compare;
to address this, we use live dynamic tiles, which update to
reflect their value. When asked about dependency, partic-
ipants were not aware it was possible to override one rule
with another. A particularly interesting CD is ‘progressive
evaluation’ – checking work done so far. Most participants
found this easy by tapping ‘back’ and then ‘perform’. P2
found it ‘not so easy; you need to change modes which is
a little cumbersome’, although this may have been due to
unfamiliarity with the phone’s buttons.

4.4 Group Comparison
Our qualitative feedback suggested that most participants
found the system easy to use after reading through the ini-
tial tutorial. The majority of problems reported were re-
ceived from P2, who reported having issues using smart-
phones. Table 1 shows that both groups performed simi-
larly, with P7, a non digital music performer, experimenting
the most. It is possible that digital music performers were
constructing more complex performances and were therefore
limited to fewer performances.

5. CONCLUSIONS & FUTURE WORK
We have described SoundCodr, a system allowing construc-
tion of graphic score grammars on a smartphone. The cre-
ation of the system was motivated by research into end-user
programming and live coding. The system reaches the goal
of allowing users to define and perform their own graphical
scores. Our evaluative user study confirms that the system
is of interest to musicians and non-musicians alike, and gives
users a new and innovative method of music creation. We
found that users embraced the ability to progressively eval-
uate their grammar by moving between performance and
grammar specification.

Our study indicates that there is little difference in usabil-
ity for digital musicians and normal users. The qualitative
feedback was positive, and included comments such as: ‘[us-
ing tiles] is very straight forward; building blocks structure

is simple to learn and holds potential’, and ‘it is possible to
have an end product in a reasonable time, as the structure of
the notation is fairly simple’. The study has given valuable
feedback for future improvements.

At present, the system uses two property tiles (volume
and pitch). The system was built for extensibility and would
benefit from the ability to manipulate other musical prop-
erties such as timbre. It would also be interesting to manip-
ulate a variety of different synths. Although the study fo-
cused on one controlling device per system, the audio server
is capable of handling multiple devices concurrently sending
OSC commands. There are potential ‘values’ of the notation
that could be used in the future (e.g. the distance between
blobs, relative proportion and circularity). We would like to
enable local audio synthesis, which would allow experimen-
tation in casual contexts, away from the laboratory, stage
or studio. Our system demonstrates the vast potential of
disposable notation in musical contexts; there is still much
work to be done.

6. REFERENCES
[1] S. Aaron, A. F. Blackwell, R. Hoadley, and T. Regan.

A principled approach to developing new languages
for live coding. In Proceedings of New Interfaces for
Musical Expression, pages 381–386. Nime, May 2011.

[2] A. F. Blackwell and N. Collins. The programming
language as a musical instrument. In Proceedings of
the Psychology of Programming Interest Group, pages
120–130. PPIG, June 2005.

[3] A. F. Blackwell and T. R. Green. A cognitive
dimensions questionnaire optimised for users. In
Proceedings of the Psychology of Programming
Interest Group, pages 137–154. PPIG, April 2000.

[4] Y. Engelhardt. The Language of Graphics - A
Framework for the Analysis of Syntax and Meaning in
Maps, Charts and Diagrams. PhD thesis, University
of Amsterdam, The Netherlands, 2002.

[5] C. Holz and P. Baudisch. Understanding touch. In
Proceedings of Human factors in Computing Systems,
pages 2501–2510. CHI, May 2011.

[6] A. McLean. Acid sketching.
http://yaxu.org/acid-sketching/, November 2009.

[7] J. M. Pelletier. Cv.jit (software library for max/msp
computer vision). In IAMAS, Japan, 2005.

[8] A. Repenning. Agentsheets: A Tool for Building
Domain-Oriented Dynamic, Visual Environments.
PhD thesis, University of Colorado at Boulder,
Colorado, USA, 1993.

[9] M. Rohs, G. Essl, and M. Roth. Camus: Live music
performance using camera phones and visual grid
tracking. In Proceedings of New Interfaces for Musical
Expression, pages 31–36. NIME, June 2006.

[10] B. Shneiderman. Sparks of Innovation in
Human-Computer Interaction. Ablex Pub. Co, New
York, New York, 1993.

[11] A. G. Stead. User-configurable machine vision for
mobiles. In Proceedings of the Psychology of
Programming Interest Group, September 2011.

[12] STEIM. Bigeye.
http://www.steim.org/steim/bigeye.html/.

[13] G. Wang. Designing smule’s iphone ocarina. In
Proceedings of New Interfaces for Musical Expression.
NIME, June 2009.


