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Electrical Properties of Staggered Electrode,
Solution-Processed, Polycrystalline
Tetrabenzoporphyrin Field-Effect Transistors

Patrick B. Shea, Student Member, IEEE, Aaron R. Johnson, Noboru Ono, and Jerzy Kanicki, Senior Member, IEEE

Abstract—We characterize and analyze the electrical perfor-
mance of solution-processed, polycrystalline tetrabenzoporphyrin
thin-film field-effect transistors with staggered source and drain
contacts. Devices demonstrated a saturation field-effect mobility
and threshold voltage on the order of 102 ¢cm?/V-s and —15 YV,
respectively, as well as a subthreshold slope of 1.2 V/decade and an
ON-/OFF-current ratio exceeding 10°. The device performance and
electronic properties of the thin film were used to construct device
energy band diagrams. Lastly, the device conduction mechanism
is discussed.

Index Terms—Absorbance, cyclic voltammetry, organic field-ef-
fect transistors (OFETSs), porphyrins, solution processing, stag-
gered electrodes.

I. INTRODUCTION

OLUTION processable organic small molecule semicon-

ductors have proven viable materials for the channel region
of organic thin-film field-effect transistors (OFETs) [1]-[6].
Thin films of organic small molecules, such as pentacene or
copper phthalocyanine, have traditionally been formed using
high vacuum evaporation [7]. However, such a method pre-
cludes cost effective, large area, high volume device fabrication.
By utilizing precursor forms of the organic small molecules,
however, the adaptive and cost effective nature of solution
processing is available [8]. A particular class of organic small
molecules, porphyrins, has demonstrated solution processable
OFET performance on par with their evaporated antecedents
[4], [6] [9]. While the coplanar, or bottom-contact, source
and drain (S/D) structure allows for fabrication of devices en
masse, it can introduce contact quality problems due to poor
step coverage over the S/D electrodes, or poor adhesion of
the metal to the insulator or the organic semiconductor to the
electrodes; poor step coverage in turn introduces morpho-
logical discontinuities of the organic semiconductor near the
metal electrodes. Staggered, or top-contact, S/D electrodes can
avoid these problems that introduce high contact resistance;
combined with solution processable porphyrins that become
nearly impervious to organic solvents or high temperature
processing [6], they are potentially robust, high-performance
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structures. Yet this configuration is not often discussed in detail
for small molecules [5], [10]; several works exist discussing
their effects on polymer-based devices [11]-[13]. Furthermore,
due to the great interest in the commercial development of
organic semiconductor technologies, many researchers have
examined charge injection between electrodes (either metal
or otherwise) and organic semiconductors [14]-[17]. Indeed,
the development of novel, solution-processable organic small
molecule semiconductors may induce study of these materials
more in the likeness of amorphous or polycrystalline silicon
thin-film transistors [18], [19]. This work provides analysis on
the electrical performance of staggered S/D electrodes in solu-
tion-processed polycrystalline tetrabenzoporphyrin OFETs.

II. EXPERIMENTAL

The staggered OFET structures used in this study were fab-
ricated on n++ (0.008-0.02 Q-cm) crystalline Si (c-Si) wafers
coated with a 100-nm thermal oxide. The heavily-doped c-Si
substrate is used as an unpatterned gate electrode. The thermal
oxide dielectric, with a measured capacitance per unit area
C; = 24.5 nF/cm?, served as the gate insulator and was cleaned
by washing in acetone and isopropyl alcohol, followed by a
20-min exposure to UV/ozone and a 20-min soak in 200-proof
ethanol. After drying the cleaned substrate in N9 gas, 1, 4:8,
11:15, 18-22, 25-tetraethano-29H, 31H-tetrabenzo [b, g, 1, q]
porphine (CP) (0.7% weight in chloroform) was spun-cast onto
the thermal oxide at 1000 rpm for 30 s. The CP film was then
converted to tetrabenzoporphyrin (29H, 31H-tetrabenzo [b, g, 1,
ql porphine, or TBP) by heating at 210 °C for 5 min, such that
volatile CoHy side chains are removed, thus transforming the
film from amorphous and soluble, to polycrystalline and insol-
uble [6]; the final film thickness was measured to be 120 nm.
Source and drain electrodes were then formed on top of the con-
verted film by slow thermal evaporation of 40 nm of gold in high
vacuum (<0.3A/s at ~10~ Torr) through a stencil mask. Elec-
trical contact to the n++ c-Si backside was made with indium
gallium eutectic. The source electrode was biased as common
for all measurements. To operate in accumulation mode and
inject electrons at the drain, the gate and drain electrodes were
biased negative in relation to a common source electrode.
Transfer characteristics (drain current—gate-to-source voltage,
or Ip — Vgs) were measured from the ON-state, when the
gate-to-source bias is more negative than the OFET threshold
voltage, Vr,(Vgs < Vr) to the OFF-state (Vgs > Vr),
when the gate-to-source bias is more positive than the threshold
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voltage. Output characteristics (Ip — Vpg) were measured
from low Vpg to high Vpg, where Vpg is the drain-to-source
bias. Measurements were performed in air and in the dark. The
results presented herein are for an interdigitated structure with
a channel length L. = 22.5 pum, and channel width consisting
of 20 digits, each of width W/ = 600 pm, for a total channel
width W = 12 mm. Several device geometries, with varying
channel widths and lengths, were tested and corroborate the
presented data in relation to their ohmic-like behavior.

For optical absorbance measurements, glass substrates were
cleaned and coated using the aforementioned process; a second,
uncoated glass substrate was also cleaned and scanned for ref-
erence. Absorbance versus wavelength was measured in air at
room temperature using a Varian-Cary 5e UV-visible spectrom-
eter and normalized to the maximum absorbance over a range
of 200 < A(nm) < 1500.

The CH Instruments 660a cyclic voltammetry measurement
system consisted of a three-electrode, undivided cell filled with
a solution of 0.1 M tetra-n-butylammonium hexafluorophos-
phate (TBAPF6) in acetonitrile. The three electrodes used for
measurement consist of one glassy carbon working electrode
coated with the thin film of interest, one reference electrode
containing 0.1 M TBAPF6 and 0.01 M AgNOs in acetonitrile,
and one platinum counter electrode. The working electrode was
prepared by dip-coating in a solution of CP, followed by an-
nealing of CP to TBP. High-temperature processing did not pro-
duce noticeable problems with the operation of the working
electrode. Excess water was driven from the TBAPF6 solution
before testing by bubbling Ny through the solution. Two TBP-
coated working electrodes were produced and scanned from O
to 2 V and 0 to —3 V, respectively, at a rate a 0.1 V/s. The
resulting current was measured and analyzed as a function of
voltage (V), with peaks in the current (C) indicating oxidation
(positive voltage) and reduction (negative voltage) processes.
To convert voltage measurements to a comparable energy scale,
ferrocene was introduced into the solution and scanned using a
third, blank working electrode. The energy level of ferrocene is
known [20], and provides a reference to convert the electrode
voltage in volts to an energy in eV related to the vacuum level.
The film ionization potential and electron affinity were calcu-
lated by subtracting the baseline solution effect (the dashed lines
in Fig. 4) from the CV spectrum and by approximating the slope
of the current peak with a straight line (the dotted lines in Fig. 4).
This simple method allows determination of the reduction and
oxidation voltages by the intersection of the baseline and the
linear approximation.

III. OFET ELECTRICAL PERFORMANCE

Output characteristics shown in Fig. 1(a) indicate that tran-
sistor action is achieved in the staggered-electrode TBP OFETsS,
and displays distinct linear and saturation operating regimes.
Near the origin, little onset delay in Ip occurs as the drain
bias is increased, with the onset delay being defined as points
where Ip > 0. The linear regime characteristics exhibit min-
imal bowing or superlinear behavior; in the saturation regime
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Fig. 1. (a) Output characteristics and (b) conductance g, of the staggered Au
S/D TBP OFETs.

the drain current remains nearly constant above Vpg < Vgg —
V1. However, a differential examination of the conductance

dlp w
ga = dVos = fltFECi[(Vc/;S — Vr) — Vi) (D

at low drain bias reveals a nonmonotonic behavior in the differ-
ential current. Such g, behavior is typically indicative of cur-
rent crowding, as well as high or nonlinear contact resistance
effects [21]. In this case, g4 increases slightly, then declines at
higher drain biases, indicating that at low drain bias the cur-
rent increases at a rate faster than predicted by the linear regime
metal-oxide-semiconductor field-effect transistors (MOSFETs)
drain current equation [21]. The gradual channel approximation
of the drain current for c-Si p-channel MOSFET, which assumes
a long transistor channel over which the electric-field accumu-
lating carriers at the channel is greater than the electric field
from drain to source, was used to derive the current-voltage re-
lations given here, including a correction for contact resistance
[22]

w
Ip = —fltFECi[(V(/;s — Vr) = Vs /2]Vis ()

where prg is the field-effect mobility, V is the threshold
voltage, C; is the areal gate capacitance, R is the sum of
the drain and source contact resistances, Vg = Vps-2Rclp,
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Fig.2. Linear-scale transfer characteristics used for extraction of ptpy, and V-
of the staggered Au S/D contact TBP OFET. Arrows indicate the measurement
direction.

and Vioig = Vags — Relp. In the linear regime when
[Vhsl < |Vgs — Vrl, (2) simplifies to
. W )
IBm = —fNIF‘lEn i(Vc/;s - VTLm)VISS (3)

and in the saturation regime

B = OV -V @

2"
Although the previous equations, which were derived for
MOSFETs, are commonly used to analyze OFETSs, we must
recognize that their usefulness in characterizing such devices
breaks down when one considers the inherent differences be-
tween MOSFET and OFETs [23]-[25]. The threshold voltage
in a MOSFET is a calculable value based on the semiconductor,
its doping levels, and other predetermined fabrication pro-
cesses, and for an inverted p-channel device can be described

by [21]
\/ 4qesemiNz’)_|‘11b|
Vir = Vig — 2|¥| —

C’ins

&)

where Vg is the flatband energy voltage, U g is the difference
between the Fermi level and the intrinsic Fermi level, q is the
Coulombic charge of 1.602 x 10719 C, €gomm; is the permittivity
of the semiconductor, N; is the ionized donor concentration,
and C;,; is the aerial gate capacitance. Since Vr in OFETs is
related to trap state densities in the thin film, (5) needs to be
modified [24]. Furthermore, the transfer characteristics for even
long-channel OFETs often display significant nonlinearity, in-
dicating a gate- and drain-bias dependent field-effect mobility
[22], [23], [25]. In the first-order approximation for OFETs, V
and ppg are extracted from the transfer characteristics (Fig. 2)
using a linear best-fit model of Ip from (3) and \/Ip from (4);
Vo is determined to be the x-axis intercept and indicates the
gate voltage at which significant charge carrier conduction oc-
curs between the source and drain terminals, while ppg is de-
termined by the slope of this best-fit line. The methodology
used here for extracting the device performance parameters has
been applied previously to hydrogenated amorphous Si (a-Si:H)
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Fig. 3. Semilogarithmic transfer characteristics of the staggered Au S/D
contact TBP OFET. The arrow indicates the measurement direction, and the
dashed line represents the gate bias region where the subthreshold slope was
determined.

thin-film transistors (TFTs) and OFETs, and is outlined in sev-
eral comprehensive works [19], [25]-[27].

Our results indicate that the field-effect mobility and
threshold voltage of staggered electrode TBP OFETs, for the
channel-length scale examined (>15 pm), are independent of
channel length, from 15 zm to 100 pm. Extraction of VIHin
and pH8 from Ip in the linear regime with Vpg = —10 V
yields VR = —18.4 V and pkil = 3.6 x 107 cm?/V-s.
Furthermore, the ON-/OFF-current ratio was determined from
the semilogarithmic plot of Ip (Fig. 3) between Vgs = —40
V and —10 V to be approximately 107°/1071% ~ 105. The
accumulation subthreshold slope is calculated by [28]

kT

= qlog(e) X [1 + OL( V esNbs + qNss)] (6)

We speculate that the subthreshold behavior is dominated by the
trap states in the grain boundary regions of the polycrystalline
thin film [29], and have reported a maximum surface trap states
density of N™2% = 2 9 x 1012 cm~2-eV ! and a bulk trap states
density of N2 = 4.10 x 1018 cm—3-eV—1 [9].

Saturation regime extraction of V3t and ;3% from Ip with
Vps = Vgs yields V52 = —14.7 V and p33 = 9.9 x 1073
cm?/V-s. The extracted V52t and pP3¢ differ from the linear
regime values due to the square-law quadratic dependence of
32t on Vg in the ideal MOSFET equations, given the graph-
ical method by which they are calculated, and the gate-depen-
dent mobility which produces a nonlinear transfer character-
stic [23], [25]-[27]. It is worth noting here that, as previously
shown [9], the transfer characteristics of the TBP OFETs de-
scribed here are highly linear with respect to OFETs made using
other organic semiconductors [30], and provide a good fit to the
gradual channel approximation. Additionally, the gate leakage
current was negligible at varied Vgs.

IV. OPTICAL AND ELECTRONIC PROPERTIES
OF TETRABENZOPORPHYRIN

By studying the electronic and optical properties of TBP thin
films, we can provide a more complete picture into the electrical
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Fig. 4. Cyclic voltammogram for a TBP thin film.

operation of TBP OFETs in conjunction with their electronic
structure. One useful electrochemical method for studying
the electronic structure of a thin film is cyclic voltammetry
[31], [32], wherein applying a voltage to an electrochemical
cell yields a cyclic voltammogram revealing the oxidation and
reduction properties of a thin film in the electrochemical cell.
Voltages where a thin film oxidizes and reduces are indicated
by increases in the electrode current, and can be used to study
occupied and unoccupied molecular orbital energy levels, and
thereby construct an approximate energy bandstructure. This
is based on the assumption that the reduction and oxidation
potentials correspond to the ionization potential and electron
affinity, respectively, of the thin film. Furthermore, in deciding
upon which voltage to pick as the ionization potential and elec-
tron affinity, the onset of current increase is taken instead of the
peaks so as to indicate minimum values. The ionization energy
can also be correlated to a highest occupied molecular orbital
(HOMO) level, while the electron affinity can be correlated
to a lower unoccupied molecular orbital (LUMO). A cyclic
voltammogram of TBP is shown in Fig. 4. Scanning from 0 V
to +2 V oxidizes the thin film, and resulting onset oxidation
potential V. can be related to the ionization potential L, by

Ip = q<V0x - ‘/ref) + Eref (7)
where V. and E,; are the voltage and corresponding energy
at which the reference energy occurs. Conversely, by scanning
from 0 to —3 V, the electrode bias reduces the thin film, and the
resulting onset reduction potential V .4 is related to the electron
affinity E, by

Ea = q(I/red - ‘/ref) + Eref- (8)

From Fig. 4, we deduce a Vo = 043 Vand a V,oq = —1.77
V. In Fig. 4, the known energy level of ferrocene (E,.f = 4.8
eV) [20] occurs at an electrode voltage of 0.144 V. Therefore,
the onset of the TBP ionization potential is 5.08 eV and the
onset of the electron affinity is 2.89 eV. Here, we approximate
the HOMO and LUMO levels by a conduction bandedge energy
E¢ and a valence bandedge energy Ey- having a finite width. We
take E, and I, as E¢ and Ey/, respectively. A transport bandgap
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is also defined here as Er = E& — Ey/, and is found to be
about 2.2 eV. Values for the HOMO-LUMO levels of single-
molecule forms of TBP range from 4.5-4.8 eV and 2.3-2.5 eV,
respectively [33], [34]. Since many of the values reported in
literature are for simulated or gaseous-phase single molecules,
it is expected that they can differ from the values reported here.

Optical excitation of a thin film can provide information about
the electronic states within a material. If an energy transition
in the material is equal to that of the impinging photon energy,
this wavelength is more strongly absorbed by the film as elec-
trons are excited from a low energy state to a higher energy
state. So in the presence of two energy levels o and Eq, the
rate of absorbance will increase from zero for photons with an
energy equal to the difference in the energies. Several types
of transitions are important to consider when examining the
absorption properties of a thin film. Band-to-band transitions
occur when an absorbed photon excites an electron in the va-
lence band into the conduction band, creating an electron—hole
pair. Midgap-to-band transitions also manifest themselves when
trap states are present within the bandgap. An absorbed photon
can also excite an electron from the valence band into a trap
level, from a trap level into the conduction band, or between trap
levels. These types of transitions usually appear as an increased
absorbance value at an energy lower than the bandgap. Further-
more, the rate of absorbance (photons per second per hertz per
cubic centimeter) is directly related to the density-of-states at a
photon frequency v by [35], [36]

2
V) = b 0(0)ful) ©
Ty

where ¢, is the photon-flux spectral density, 7, is the elec-
tron-hole recombination lifetime, o(v) is the density-of-states,
and f,(v) is the probability of absorption, which is dependent
upon the filling of states in the valence and conduction bands.
For c-Si, for example, o(v) is given by an square root rela-
tion, while for a-Si:H p(v) has a parabolic shape. Furthermore,
when discussing the interband transitions of a semiconductor
that might indicate the bandgap, the absorption (cm~1!) can be
described by

2 2 1?:/2
a(v) ~ M(hu

_ 1/2
7 (hv)? Er)

(10)
where c is the speed of light, m,. is the reduced effective mass
for holes and electrons, and h is Planck’s constant. Therefore,
plotting the absorbance on a linear scale versus photon energy
reveals a bandedge where the absorbance curve intercepts the
photon energy axis; this energy can be approximated as the
bandgap of the semiconductor.

The optical absorbance spectrum of a TBP thin film is shown
in Fig. 5. The maximum absorbance of the spectrum occurs at
a photon energy of 2.77 eV, with an absorption edge at 2.3 eV
40.1 eV according to (10). This photon energy closely corre-
sponds to E1. Also prominent is an absorbance peak with a ab-
sorption edge around 1.7 eV+0.1 eV which could be associated
with trap levels present within the gap of the semiconductor. The
exact nature of such traps is under investigation. However, since
TBP is a p-type organic semiconductor, the trap states are most
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Fig.5. Absorbance spectrum of a TBP thin film. The absorbance is normalized
to the maximum between 1500 > A(nm) > 200, and is shown on a linear axis.

likely located closer to the valence band edge, e.g., 0.6 eV£0.1
eV above Ey, while the 1.7-eV peak could correspond to a tran-
sition between the trap level and E¢. An alternative explanation
could be that this absorbance energy is associated with a 1.7-eV
exciton present in TBP. A higher energy photon-induced transi-
tions above 4 eV, including a third peak at 5.3 eV, indicates that
the polycrystalline TBP thin film have energy bands of nondis-
crete levels above and below E¢ and Ey; the formation of such
wide energy bands is also characteristic of polycrystalline ma-
terials.

V. ENERGY BAND DIAGRAMS

A combination of the electronic structure of TBP and the
known workfunction of the Au source and drain electrodes
(qpau = 5.1 eV) [37], TBP OFET energy band diagrams can
be drawn from the gate to the source electrode, and from the
drain to the source electrode. In order to properly establish
the effect of band-bending at the electrode-semiconductor
interface, the Fermi energy level, Er must first be found. We
assume that for TBP, Er is associated or controlled by the trap
levels present in the thin film. We determined Er by measuring
the thermal activation energy, E 4, of the drain current in the
device OFF-state and the ON-state. The OFF-state activation
energy will correspond to the energy necessary to raise a charge
carrier from the bulk Fermi level into the valence bandedge;
thus, the OFF-state F 4 approximately equates to a bulk TBP
Fermi level Epp,-orr of about 0.58 eV+£0.1 eV; similar results
were reported for the like molecule tetraphenylporphyrin [4].
The ON-state thermal activation energy corresponds to the accu-
mulated channel energy Erp-on = 0.25eV at Vgs = —40 V.

In general, energy barriers to hole (¢5,) and electron injec-
tion (¢, ) for a p-type semiconductor can be given by

(11a)
(11b)

q¢Bp - EC + ET - q¢A1L
q9Bn = qPau — Ec.
When E7 = 2.2 eV, we can calculate q¢pp, = —0.01 eV and

q¢Bn = 2.2 eV for the Au-TBP interface. We can also define a
built-in potential at the source and drain electrodes as

Vi = qquu - qd)Bp- (12)
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Fig. 6. Proposed energy band diagrams for a TBP OFET with Au S/D
electrodes. (a) Gate to source. (b) Drain to source.

Therefore, in equilibrium, both the source and drain electrode
see a Vy; = 0.6 eV to the bulk. Based on these values, the en-
ergy band diagrams for a TBP OFET were constructed and are
displayed in Fig. 6. From gate-to-source in Fig. 6(a), holes are
accumulated at the SiO»-TBP interface for a gate electrode bi-
ased negative in relation to the source. The ON-state activation
energy, previously related to the Fermi level as Er,,-on, gives
the energy separation between the valence band edge and the
Fermi level near the interface; Erp-orr gives the energy sepa-
ration in the bulk. Similarly, from drain-to-source in Fig. 6(b),
holes in the channel travel from source-to-drain when the drain
is biased negative in relation to the source. Holes can be created
in the TBP channel when electrons are extracted at the source
electrode. This hole then drifts toward the drain electrode, where
it recombines with an electron injected from the drain. Further-
more, the bulk resistance that appears in staggered electrode de-
vices [19] is not included in Fig. 6(b) as the ratio of the channel
length (L. = 22.5 um) to the film thickness (tTgp = 120 nm)
is very large.

To pinpoint the mechanism for charge conduction in TBP
OFETs at low Vpg, temperature- and V gs-dependent measure-
ments were performed under low fields (Vps > —5 V). Given
the linearity of the transfer characteristics [9], the conduction
mechanism for a TBP OFET is likely confined to bulk and field-
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assisted tunneling mechanisms such as Poole-Frenkel emission
[38], Fowler—Nordheim tunneling [21], and space-charge lim-
ited current (SCLC) [18] can be involved. In Fig. 7, for Vpg >
—0.4 V either a Schottky barrier and/or SCLC limits the TBP
OFET output characteristics. Since q¢p,, is small, we can con-
clude that most likely SCLC is responsible for the nonlinearity
mentioned above. In SCLC operation, the drain current can be
described by

Ins o Vi (13)
where (3 is the slope of the log-log curve. Two distinct regimes
are visible in Fig. 7: a regime for Vpg > —0.4 V and a regime
for Vpg < —0.4 V. For Vpg < —0.4 'V, 8 ~ 1 and is indepen-
dent of temperature and gate bias. Therefore, we can conclude
that for Vpg < —0.4 V, the S/D contacts have no influence on
the OFET characteristics. For Vpg > —0.4 V, 8 > 1 and is
gate-bias- and temperature-dependent. In Fig. 8(a), 3 is seen to
increase with both temperature and the gate bias. The tempera-
ture dependence can be described by

p=a-1C

T (14)

where T¢ is the characteristic temperature of the trap states dis-
tribution in the material; A is a constant indicating the y axis in-
tercept of the line, which in the ideal case equals 1. In Fig. 8(b),
we show the fit of (14) to a plot of 3 versus 1/T for Vgg = —40
V. From this figure, we calculate A = 5.53 and T¢ = 1091.7
K, which gives a trap energy of kT¢ = 0.094 eV.

VI. CONCLUSION

We have examined the electrical properties of solution pro-
cessable tetrabenzoporphyrin OFETs, with the source and drain
electrodes fabricated in the staggered configuration. The output
characteristics displays distinct linear and saturation regimes,
while the transfer characteristics displays a high degree of lin-
earity and a sharp subthreshold slope. A possible explanation for
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Fig. 8. Dependence of 3 with measurement temperature and gate bias.

such performance is sought in the electronic and optical prop-
erties of the TBP thin film. Cyclic voltammetry indicated the
presence of the onset of the ionization potential near to the work-
function of Au. Optical absorbance measurements indicated an
optical gap with a value close to the transport gap measured with
cyclic voltammetry, and also revealed the possible existence of
trap states-based electronic transitions. All of these thin-film
measurements were then combined to form energy band dia-
grams for a TBP OFET with Au S/D electrodes. A small de-
gree of nonohmic behavior was observed for low drain bias, and
was tested by varying the operating temperature and degree of
channel accumulation.
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