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ABSTRACT 
In this paper we present a multimodal system for analyzing 
drum performance. In the first example we perform automatic 
drum hand recognition utilizing a technique for automatic 
labeling of training data using direct sensors, and only indirect 
sensors (e.g. a microphone) for testing. Left/Right drum hand 
recognition is achieved with an average accuracy of 84.95% for 
two performers. Secondly we provide a study investigating 
multimodality dependent performance metrics analysis. 
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1. INTRODUCTION AND MOTIVATION 
Combining machine learning techniques with percussive 
musical interface/instrument design is an emerging area of 
research that has seen many applications in recent years. 
Tindale investigated drum timbre recognition [17] and later 
applied similar techniques to turn regular drum triggers into 
expressive controllers for physical models [16]. Other examples 
have been proposed which even enable human-machine 
interaction with mechanical percussionists who can listen to 
human performers and improvise in real time [19].  
 In terms of signal processing there is now robust onset 
detection algorithms [1, 4] enabling one to accurately identify 
when musical events occur. Researchers have also been 
actively investigating other areas of musical performance such 
as tempo estimation [2, 7], beat tracking [3, 9], and percussive 
instrument segmentation [8]. Combining many of these 
techniques together, researches have explored the task of 
automatic transcription of drum and percussive performance, 
[6, 7, 12, 18]. While great advances have been made in the 
aforementioned tasks the majority of research into drum 
interaction scenarios which combine musical 
interfaces/instruments and machine learning have been 
concerned with the segmentation or isolation of individual 
drums from a recorded audio signal. While mono- and 
polyphonic drum segmentation is a major aspect to tasks such 
as automatic drum transcription, a key feature of drum 

performance (that has yet to be explored in current drum 
analysis literature) pertains to the physiological space of drum 
performance. Not only is it important to know when and which 
drum is played in a pattern, but also which hand is striking the 
drum. In this research we investigate this question, and propose 
a multimodal signal processing system for the automatic 
labeling and classification of left and right hand drum strikes 
from a monophonic audio source. 
 There are many real-world cases where drum stroke 
recognition is important. In fact most traditional exercises 
which practicing drummers study emphasize the practice of 
specific left and right hand patterns (more information on this 
can be found in section 2.1.3). In automatic transcription 
scenarios, a key element that has been missing up until now is 
transcribing which hand performed a particular drum hit. In 
order to fully understand ones performance it is important to 
know how the player moves around the drum(s), the nuances 
and differences present in the strikes of their independent 
hands, and the possible stylistic signifiers resulting from the 
physical aspects of their individual hand strikes. This presents a 
large problem, as it is nearly impossible to determine which 
hand is hitting a drum from a monophonic audio recording 
alone. 
 Using direct sensors such as accelerometers on the 
performers hands however we can capture extremely accurate 
ground truth about the movements of the performers hands. 
This comes at the cost of being invasive and possibly hindering 
performance. In a typical controlled machine-learning situation 
we can of course place constraints on the data-capturing 
scenario. One solution would be to only record left hand 
strikes, and then separately record right hand strikes, labeling 
them accordingly when performing feature extraction. We are 
interested however not only capturing each hand playing in 
isolation, but in context of actual performance and practice 
scenarios; and so the interplay between left and right hand 
playing is of utmost importance. Another option would be to 
manually label each audio event as being either from the left or 
right hand, based on a priori knowledge of a specific pattern 
played. As many data capturing scenarios (including ones in the 
research) involve specific patterns to be played, this is a 
common but time-consuming approach to labeling drum 
training performance data. Additionally this task is non-
sympathetic to inevitable playing mistakes in the performance, 
which require manual adjustment when labeling the training 
data. We are also interested in investigating the improvisatory 
elements of drum performance, making the task of manually 
labeling hand-patterns nearly impossible. To overcome these 
challenges, this research turns to an exciting new technique 
inspired from Surrogate Sensing [14] to enable the automatic 
labeling of drum hand patterns for classification. 
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 One of the earliest studies of drum performance showed 
how physical factors such as the start height of a stick could 
impact the resulting amplitudes and durations of the sound 
produced [10]. More recently, Dahl showed similar 
relationships between the correlation of strike velocity and the 
height and shape of the stroke in user studies [2]. Dolhansky et 
al. modeled the shape of a percussive stroke to turn mobile 
phones with accelerometers into physically-inspired percussive 
instruments [5]. There are many ways which people have 
attempted to analyze the gesture of drum performance and its 
effect on the dynamic and timbre spaces; Tindale et al. provides 
a good overview of sensor capturing methodologies in [15]. 
The research mentioned and other countless examples confirm 
the strong link between the physical space in which a 
performers actions exist, and the fingerprint imparted on the 
musical output. To this end we begin to investigate these ties in 
this paper by not only looking at drum-hand recognition, but 
also at statistical measures afforded by multimodal analysis of 
acoustical instrument output paired with NIME’s.  
 The remainder of this paper is as follows: In section 2 we 
provide an overview of our data collection and analysis 
framework, including our implementation of surrogate data 
training for automatic hand labeling of training data. We show 
our drum hand recognition results in section 3 and performance 
metrics in section 4. Finally our conclusions are discussed in 
section in section 5.  

2. SYSTEM DESIGN AND 
IMPLEMENTATION 
In this section we describe the data capturing and analysis 
system used in the drum-stroke recognition experiment. From a 
high-level view, the drum-hand recognition experiment 
employs a three-step process including a data collection phase, 
an analysis phase, and finally the testing and machine-learning 
phase as illustrated in Figure 1. 
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Figure 1 – Overview of Drum Hand Recognition System 

2.1 Data Collection 
A primary goal in the research was to make sure that the 
techniques used could easily be used in a variety of scenarios 
from live performance to assisted learning in music schools. It 
was also a goal to empower musicians to be able to run the 
experiments themselves. Other methodologies were considered, 
including hi-speed video camera tracking. While hi-speed video 
tracking could be a useful solution for hand tracking, and has 
been used by others for similar tasks such as bow performance 
tracking [13, 21], we desired a solution that was more 
affordable than typical hi-speed cameras, and that needed little 
to no calibration. Additionally the research was concerned with 
investigating surrogate data training, and so the following 
software and sensor system was used.  

2.1.1 Nuance 
Nuance is a program written by the authors as a general-
purpose multi-track recording solution for multimodal data 
sources. Geared towards machine learning and musical data 
mining, Nuance enables nearly any musical sensor system and 
instrument communicating over serial, MIDI and/or OSC to 
synchronously capture its data to disk in .wav audio format. 

Once recorded the data is ready to be analyzed in other 
platforms such as Matlab, Marsyas, ChucK, etc. In our 
experiments all data was recorded as uncompressed .wav files 
at a sampling rate of 44100 samples per second. As audio-rate 
sampling is typically higher than common instrument sensor 
systems, sensor data is up-sampled to audio-rate using a 
sample-and-hold step function driven by the audio clock. This 
ensures synchronicity between audio and sensor data and 
enables the treatment of the sensor data as normal audio during 
analysis. Interacting with Nuance follows a similar paradigm as 
common multi-track digital audio workstations, and provides 
and easy drag-and-drop user interface. 

2.1.2 Sensor System 
In our experiments Nuance was used to synchronously record 
three axis of motion from two accelerometers placed on the 
hands of the performers, as well as a single mono microphone 
recording the acoustic drum signal. The ADXL335 tri-axis 
accelerometer was used, as well as a Shure SM57 for recording 
the audio output of the snare drum. The microphone was placed 
in a typical configuration, approximately 1” – 3” from the rim 
of the snare, slightly angled down and across the head of the 
drum. 
 The two accelerometers were placed on the topsides of the 
performers hands, and connected to a wireless transmitter. An 
Arduino Fio inside the transmitting device receives data form 
each axis of the accelerometers with 10-bit resolution, and 
transmits each sensor readings to a nearby computer over 
wireless Xbee (ZigBee) RF communication. This data was 
recorded directly over a serial-connection with the receiving 
Xbee module using Nuance.  
 

 
Figure 2 – Drum Rudiments Performed 

2.1.3 Data Set 
The system described in sections 2.1.1 and 2.1.2 was used to 
record a total of 2917 snare-drum hits from two performers. 
Performer one was at a beginner level whereas performer two 
was an intermediate/advanced percussionist. The performers 
were instructed to play four fundamental drum exercises from 
the Percussive Arts Society1 International Drum Rudiments; 
these included the Single Stroke Roll (referred to as D1 
throughout the remainder of the paper), the Double Stroke 
Open Roll (D2), the Single Paradiddle (D3), and the Double 
Paradiddle (D4) (Figure 2). Each exercise was recorded for 
roughly 3 minutes, resulting in a total of 1467 hits (736 right 
hand / 731 left hand) for performer one and 1450 hits (726 right 
hand / 724 left hand) for performer two. In preliminary testing 
the performers recorded purely improvisational, however a 
more regimented routine was played during the final data 
                                                                    
1 The PAS is the world’s largest international percussion 

organization. More information on the PAS can be found at 
http://www.pas.org/ 



collection process to enable other research into specific 
performance metrics and rudiment classification. Figure 2 
details the drum rudiments performed. 

2.2 Analysis Framework 
In the following sections we discuss the analysis framework 
that was used to extract features for the left/right hand 
classification experiments and metrics tracking. 

2.2.1 Surrogate Data Training  
One of the biggest hurdles for musical supervised machine 
learning is obtaining and labeling a large enough training data 
set for true results. As described earlier in section 1 manually 
labeling the training data is not an efficient process, nor does it 
easily deal with errors that are common in the data collection 
phase. By using a process that can automatically label training 
data, the training regiment can be more loosely defined, even 
allowing the performer to improvise (unless there was specific 
desire to record particular patterns as in our case). Common 
disturbances in the data collection process such as performance 
mistakes, which normally must be accounted for by the 
researchers manually are also no longer an issue. We turn to a 
new technique inspired by Surrogate Sensors [14] enabling us 
to quickly record and label each hit in our audio recordings by 
using known information from direct sensors (accelerometers) 
to navigate unknown information in the data from our indirect 
sensor (microphone). The direct sensors provide the benefit of 
near perfect ground truth making the technique extremely 
robust (see section 2.2.3). The method is also transferable to 
other sensors and modalities, and the particular implementation 
in this research is described in the following section on onset 
detection. 
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Figure 3 – Overview of Onset Detection Algorithm 

2.2.2 Onset Detection 
A triple-axis accelerometer was placed on each of the 
performers hands while recording the data sets. The ultimate 
goal was to use gesture onsets in the independent hands 
accelerometers to navigate and label the note onsets in the 
audio recordings.  As shown in Figure 3, each axis (per 
accelerometer) is first preprocessed in Matlab by removing the 
DC offset and full-wave rectification. The accelerometers each 
have their three axis summed and averaged to collapse the data 
streams into a single dimension. Next jerk is calculated for each 
accelerometer, followed by a threshold function to remove 
spurious jitter. To further smooth the signals before onset 
detection is applied, the envelopes of the signals are extracted, 
and smoothed with a Gaussian of standard deviation of 
samples. The onset curve is then calculated and peak-picked at 

local maxima’s. Lastly onset detection was also performed on 
the audio recording, and all three streams’ (1 audio, 2 
accelerometer) onset locations (in seconds) are stored in 
independent vectors. More detailed information on the onset 
detection algorithm can be found in [11]. 

2.2.3 Onset Detection Accuracy 
Table 1 shows the onset classification accuracy of the 
accelerometers prior to correction. The high yield (99%) in 
accuracy of the accelerometers makes them a great candidate 
for surrogate labeling the audio onsets as either left or right 
hand onsets. The onset vectors were also exported as .txt files 
and imported into a beat-tracking application called BeatRoot 
[3] to visualize and (manually) correct any errors in the 
accelerometer onsets detected. It should be noted that the 
correction step was not necessary as the minor amount falsely 
detected onsets were few enough to not impact the data too 
much, however we desired 100% ground truth and so any false-
positive and false-negative onsets were corrected in BeatRoot 
prior to feature extraction. 
 
 Precision 

(L/R) 
Recall 
(L/R) 

F-Measure 
(L/R) 

Performer 1 0.997 0.997 0.997 
Performer 2 0.993 0.997 0.995 

Table 1 – Accelerometer Onset Detection Accuracy 
2.2.4 Feature Extraction 
After onset detection, features were extracted in Matlab by 
taking the accelerometer onset positions for each hand and 
searching for the nearest detected onset (within a certain 
threshold determined by the frequency and tempo of the strikes) 
in the audio onsets. The strike in the audio file is then 
windowed to contain the entire single-hit and various features 
are extracted. The feature vector is labeled with the appropriate 
class (1 = Right, 2 = Left) and exported as an .arff file for 
machine learning analysis in Weka [20]. For each strike a 14-
dimension feature vector is calculated containing: RMS, 
Spectral Rolloff, Spectral Centroid, Brightness, Regularity, 
Roughness, Skewness, Kurtosis, Spread, Attack Slope, Attack 
Time, Zero Crossing, MFCC (0th coeff.), and the Onset 
Difference Time (ODT) between the detected audio and 
corresponding accelerometer onsets. 

3. DRUM HAND RECOGNITION 
After the data was collected it was imported into Weka for 
supervised learning. The primary focus of this experiment was 
to investigate if a machine could be trained to reliably classify 
which hand was used to strike a snare drum. 

3.1 Classification 
Five classifiers were used in our tests including a Multilayer 
Perception back-propagation artificial neural network, the J48 
decision tree classifier, Naive Bays, a support vector machine 
trained using Sequential Minimal Optimization (SMO), and 
Logistic Regression. 10-Fold cross validation was used in all 
tests with a 12-dimension feature subset (attack time and onset 
difference features were removed for this experiment). 

3.2 Results and Discussion 
This section describes the outcomes obtained from our 
classification tests. As this is binary classification scenario 
(classification can either be left or right hand), the chance 
classification baseline is 50%. 
 Using the entire data set and 10-fold cross validation, the best 
results were achieved using multilayer perceptron (MLP) for 



both performers. MLP yielded an accuracy of 84.93% for 
performer one and 84.96% classification accuracy for 
performer two. All of the algorithms appear to do a decent job 
at generalizing over the entire data set and provide similar 
classification results with smaller subsets of the feature vector. 
 

 Performer 1 (%) Performer 2 (%) 
MLP 84.93 84.96 
SMO 81.66 80.34 
Naive Bays 75.05 63.65 
Logistic 84.38 83.51 
J48 81.93 78.62 

Table 2 - Classification Accuracy Using All Data 
 While it is clear that some classifiers seem to generalize quite 
well in all cases, more simple probabilistic classifiers such as 
Naive Bays seem to benefit greatly from having a larger 
training set that covers a wider variance in feature data. 

4. PERFORMANCE METRICS  
Automatic drum hand recognition proposes exciting new 
possibilities including: more nuanced automatic drum 
transcription, preservation of performance technique from 
master musicians long after life, providing new controller data 
for live performance, and providing insightful information and 
metrics during regimented practice and musical training. 
However, the information from direct sensors can also be used 
in conjunction with indirect sensors to provide insightful new 
performance metrics and features. In this section we will look 
at new features and how they may add to our ability in 
describing and deducing meaningful information from musical 
performance.  

4.1 Onset Differences 
In traditional drum performance analysis, temporal information 
such as timing deviations and onsets of drum hits are normally 
investigated by analyzing an audio recording. Researchers have 
not only investigated the physical onset times (in audio) but 
have also looked at the perceptual onset and attack times (often 
called PAT) in order to measure when sounds are actually 
heard [5]. Here we consider the physical onset times from 
sensors on the actual performer in relation to the onset times 
recorded simultaneously in the acoustical output in what we 
call the Onset Difference Time or ODT.  

 
Figure 4 - Onset Difference Times for the first 60 sec. of D1 

(Performer 1 Top, Performer 2 Bottom) 
 In Figure 4 we can see the onset difference times (in seconds) 
between the left (+) and right (o) hand accelerometer onsets and 
their audio onset times. A horizontal line at 0 would mean a 
perfect match (zero difference) in onset times, and an 

observation of the graphs shows that performer two (bottom) 
had a generally lower onset differentiation than performer one 
(top). Performer two was in fact a more highly experienced 
drummer, suggesting a great link or consistency in physical vs. 
acoustical onsets in this particular exercise. Observing Figure 4 
it is also apparent that in this 60-second pass of D1, the onset 
difference times of performer two’s individual hands were 
more closely related (in terms of mean onset difference) than 
that of performer ones. 
 

Data Set Min 
(rush) 

Max 
(lag) 

Mean Std 

P1 -0.0076 0.0148 0.0118 0.0116 
P2 -0.0070 0.0149 0.0107 0.0133 

 
Table 3 – Average Onset Difference Statistics for Both 

Performers 
 Table 3 and Figure 5 show averages from both hands and all 
data sets D1-D4. Min which we call “rush” is calculated as the 
average amount the accelerometer onsets that were earlier than 
the audio onsets. As such it is calculated only over negative 
onset difference times. On average, when performer two’s 
physical strike onsets rushed the audio onsets, it did so less 
drastically than performer one. Again this may be attributed to 
the fact that performer two was a more experienced player with 
tighter timing than performer one.  
 Max or lag is calculated as the average amount the 
accelerometer onsets were later than their paired audio onsets 
(positive difference times). Coincidentally, both performers lag 
differences were extremely similar. 
 Mean is the average onset difference time calculated over the 
entire vector or onset differences for each performer. Again 
performer two performed with less distance between physical 
and audio onset times. Interestingly, performer two’s standard 
deviation was slightly larger than performer one, meaning that 
the amount of dispersion from the performers mean 
performance was greater. 
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Figure 5 – Bar Graph Visualizing Table 4 Metrics 

5. CONCLUSIONS AND FUTURE WORK 
In this paper we investigated two ways in which multimodal 
signal processing and sensor systems can benefit percussive 
computation. In the first case study we used direct sensors 
(accelerometers) on a performer to automatically annotate and 
train the computer to perform drum stroke recognition from 
indirect sensors (a single microphone). Averaging the best 
results from two performers multilayer perception achieved 
84.95% accuracy and shows that it is possible for the computer 
to identify whether a performer hit a drum with their left or 
right hand. Once trained with the direct sensors, the computer 
can non-invasively transcribe the physical attributes of a 



percussionist’s performance, adding important nuance to future 
automatic music transcription. Additionally automatic drum-
hand recognition will be useful in many pedagogical scenarios 
such as rudiment identification, accuracy and other 
performance/metrics measures. In live performance contexts 
where it may be desired to trigger musical events, processes, 
and/or visualization based on particular sequences of strikes, 
drum stroke recognition using non-invasive methods will also 
be extremely powerful. 
 In the second case study we looked at statistics measures as 
performance metrics obtainable using a multimodal system. 
Our preliminary findings comparing data from typical direct 
and indirect sensors such as accelerometers and microphones 
(respectively) reconfirm the importance of the looking at both 
the audio-space and physical-space (simultaneously) when 
investigating musical performance. Research often chooses one 
or the other for analysis, however investigating the space in 
between is one we are excited at looking at more closely in the 
future.  
 In the future we are looking forward to expanding the data set 
with a larger pool of performers, as well as investigating how 
well the techniques generalize to different snare drums (and 
eventually other drums in the drum set). It would also be 
particularly useful to add a third strike to the test set, when a 
player performs more complex patterns, including striking with 
both hands. The authors are particular interested in performance 
metrics tracking, and so the techniques discussed in this paper 
will serve as a foundation to continue research into 
performance metrics tracking, allowing performers to evaluate 
their playing in live performance and in the practice room. 
 At the core of much of this is the trade-off between direct and 
indirect sensors. Indirect sensors such as microphones have 
proven to be extremely useful and reliable sources for music 
information retrieval, with the benefit on not hindering 
performance. At the same time they lack certain physical 
attributes that are only possible to obtain by placing more 
invasive direct sensors on the performer, and/or 
instrument/NIME. In one sense we hope this research brings 
wider attention to a part of a novel technique called surrogate 
sensing which reduces the negative impact of invasive sensors 
by constraining their dependency to the training phase of a 
musical system or experiment. At the same time there is lots of 
work ahead and so the future will definitely still hold an 
important space for direct sensors in these scenarios. We look 
forward to a future where direct sensors such as accelerometers 
are small and light enough to be embedded within a drum stick 
without altering performance in any way, but also one where a 
trained machine can play back a recording from great musicians 
of the past and automatically transcribe the magical nuances of 
their performances for future generations. 
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