The Invention of Compressive Sensing
and Recent Results:

From Spectrum-Blind Sampling and Image Compression on the Fly
to New Solutions with Realistic Performance Guarantees

Yoram Bresler 1

ECE and CSL, Univ. of lllinois at Urbana-Champaign

IEEE Statistical Signal Processing Workshop
August 8, 2012

[LLLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

!Supported in part by NSF grants No. CCF 06-35234 and CCF 10-18660.



Part |

The Invention of Compressive Sensing



\MMI '

mage




Sampling

@ Interface between analog and digital world

y(t) X1 Yn

@ Fundamental question: When can we reconstruct a signal from its

samples?
@ Whittaker-Nyquist-Kotelnikov-Raabe-Gabor-Shannon-Someya

sampling of BL signals



What is Compressed Sensing/Compressed Sampling?



Sparse Signals

@ Key notion: sparse (or sparsely representable) signals
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Sparse Signals

@ Key notion: sparse (or sparsely representable) signals

Sparsity rate: 0.4946 Sparsity rate: 0.0324



Toward a Definition of Compressed Sampling

(i) Sampling at the sparsity rate: Signal is reconstructed from
samples acquired at a rate essentially proportional to sparsity rate.
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Toward a Definition of Compressed Sampling

() Sampling at the sparsity rate: Signal is reconstructed from
samples acquired at a rate essentially proportional to sparsity rate.

@ Examples:

@ Signal Bandwidth: 2
@ Sampling Frequency: f; =2
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Toward a Definition of Compressed Sampling

(i) Sampling at the sparsity rate: Signal is reconstructed from
samples acquired at a rate essentially proportional to sparsity rate.
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Toward a Definition of Compressed Sampling

() Sampling at the sparsity rate: Signal is reconstructed from
samples acquired at a rate essentially proportional to sparsity rate.
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Toward a Definition of Compressed Sampling

(i) Sampling at the sparsity rate
(i) Universality: Sampling scheme (pattern) is universal- same for
all signals in a given class.



Toward a Definition of Compressed Sampling

(i) Sampling at the sparsity rate
(i) Universality: Sampling scheme (pattern) is universal- same for
all signals in a given class.

@ Sampling Frequency: fs =B =1

N

N
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L 3
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@ No aliasing, but can’t recover without additional information!
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Toward a Definition of Compressed Sampling
() Sampling at the sparsity rate
(i) Universality
(ii) Blind Recovery: Signal can be (uniquely, stably) recovered
without detailed prior knowledge or side information.



Toward a Definition of Compressed Sampling

() Sampling at the sparsity rate
(i) Universality
(i) Blind Recovery: Signal can be (uniquely, stably) recovered
without detailed prior knowledge or side information.
@ Polynomial sampling satisfies all three, but isn’'t “compressed
sensing”




Toward a Definition of Compressed Sampling
(i) Sampling at the sparsity rate
(ii) Universality
(iif) Blind Recovery
(iv) Sampling rate independent of signal dimension: Signal lives in
high dimensional space, but # of samples is much smaller than
dimension of space.
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Toward a Definition of Compressed Sampling
(i) Sampling at the sparsity rate
(ii) Universality
(iif) Blind Recovery
(iv) Sampling rate independent of signal dimension: Signal lives in
high dimensional space, but # of samples is much smaller than
dimension of space.
@ Example: Spectral estimation of a sum of sinusoids with uniformly
spaced sampling
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Prony’s Method (1795)

@ z(m) should be a solution to a difference equation:

m=d,d+1,...M +1
b(z) =1+bzt+.. . bgz =0

Z@':)\i

@ If M = 2d, system matrix is d x d and nonsingular!
@ = unique solution for \;, s;
@ = perfect recovery of x(t) from 2d samples.

@ Satisfies all four defining features of CS with an efficient,
guaranteed algorithm.
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Was CS invented in 1795?

@ Missing feature: Broad applicability to important classes of
practical signals.
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Aspects of Compressed Sensing

Algorithms
o

Guarantees Applications

Fundamental Limits Formulations
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Aspects of Compressed Sensing

@ Formulations
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Aspects of Compressed Sensing

@ Formulations .

» Signals in Euclidean space
(discrete-index, finite length)

» 1-dimensional, multi-dimensional

» Analog signals

» Fourier-sparse signals Y 1 2 3 4
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Aspects of Compressed Sensing

@ Formulations

» Signals in Euclidean space
(discrete-index, finite length)
1-dimensional, multi-dimensional
Analog signals
Fourier-sparse signals
Sparsifiable signals
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Aspects of Compressed Sensing

@ Formulations

>

vV vy vy VvYyy

Signals in Euclidean space
(discrete-index, finite length)
1-dimensional, multi-dimensional
Analog signals

Fourier-sparse signals
Sparsifiable signals

Signals sparse in a dictionary
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Aspects of Compressed Sensing

@ Formulations

>

vV v v vy VY VY

Signals in Euclidean space
(discrete-index, finite length)
1-dimensional, multi-dimensional
Analog signals

Fourier-sparse signals
Sparsifiable signals

Signals sparse in a dictionary
Generalized sampling

Sampling
Kernel

(1)
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Aspects of Compressed Sensing

@ Formulations

» Signals in Euclidean space
(discrete-index, finite length)
1-dimensional, multi-dimensional
Analog signals
Fourier-sparse signals
Sparsifiable signals
Signals sparse in a dictionary
Generalized sampling

@ Fundamental Limits: Necessary and
sufficent conditions

vV v v vy VY VY
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Aspects of Compressed Sensing

@ Formulations

» Signals in Euclidean space
(discrete-index, finite length)
1-dimensional, multi-dimensional
Analog signals
Fourier-sparse signals
Sparsifiable signals
Signals sparse in a dictionary
Generalized sampling

@ Fundamental Limits: Necessary and
sufficent conditions
@ Recovery algorithms

» Computational efficency
» Empirical performance
» Theoretical analysis & guarantees

vV v v vy VY VY
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Compressive Sensing — Discrete, finite dimensional

@ y=A¢, AeCrL ¢cecCh
@ p = (# of measurements), |||lo = (sparsity level)
@ Single measurement vector (SMV)

pxl pxL Lx1
|
. y G
single _ A
= | g-sparse
measurement -
vector =

® krank(A) > s = Every s + 1 columns of A are linearly
independent

PO: mcin ICllo subject to y = AC.

@ Support recovery problem: Find {k;}{_; s.t. ¢, #0

15



Compressive Sensing — Discrete, finite dimensional

@ “Multiple Measurement Vector Problem” (MMV)
- or “Jointly-sparse recovery”

pxN pxL LxN
Y 4
- B jointly g-sparse
multiple
measurement

CMEER) CNV)

vectors

y(n) = Al(n), n=1,2,--- ,n, N=#snapshots

@ Joint support recovery problem

16



Spectrum Blind Sampling (SBS) [Feng & Bresler 1996]
Compressed Sensing of Analog Signals
@ Multiband signal

X(f)
& AN
fmin @1 b ax by oaz by fia

@ 1-D continuous-time signals
xz(t) < X(f) t,feR

@ Spectrum-Sparse

(f) - 0 f g‘l__‘ F U au z fmln;fmax]

=1
A(F)
fmax - fmin

<Q<l1
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Questions

@ Sampling rate requirements?
» Known F

» Unknown F
® Sampling at the minimum rate?
» Design of sampling scheme

» Reconstruction
@ How achieve:
» Universal (non-adaptive sampling)

» Perfect (or robust) blind reconstruction

» Computation linear in the data size

18



Sampling Rate

@ Throw in the towel (sufficient condition)
Nyquist sampling:  fuyq = fax — fuin
@ Necessary condition, arbitrary pointwise sampling
Landau lower bound: D~ > A(F)
@ Sufficient condition, known F, packable or not
D™ = \(F) < Qfnyg
@ Sufficient condition, unknown F

_ 20 fnyq  for all signals
D™ = :
Qfnyg  for almost all signals

19



Periodic Sampling

Non-uniform sampling Multicoset sampling Bunched sampling
(not reprentable by cosets) Cosets=0,1,3 Cosets=0,1,2
il dh
N Lo
1 1
@ 0) ° @ °
t=(nL+c)T
R
X —— 1
L f > f Nyq
t=(nL+c,)T

® (L,p) sampling pattern: C = {¢; : 1 <i <p}
@ Period = L



Periodic Sampling

@ Spectral support at resolution L

X(f)

5 active bins
I (\ m /\ Active spectral cells:
\ \ o f FNF#£0,i=1,2,...,q
Jmin lolspecltral bins fnllax Qp = £ % ~0

Fo=1[0,7¢, Fo=Fo+¢/L, £=1,...,.L—1

s x
@ \ectorized signal spectrum Xe(f) = X(f + )Xfo(f)

¢(f) = [Xl(f), XA f € Fo
@ \ectorized sample spectrum
xi(m) = x(Lm+¢;),m € Z <> X;(f)
y(f) 2 LT[e 72 T X, (LTf),... e 32 T X (LT f)]

y(f) = AC(f), f € Fo, A e CP*E = submatrix of DFT L x L

21



Compressive Sensing & Blind Reconstruction

y(f) = AC(f), f € Fo, A€ CP*E = submatrix of DFT L x L
IC(Hllo <QrLL, feFo

min I<(Hllo
PO: foreach f € 7y <)

subject to  y(f) = AC(f)
@ Common sparsity pattern for all
@ MMV Problem
@ But, uncountably infinite number of measurement vectors

22



Spectral Support Recovery
@ Active spectral cell indices:

k = [k1, ko,... . kq)' = Fr, NF#D
k. €{1,2,...,L} r=1,...,q,

~

P1l: k =arg min / prji(Ak)y(f)H%df
a.|lkllo=aJ fer,

P2: k=arg min tr(PJ‘ R)
® gllomg  \ R

R= y(f)y™(f)df

fe€Fo
(R)ke = <$k(n - %)ﬁve(n - %)>

@ Finite dimensional problem!

23



Finite-dimensional optimization

P2: k=arg min tr[P3 R
% 4 iklo=a P B

s o 7,
x@ 10— LHj;

QD pairwise
inner product

H E
wo o [,




More equivalent problems

P3: Given RP*P find the smallest integer ¢ and spectral cell index vector
k of length ¢ such that R = AyZ A}, for some Z € C?*9,Z > 0
® Let R =U,AU},U € CP*" r = rank(R) = rank(Z)

P4: Given U find the smallest integer ¢ and spectral cell index vector k
of length ¢ such that U = A, Q for some ) € C?*4

Proposition
Problems PO — P4 are equivalent J

@ P4 is the (now) classical MMV problem!

@ Mishali+Eldar (2007) proposed to solve it using MMV compressed
sensing methods.
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Algebraic Bound: Fundamental Limit

@ krank(A) > s < any s columns of A are linearly independent
= rank(AXp) = rank(Xo) =r

@ Full krank (= ambiguity free): krank(A) = m
(always krank(A) < m + 1)

@ Algebraic bound for full krank case:

support Jy (indices of nonzero rows of X;) can be uniquely
determined iff the sparsity level s satisfies

m-+r

<
5 2

26



MUSIC Algorithm for Spectrum Blind Sampling

MUItiple Signal Classification

@ R=AZAL, Z= ffefoz(f)z*(f)df >0
@ P3: Find smallest g and k € [L]?: R = AxZ A},
@ MUSIC-like algorithm: (MUSIC

R=[U, : USL]H‘ 8][@ - Ug)

G = # non-zero eigenvalues of R
k= {k:Uta; =0}

@ Theorem: If rank(Z) = ¢ (full rank) and krank(A) > ¢ + 1, then
k =k, q = § (perfect recovery).

27



Alternating Projections for Spectrum Blind Sampling

@ Alternating Projection (AP) Algorithm
@ Application to the sampling problem

@ Solve
P2: min tr (Pj(kR>
o:|[kllo=q
or
mqianHg subject to  tr (Pj(kR> <e

Theorem (Feng & Bresler,1996, 1997; Venkataramani & Bresler,
1998)

Suppose krank(A4) = p. Then if p > %"k(z) the minimizing k is the
correct support. Furthermore, for almost all Z of any rank, the
minimizing k is the correct supportif p > ¢ + 1.

28



Alternating Projections for Spectrum Blind Sampling

@ Solve:

P2: min tr (ijR>
@|[kllo=gq

or
min ||¢qljo subject to tr (ijR> <e
q

@ Greedy algorithm (normalized version of M-OMP, now known as
Orthogonal Least Squares- OLS)

@ In the m-th step, fix {k1,--- , kn_1} = k™1, optimize over k

. 1
minr (P, aF)

For Computational efficiency: P4, 5 = Pa + ijb

29



Sampling Conditions

Theorem (Feng & Bresler, 1996)

Let X consist of signals with spectral support of spectral occupancy at
most €27, at resolution L. Then, all signals in X can be uniquely
reconstructed from their samples on a periodic pattern with average
rate ~ 22, fmax and almost all signals can be reconstructed from
samples at rate =~ Qp, fiax.

Proof.
(a) For bunched pattern with p > 2¢g + 1

krank(A) > 2¢+ 1

(b) Almost all Z have full rank.

30




Numerical Experiments

(a) | = b)
i i
I8 | 1 i .
£ | Z
i = m s = = = = o —
05 w P
.
| -1}
0 -
0 3 10 e 0 - & ¥ ¥ ¥ &%
£ i
(dh
10 15 n
f(Hz)
(4]
10 15 0
f{Hz)
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Compression On-The-Fly

Conventional

Reconstruct Source
Image Encoder

—| Decoder H%
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Compression On-The-Fly

X
“ I Scallar
Quantizer

—| Decoder
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Sampling*
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IT Worskhop on Detection, Estimation, Classification and Imaging, Santa Fe. NM, USA, Feb. 24 — 26, 1999

Image Compression On-The-Fly by Universal Sampling
in Fourier Imaging Systems'

Yoram Bresler, Michael Gastpar, and Raman Venkataramani
University ol lllinois
Coordinated Science Laboratory and ECFE Department
1308 W, Main St. Urbana, 1L 61801
Lmail: ybresler@uiuc.cdu

Abstract An image compres
posed, where compression is trivially accomplished
by minimally redundant acquisition, but decoding
requires a nonlinear estimation step. The perfor-
mance of this system is evaluated on examples and
by studying the operational rate-distortion curves
for a simple source model.

L. INTRODUCTION

Many iwportant imaging systems, including radar
imaging by real or synthetic aperture (SAR), and mag-
netic resonance imaging (MRI), acquire samples of the
9D Fourier trausform of the image, rather than the
image itself. The output of these so called Fourier
imaging systems is often compressed, owing to chan-

nel or storage limitations. None the less, the tradi-
tional paradigm in these systems has been Lo acquire
large quantities of data so as to allow the formation
of high resolution images, and only then exploit the
redundancy in the data to copress it. Because this
redundancy usually takes the form of spatial corrcla-
tions, it is often only apparent after formation of the
image — a computationally expensive proces

This paper considers an alternative paradigm: di-
rectly acquire minimally redundant information, sim-
plifying, or even climinating the need for further com-
pression. The approach relies on new resulls in sam-
pling theory [1, 2, 3], and applics to a limited but
fairly wide class of so-called sparse or LST-sparsifiable

image

IT. UNTVERSAT, SAMPLING AND SPRCTRUM-BLIND
RECONSTRUCTION

is piece-wise constant on a number of regions is LSI
spasifiable by h an appropriate differential operator
and a & supported on the [requency axes. We show
that any image in this class can be perfectly recovered
from a small fraction of the Nyqui
¥, provided that the selected samples are chosen on

rate samplos of
an appropriate universal sampling pattern.

111. COMPRESSION BY SAMPLING

For compression, the selected samples are scalar or
vector quantized, followed by entropy coding. ln gen-
cral, the computational requirements of this scheme,
which can avoid not only the image formation step,
but also the acquisition and storage of the entire data
set, will be far smaller than those of the conventional
system. ‘Lo analyze the eflectiveness of this scheme, a
simple doubly-stochastic Bernoulli-Gaussian model is
considered for f or for I x f. We compare the rate-
distortion curves (computed numerically using the
Blahut-Arimoto algorithm) for this source with the
operational rate-distortion of the proposed scheme,
and also illustrate the results on sample images.

V. CONCLUSION

Although in general suboptimal, the proposed scheme
may be of interest in asymmetric compression applica-
s requiring very low complexity compression (with
possibly high complexity decoding), or when sparse
acquisition is desirable for other reasons, such as sen-
sor cost or physical constraints.

tio

REFERENCES
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Sampling Pattern Design

@ Universality (maximal Kruskal Rank) is easy:
@ Bunched pattern
< A Vandermond
(< uniform linear array w/ half wavelength spacing
< “Ambiguity free array manifold”)
@ Can we do better? Design Criterion:
G?nax(Ak)

A e
kg = max g-sparse condition #
T klo=q 02 (Ay) ( )

mln(

@ Select sampling pattern (row of DFT matrix) to minimize «,

Z(f) = Ay(f)

@ Deterministic design (exhaustive search)
@ Monte-Carlo design

» Random sampling patterns
» Random k € [L]? for testing

35



Spectrum Blind Sampling and Image Compression on
the Fly

@ Analog (infinite dimensional) compressed sensing

@ Formulated as an MMV problem with infinitely many snapshots
(locations of active spectral bins = support)

@ Reduction to a finite dimensional MMV problem through
eigenvalue decomposition of empirical correlation.

@ Guaranteed MUSIC algorithm for support recover in full rank case.

@ Conditions for ¢y recovery in arbitrary rank case.

36



Spectrum Blind Sampling and Image Compression on
the Fly

@ M-OLS: Greedy algorithm for arbitrary rank case with good
empirical performance.

@ Both deterministic and randomized schemes for design of
sampling scheme, with

explicit RIP-like criterion
@ Versions for 1D and 2D
@ Versions for discrete-index and finite dimensions
@ Applications to imaging

@ Information-theoretic analysis of fundamental limitations

37



Compressed Sensing in 1999

Algorithms
o

Guarantees Applications

Fundamental Limits Formulations



Compressed Sensing Today

Algorithms
o

Guarantees Applications

Fundamental Limits Formulations



Is Random Sampling a defining feature of
Compressed Sampling?

(*]

Even uniformly spaced sampling works fine in many cases (e.g,
sinuoid retrieval, sensor array processing, etc)

There are non-random, periodic, non-uniform universal sampling
schemes

Expander graphs
Other designs

= Random sampling in CS is a Marriage of Convenience:
convenient tool to generate sampling schemes with provably good
properties, and to prove theoretical results about such schemes.

Random sampling is neither essential for compressed sensing,
nor is it optimal for finite size problems.

40



Is /; Relaxation for Sparse Recovery a defining feature
of Compressed Sensing?

@ /1 penalties used since the 1970’s for sparse recovery with
missing frequency information in seismic signal processing

@ Recovered sparse signal, but not at the sparsity rate! Only had a
fraction of missing frequency data.

@ (7 sufficient condition from the 1980’s:
2s(N —m) < N.M < N/2 — s = 0. To recover one spike, need at
least half of the Fourier measurements!

@ Similar condition from early Fourier uncertainty principle analysis

a1



Is /; Relaxation for Sparse Recovery a defining feature
of Compressed Sensing?

@ /; is just a method for sparse recovery that admits efficent
algorithms.

@ Early work (1970’s — 2000) on sparse recovery using £; was not
on Compressed Sensing

42



Partial list of Contributions in Compressed Sensing

1991 Leahy & Jeffs : £, minimization (0 < p < 1) for sparse beamforming array

1992 Rao et al. : iterative reweighted least squares for Magnetoencephalography
(MEG)

1995 Rao etal. : FOCUSS -/, relaxation (0 < p < 1) using reweighted least-squares
with equality constraints

1996 J.J. Fuchs: Sensor array processing using £;.

1996 Feng & Bresler : spectrum blind sampling, guarantee of MUSIC for MMV, spark
conditions

1996 Delaney & Bresler : iterative tomographic reconstruction from sparse samples
with non-convex relaxation and reweighting algorithms

1997 Harikumar & Bresler : sparse solutions to linear inverse problems using convex
and non-convex relaxations, and reweighting algorithms

1997 Feng : algebraic conditions for MMV

1998 Venkataramani & Bresler : algebraic conditions (spark) for uniqueness
1999 Bresler, Gastpar, & Venkataramani : “Image Compression on the Fly”
1999 Fuch et al. : £, minimization

2000 Couvreur & Bresler : guarantee for backward greedy

2000 Gastpar & Bresler : information-theoretic analysis of compressive sensing with
noise and with quantization
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Partial list of Contributions in Compressed Sensing

2001 Chen, Donoho, & Saunders : basis pursuit, £; minimization

2002 Vetterli et al.: sampling signals with finite rate of innovation

2002 Ye, Bresler & Moulin : non-linear image reconstruction from sparse Fourier
samples, using sparsity of object edges

2003 Donoho & Elad : algebraic conditions (spark, coherence) for the uniqueness of
the sparsest representation, ¢;-¢, equivalence

2004 Tropp : guarantee of OMP by cumulative coherence

2005 Candes & Tao : restricted isometry property, guarantee of £; minimization

2005 Rao et al.: algorithms for MMV (M-OMP / M-FOCUSS / M-ORMP), algebraic
bound

2006 Donoho : guarantee of basis pursuit for random sensing matrix

2006 Candes Roberg Tao : guarantee of basis pursuit for random partial Fourier matrix
2006 Tropp : guarantee of convex relaxation for MMV

2006 Tropp et al : S-OMP + guarantee for MMV

2006 Chen & Huo : guarantee of convex relaxation for MMV for the noiseless case
2006 Baron et al.: distributed compressed sensing

2006 Indyk et al. : ¢,-RIP of expander graph

2008 Baraniuk et al. : RIP of i.i.d. Gaussian matrix

2008 Baraniuk et al.: single pixel camera for compressed sensing
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Partial list of Contributions in Compressed Sensing

2008 Chartrand : RIP and guarantee of ¢, minimization (0 < p < 1)

2008 Lu & Do : theory of sampling signals from a union of subspaces
2008 Rudelson & Vershynin : RIP of random rows of DFT matrix

2008 Tropp : conditioning of random submatrices

2009 Dai & Milenkovic : subspace pursuit + guarantee

2009 Needell & Tropp : CoSaMP + guarantee

2009 Blumensath :iterative hard thresholding + guarantee

2009 Wainwright : information theoretic analysis

2009 Wainwright : guarantee of LASSO

2009 Reeves & Gastpar : information theoretic analysis

2009 Goyal et al. : information theoretic analysis

2009 Guo, Baron, & Shamai : information theoretic analysis

2009 Eldar & Mishali : repetition and variations on spectrum blind sampling
2010 Akcakaya & Tarokh : information theoretic analysis

2010 Baraniuk et al.: model based compressed sensing, algorithms and guarantees
2010 Calderbank et al. : statistical RIP of Deterministic Matrices

2010 Lee & Bresler : SA-MUSIC + guarantee for MMV

2010 Kim, Lee, & Ye : compressive MUSIC + guarantee for MMV
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a

v
Would a rose by any other name smell as sweet? .

Spectrum-Blind Sampling Compressed Sampling

Image Compression on the Fly Compressed Sensing
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Part Il

Subspace Methods for Joint Sparse Recovery

@ Why joint sparse recovery (MMV)?
@ Non-asymptotic guarantees for MUSIC with noise

@ MUSIC Revitalized: overcoming the limitations of MMV algorithms

45



Problem Statement

@ Multiple Measurement Vectors (MMV)

YeC™" X, eC™ ZeCm™
% _ A e meﬂ +
multiple i@ ® A®
measurement additive noise
vectors jointly s-sparse signals

@ Joint sparse recovery: given Y and A, estimate

Jo = supp(Xy) = {indices of nonzero rows of X;}

46



Joint Sparse Recovery (JSR)?
@ Discretized Direction of Arrival Estimation [Feng & Bresler, 1996,
Malioutov et al. 2005]
@ Compressed Sensing of Analog Signals

» Spectrum-Blind Sampling of Multiband Signals [Feng & Bresler 1996,
Mishali & Eldar 2009]

» Modulated Wideband Converter [Vishali & Eldar, 2010]

@ Compressive Fourier Imaging
[Bresler & Feng, Bresler, Venkataramani, & Gastpar, 1998]

@ Diffuse Optical Imaging [Lee, Kim, Bresler, Ye 2011]

@ Multivariate Regression [Obozinski et al. 2011]
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Discretized Direction of Arrival (DOA) Estimation

target

wavefront

® ©®
sensor array

@ Direction of arrival is discretized (the sine of the angle is uniformly
discretized on the interval [-1, 1), larger n — more accurate)

@ m sensors, s sources, N snapshots
@ Discretized DOA estimation = joint sparse recovery with partial
DFT matrix
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Spectrum Blind Sampling (SBS) reng & Bresler 1996]

@ Multiband signal

X(f)

s active bins

—> f

| |
Sonin n spectral bins

@ Multi coset sampling at sub-Nyquist rate
Non-uniform sampling Multicoset sampling
(not reprentable by cosets) Cosets=0, 1, 3

Sonax

Bunched sampling
Cosets=0,1,2
1

b

T, ¢ ¥
N

1

@ (b)
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Spectrum Blind Sampling

@ Analog (infinite dimensional) compressed sensing
@ Formulated as an MMV problem with co snapshots

@ Reduced to a finite dimensional MMV problem through eigenvalue
decomposition of empirical correlation matrix

@ Wish to recover sparse support = locations of active spectral bins
@ m: # cosets in spectrum blind sampling (multi-coset sampling)

@ m/n: subsampling factor relative to Nyquist-rate
= Make m small!
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Special MMV Problems (DOA, SBS)

@ We focus on special MMV problems (DOA, SBS) where subspace
methods are preferred

m measurements

(per snapshot)
U

expensive

N snapshots = cheap -- N large (DOA) or N = (SBS)
@ Support recovery is explicitly required.

@ Ais arandom partial DFT matrix.
(Columns of A are not statistically independent)
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Playing MUSIC with Noise and Finite Data

@ Assumption: universal sampling pattern

@ Ideal Scenario: zero noise, or white noise with co snapshots
= perfect signal subspace estimate

= With “full-rank” signal, MUSIC is guaranteed for m > s

@ Non ideal Scenario

» Q: What happens with finite data and noise?
» A: Expect graceful degradation.

» Non-asymptotic guarantees?
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MUSIC for JSR: Signal Subspace Estimation

N J sxN
X,eC” X, eC™

reduction

to nonzero rows

J, rsupport of X,

RO R(AJOX()’O): subspace spanned by signal component

@ Goal: estimate a signal subspace (an r-dim subspace of S) from
finitely many noisy measurement vectors

Y = A X+ W
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MUSIC for JSR: Signal Subspace Estimation

@ Rank-revealing eigenvalue decomposition of sample correlation
matrix

*
eigenvalues of % in decreasing order

significant gap

""""""""""""""" i S
K

7

@ U (= r-principal eigenvectors of ¥3-)
= § = R(U) estimated signal subspace

@ 7 can be smaller than rank(X;°)
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MUSIC for JSR: Support Recovery

@ Algebraic subspace criterion:

Piay=0 iff kelJ

@ An analytic subspace criterion (thresholding with normalization):
find s indices k's that maximize

| Pgakl2

= PAP . .
Ty~ 1PsPR@o g
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Algebraic Analysis of MUSIC in an ldeal Case

Definition (Kruskal rank)

krank(A) is maximum number g such that every ¢ columns of A are
linearly independent.

@ |deal scenario
» S £ R(AXo) = R(Ay,): full row rank condition of X°
»S=8: perfect subspace estimation

@ MUSIC is guaranteed (in this scenario) if krank(A) > s

@ Ais a partial DFT matrix with a universal sampling pattern
(krank(A) = m) (e.g. consecutive rows)
= MUSIC is guaranteed (in this scenario) if m > s+ 1

@ m > s+ 1is also a necessary condition for ANY method
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Restricted Isometry Properties

@ s-restricted isometry property (RIP)

» Any s columns of A are uniformly well conditioned

» Provides a uniform guarantee for all sparse signals

» Holds for partial DFT if m > C'sIn* n where C is an unspecified
constant

@ Weak-1 RIP

» For fixed s columns & any one additional column

» Provides an instance guarantee for a single sparse signal

» Holds for partial DFT if m > C'slnn where C'is a fully specified
constant

@ Weak-1 restricted isometry constant (weak-1 RIC):

5weak

o1 (A ) = max 1 ATOAsory — Lol
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MUSIC with Imperfect Subspace Estimate

@ Scenario

» S22 R(AX,) = R(Ay,): full row rank condition of X°

» ||[Ps — Ps|| < n: good subspace estimation
@ MUSIC is guaranteed if §"e2K(A; Jy) < (1 — 2n)?

@ Suppose A4 is a random partial DFT matrix
= MUSIC is guaranteed with probability 1 — ¢ if

m > <W> {m <2(”6_ 5)> +n(s + 1)} (s+1).

=Cy ~slnn
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MUSIC with Imperfect Subspace Estimate

@ Constant Factor Vs. Perturbation in Subspace Estimate

100( .
[ ]
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80r i
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]
]
601 '
1
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20} ."'
) i i
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Comparison of Instance Performance Guarantees

@ Guarantees hold for a single signal instance with high probability

when m > Cslnn for random partial DFT matrix

Eldar & Rauhut

| Candes & Plan | Lee, Bresler, Junge

SMV/MMV MMV SMV MMV

Algorithm M-BP Lasso MUSIC
specified unspecified specified

Constant ¢ (e.g. < 100) (e.g. < 17,000) (e.g. < 100)

. exactly sparse . exactly sparse
Signal Model multichannel model arbitrary full row rank
Noise Assumption noiseless i.i.d. Gaussian | good subspace est
Noise Amplification N/A poly logn specified constant

in Reconstruction
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Conclusion?
@ MUSIC proposed for JSR in the 1990s is still a good algorithm (in
special scenarios)

» Good empirical performance at low computational cost

» Guaranteed by minimal requirements on the number of
measurements

@ But, when dim(S) < s (rank defective case), MUSIC loses both
advantages.

@ A problem in practice! (Signal correlation, multipath effects, etc)

@ Goal: improved JSR for the rank-defective case using the
subspace idea behind MUSIC

» Keep the order of # measurements in the guarantee of MUSIC at
the cost of increased constant

» Good empirical performance at low computational cost
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Subspace-Augmented MUSIC (SA-MUSIC)

@ Q: can we make S into a good estimate of R(A. 70)?
= Given a partial support with at least s — r elements, we can
augment S to an s-dim subspace S = estimate of R(Ay,).

Definition
Matrix X is row-nondegenerate if krank(X™*) = rank(X). J

@ Rows of X are in general position = X is row-nondegenrate

Proposition (Subspace augmentation)

Suppose X(‘]’O is row-nondegenerate. Let S be an r-dim subspace of S.
Let J; C Jp and |J;| > s —r. If Ay, has full column rank, then

S+R(Ay) =R(Ay).
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Subspace-Augmented MUSIC (SA-MUSIC)

@ S: estimated signal subspace of dim r
@ S: an r-dim subspace of S that minimizes || Pz — Ps||

@ Given a partial support .J; (!{1\ > s — r), we construct an
augmented subspace Shy S =S + R(Ay,).

@ SA-MUSIC: MUSIC applied to S.

Proposition (Perturbation in augmented subspace)

Suppose X° is row-nondegenerate and |Ps — Psll <n. If k(Ajy) < <i

then Ui
(AJO)

I1Ps — Pr(ay,) H_m-
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SA-MUSIC + “Oracle”

@ Assumptions
» Given arbitrary partial support J; of size s — r (oracle)
» ||[Ps — Ps|| < n: good subspace estimation

@ SA-MUSIC is guaranteed by 6"¢K(4; Jy) < §

1

—— SA-MUSIC+Oracle
MUSIC

0.8

0.6

LS

0.4

0.2

0.4 0.5
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Partial Support Recovery

*]

*]

*]

Q: how to obtain a correct partial support?
A: any MMV algorithm that can recover a partial support reliably.

Early stopping of forward greedy algorithms for partial support
recovery saves computation and also avoids selection outside the
true support

= forward greedy algorithms are good candidates!

RA-ORMP shares the same guarantee of
MUSIC in an ideal scenario (full row rank, noiseless, exact
sparsity) but is sensitive to noise

= Modification of RA-ORMP provides guarantees not restricted to
the ideal scenario
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Rank-Aware Order-Recursive Matching Pursuit
(RA-ORMP)

@ A forward greedy algorithm

@ Update rule: add the index for the subspace R (aj) minimizing the
distance between two subspaces R(P%(A])Y) and P%(AJ)R(ak) in
the “angle function” (a subspace metric)

® Rank-aware?: yes, in the noiseless case, RA-ORMP works with
the subspaces whose dimensions are determined by the rank of
Xg.

@ In the noisy case, Y may have full rank due to additive noise.
= RA-ORMP loses its “rank-aware” ability.

@ Q: what's the fix?
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Orthogonal Subspace Matching Pursuit (OSMP)

@ Like MUSIC, OSMP performs rank-revealing EVD once to
estimates S.

@ Update rule: add the index for the subspace R(ay) that minimizing
the distance between Py, ,S and Py, yR(ax)

instead of the distance between R(Py, ,Y) and P, yR(ax)
@ Slight but important change from RA-ORMP
@ OSMP avoids the repetition of RR-EVD

@ We propose to run OSMP up to s — r iterations to get a partial
support for SA-MUSIC (.- empirically performed better in this way
than running full s steps).
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Comparison of Empirical Performance

@ Simulation Setup (relevant to DOA and SBS)

randomly selected m rows of 128 x128 DFT matrix

#col = 256 l
#row =m _ 4 +
i |partial Fourier e
multiple ¥ Y 7
measurement 0 AWGN (complex)
vectors jointly 8-sparse signals SNR =30 dB

#measurements m varies over {9,10,...,24}

@ All parameters except m are fixed
— Full support recovery with minimal m is desired
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Empirical Performance of Subspace Methods

Akt
0.8 -
. aa
2 ' ’
© N &
n 0.61 4 A
] , .
.
§ 0.4 :’ 'A
R | ," -A-MmusIC
A |-m-m-P
0.2+ A& —&— OSMP
= ¢ = SA-MUSIC+OSMP
SA-MUSIC+Oracle
o T

(=)

@ A € C™*™: partial Fourier (n = 128). Xj: exactly 8 row-sparse.

15 20
m

Noiseless

success rate

0.8

‘V;i_
L) -
4“
A-A
‘I
AT
A"
-A -MUSIC
'A =-m=M-BP
—&— OSMP

=4 - SA-MUSIC+OSMP
SA-MUSIC+Oracle

15 20

SNR =30 dB

N = 256 snapshots. Rank-defective: rank(Xy) = 6 and x(Xo) = 1.
@ MUSIC fails in the rank defective case.
@ Full run of OSMP is vulnerable to noise.

@ SA-MUSIC + OSMP is good!
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Empirical Performance of Subspace Methods

T e o o e 1 S e e
f P '." POLE
':' L] L4 » 'A'
0.8 ’ 0.8 U A
& . A
2 & L 2 ‘ ,
.
n 0.6 " @ 0.6 i ‘cl'
3 u 3 K
Q ' Q
o Q L]
7 04f ! 204
o . -A-mUSIC o : ’[-A-music
K -m-M-BP N , |=-m=M-BP
0.2 , —8—OSMP 02 ¢ 2o —e—OSMP
- - ¢ = SA-MUSIC+OSMP g = 4 = SA-MUSIC+OSMP
SA-MUSIC+Oracle SA-MUSIC+Oracle
0 0
10 15 20 10 15 20
m m
Jo Jo
K(XJD) =10 k(XJP) =50

@ Rank defective (dim(g) < s) when X(‘{O is ill conditioned.
@ SA-MUSIC + OSMP is robust against this rank defect.
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Empirical Performance of Subspace Methods

-A-MUSIC
-m=M-BP

—8— OSMP

10 = ¢ = SA-MUSIC+OSMP

runtime (sec)

scale factor

@ n = (scale factor) x 64
Other parameters also increase proportionally
@ SA-MUSIC + OSMP is faster than M-BP!
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Analysis of OSMP

@ Full Row Rank + Noiseless: OSMP = RA-ORMP = RA-ORMP is
guaranteed (in this scenario) if krank(A) > s

@ Full Row Rank + Imperfect Subspace Estimate: OSMP +#
RA-ORMP = MUSIC is guaranteed (in this scenario) if
SUSRK(A; Jo) < (1 — 2n)?

@ Rank-defective: OSMP is guaranteed if §¢3(4; Jo) < ¢ such that

\/1—5 VI—=06—-+5
n < :
1+6 24V/1-06—-V6

= Of course, also guarantees the first s — r steps
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Analysis of OSMP in Rank Defective Case

@ Weak-1 RIC Vs. Perturbation

1s

===OSMP r/s =0.3
== OSMP r/s =0.7

0.8 = OSMP /s =0.9
MUSIC

SA-MUSIC + Oracle

0.4 0.5

= SA-MUSIC step is easier to guarantee than partial support
recovery by OSMP

= SA-MUSIC + OSMP is guaranteed by the same weak-1 RIP
condition
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Analysis of SA-MUSIC+OSMP for Fourier

® SA-MUSIC + OSMP is guaranteed with probability 1 — ¢ if

m > (8(1—n+n2)

3(1 —2n)* ) {m (2(716_8)) Fin(s 1)} (s+1)
=a(r/5)

-

~slnn

80

—=0.02
—1 =0.05
—n=0.1

60

Folr/s)

40

2°\

0.5

0.6 0.7

‘ ‘ L)
0.8 0.9
r/s
= benefits from larger r/s

1
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Related Works

@ Compressive MUSIC (CS-MUSIC): a similar independently
developed idea

@ Like SA-MUSIC, CS-MUSIC provides a complete JSR algorithm
when combined with another algorithm for partial support
recovery.

@ OSMP provides better empirical performance and stronger
guarantees than 2-thresholding and Subspace S-OMP proposed
to be used with CS-MUSIC.

@ CS-MUSIC analyzed for i.i.d. Gaussian A in the asymptotic case
= No implication for problems of finite size or with non-Gaussian
matrix (not relevant to compressed sensing)

@ Obozinski et al 2011: sharp phase transition of group Lasso for
i.i.d. Gaussian A in the non-asymptotic case (target application:
multivariate regression, another MMV problem)



Summary — Part 2

@ New analysis shows MUSIC for JSR (from the 1990s) to be a
guaranteed algorithm for the noisy, full-row-rank case, with
best-in-class performance and guarantees.

@ SA-MUSIC extends MUSIC to the rank-defective case.

@ Overcomes the open problem in sensor array processing of signal
coherence.

@ Performance competitive with relaxation methods, with
computation lower by orders of magnitude

@ Performance guarantees

» for the noisy case

» with practical sensing matrices (random partial Fourier)

» reveal the role of signal rank and advantage of MMV over SMV
» modest, fully-specified empirical constant

» non-asymptotic
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Part Il

Obligue Pursuits
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Compressed Sensing Fourier Imaging

sensing matrix sparsifying dictionary

H = A = men D c Cnxn

measurements y € C” _—
signal f € C”

s-sparse x € C"

@ Sensing matrix A: dictated by the physics of modality
= i.i.d. Gaussian A is not interesting

@ Dictionary D: provides sparse approximation of signal of interest
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Problem Formulation

@ A: random partial DFT matrix

» W:n xn DFT matrix (W*W = nl,)
> Wi,...,wn,: mii.d. copies of a random variable w

w~Plw=j4)=p;, j=1,...,n

» Construction of A: (kth row of A) = (wxth row of W) x \/%
® D =[dy,...,d,]: sparsifying basis (invertible matrix).

*The algorithms and analysis are not restricted to this case.
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RIP-Guaranteed Recovery

@ s-restricted isometry property (RIP) of W:

5s(W) 2 I};llelx |U%50 — I|| < 1

Various methods (BP, Lasso, CoSaMP, SP, IHT, HTP, etc) provide
an approximation of z* of guaranteed quality
if 0rs(¥) < c for some k € {2,3,4} and ¢ € (0,1)
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RIP of U = AD

@ Key assumptions:
» EU*U = [,: isotropy

» max; |(¥), x| < K:incoherence

Atoms (columns) of D are incoherent to the rows of DFT

@ Compressed sensing is possible:

m > Co 2sln*n = 6,(¥) < 6

® Q: When is “isotropy” satisfied?

A: E.g. D is an orthogonal matrix (D*D = I,,) and p; = %, Vg

(sampling with uniform distribution)
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Isotropy Breaks Down ...

© Energy of natural images is concentrated at lower frequencies
= Variable density recommended [Bresler et al. 1999, Lustig et al. 2007]

© Data-adaptive D: orthogonality constraint is too restrictive

= Motivates the study of the “anisotropic” case
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Q: Solution for the Anisotropic Case?

@ Goal: close the gap between empirical success and theoretical
guarantee of compressed sensing Fourier imaging
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Q: Solution for the Anisotropic Case?
@ Goal: close the gap between empirical success and theoretical
guarantee of compressed sensing Fourier imaging

@ Key idea: use properly designed U* instead of U* for recovery by
greedy algorithms
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Q: Solution for the Anisotropic Case?

@ Goal: close the gap between empirical success and theoretical
guarantee of compressed sensing Fourier imaging

@ Key idea: use properly designed U* instead of U* for recovery by
greedy algorithms

@ Roadmap

» extend RIP of U* ¥ to restricted biorthogonality property (RBOP) of
U*

» construction of ¥ that satisfies RBOP

» modify RIP-guaranteed algorithms to RBOP-guaranteed algorithms
(oblique pursuits)
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Restricted Biorthgonality Property

@ Intuition: EV*¥ = [, too restrictive? How about E¥*W full rank?
Much weaker condition!

@ Restricted Biorthogonality Property (RBOP)

[(Ty, Uz) — (y,z)| < 8||z[|2]lyll2, ¥ jointly s-sparse =,y

@ Restricted biorthogonality Constant (RBOC)

0,(T* W) & max 05wy — I
=s

05(\17*\11) is the smallest ¢ satisfying the above inequality.

@ RBOP of (¥, ¥) <= VJsit. |J| =s, (¥ ,¥;) ~ a biorthogonal
basis
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Construction of ¥
@ wi,...,wn: miid. copies of a random variable w
w~Pw=j)=p; j=1,....,n

@ Construction of A and A:

(kth row of A) = (with row of DFT) x \/%

(kth row of A) = (wyth row of DFT) x \/1m X

= EA*A =1,
@ Construction of D: D = Df = D(D*D)~!

1) Constructlon of\I/ U =AD
- EU*U = ED*A*AD = I,

1

npwk

84



RIP of W: Anisotropic Case

@ Incoherence: max; |(AD); x| < K

@ 05(¥) < d + po holds with probability 1 — 7 provided that

m > C1(1 4 po)? K26 2s(Ins)? Innlnm
m > CQK25_281n(77_1)
for universal constants C; and Cs
@ po = 0 in the isotropic case (D*D = I,, and p; = £, V; uniform distr.)

@ Penalty for anisotropy: constant p, increases as (p;)7_; and D
deviate from the ideal case (uniform distr. & orthogonal matrix)

@ po does not vanish by increasing m
Larger pp = conservative upper bound on RIC (no guarantee) ©



RBOP of (U, ¥)

o 03(@*\11) < 0 hold with probability 1 — » provided that
m > C1(1+4 p1)*(p2K)?0 2s(Ins)? Innlnm,
m > Cy(p2K)?6 2sIn(nt)
for universal constants C and Cy

@ Penalty for anisotropy: constants p; and ps increase as (pj)?:1
and D deviate from the ideal case (uniform distribution &

orthogonal matrix)

@ p; > 0,V satisfied <+ EV*W¥ has full rank (mild condition)

Still provide good upper bound (of just §) on RBOC without the
“isotropy” property
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Oblique Projection
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Building Blocks for Greedy Algorithms

@ Greedy pursuit algorithms consist of common building blocks:

1) Thresholding of correlation
2) Least-squares

3) Orthogonal matching

@ RIP guarantees that these blocks work well so that the algorithms
converge to the desired estimate

@ We modify these blocks using ¥ s0 that they are guaranteed by
RBOP of (¥, V)
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Building Blocks for Greedy Algorithms 1

@ Conventional: matching to ¥ (thresholding of correlation)

v

input: Wz for s-sparse x
» output: estimated support of x

» find s indices k's that maximize |(U*Wx)g|

v

RIP of ¥ — U*WUz =~z — good estimate

@ Modified: matching to v (thresholding of oblique correlation)

» find s indices k’s that maximize |(U*Uz)y|

» RBOP of (I, W) — U*Wz ~ 2z —> good estimate
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Building Blocks for Greedy Algorithms 2

@ Conventional: approx. by least-squares (pseudo inverse)

» input: J, Uz such that [supp(z) U J| < 2s
» output: estimate the components of = on J
» LS solution Z = argmin, ||V — ¥ ;2|3 satisfies

z= x‘J + (\II?}\PJ)_1\Ilj}‘llsupp(w)\Jl"supp(m)\J
» RIPof U = WV, s ~ 0 = small error
@ Modified: approx. by weighted LS (oblique inverse)
» WLS solution Z = arg min,, | % (¥x — ¥, 2)||2 satisfies
z= J?‘J + (\ijqu)_1{IVJT]\I/supp(w)\Jx|supp(a:)\J
» RBOP of (¥, ¥) — U*¥

supp(z)\J ~ 0 = small error
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Building Blocks for Greedy Algorithms 3

@ Conventional: orthogonal matching

» input: J, ¥ such that [supp(z) U J| < 2s
» output: estimate support elements of x outside J
» find s indices k's that maximize (V" Pr(y )1 V)|

» RIPof U = WU*Pr(y,). Vx ~ x = good estimate

@ Modified: obligue matching
> find s indices k's that maximize (V" E g 11 reg,) o)kl

» RBOP of (I, V) — U*E

R(T,)L R(w,)L YT~ = good estimate
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Oblique Pursuits

(*]

("]

(*]

(7

(]

(]

Each building block has been modified.

It remains to assemble the blocks.

Subspace Pursuit (SP) — Oblique Subspace Pursuit (ObSP)
CoSaMP — ObCoSaMP

IHT — ObIHT

HTP — ObHTP

OMP — Oblique Matching Pursuit (ObMP)
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RBOP-based Guarantees

@ Oblique pursuits extend the RIP-based guarantees of the original
counterparts to RBOP-based guarantees.

@ Dax*: best s-sparse approximation of f over D.
@ Let ALG € {ObSP, ObCoSaMP, ObIHT, ObHTP}. If (AD, AD)
satisfies the RBOP, then ALG provides Z such that

||f—Dw*||1>

||foH2sc(e+ -

ObSP ObCoSaMP | ObIHT ObHTP
O35 < 0.325 | 045 <0.38 | 035 < 0.5 | O35 < 0.58

@ With exact arithmetic, ObCoSaMP, ObSP, and ObHTP converge in

finite iterations (at most O(s), possibly O(In s)).
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1D CS with Biorthogonal Basis
@ A e C™*": generic, K(EA*A) = 2 (anisotropic)
@ A € Cm*n satisfies EA*A = I,
@ fis sparse in the std. basis (D = I,), nonzeros are random =+1
@ Support recovery rate was observed (z-axis: m/n, y-axis: s/n)

ObThres ObMP ObCoSaMP ObSP ObIHT ObHTP

@ Oblique pursuits perform competitively with, or sometime better
than the conventional counterparts.
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2D CS Fourier Imaging

@ Sensing matrix A: partial Fourier with nonuniform sampling

@ Basis D: learned dictionary that applies to non-overlapping 8 x 8
patches (image size: 512 x 512)

@ Isotropy property is not satisfied (variable density sampling)

@ D isincoherent to DFT with K = 7.6

@ Input image: exactly s-sparse phantom > = %

® Downsample by 3, error measured by PSNR

Sampling Mask Input ObSP (36.26 dB)
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Error Images

Thres
9.34 dB

ObThres
31.01dB

IHT

9.34dB

ObIHT
30.95 dB

{1 Analysis
29.75 dB

Zero Filling

31.46 dB
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Error Images

CoSaMP SP HTP
29.38 dB 34.58 dB 31.02 dB

ObCoSaMP ObSP ObHTP
32.27 dB 36.26 dB 36.40 dB
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General Framework

9 (¢du)weq: (continuous, not necessarily tight) frame for C”
@ (¢u)weq: oblique dual frame

@ wi,...,wm: mii.d. copies of a random variable w following a
distribution v on 2

@ Construction of A and A:

(kth row of A) = ¢ x —

Wi \/m
~ ~ 1 1
(kth row of A) = ¢L x —— x
Eoymo npy,

@ (D, D) satisfies RBOP (e.g. D = D if D satisfies RIP)

@V =AD
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Discussion

@ Schnass & Vandergheynst 2008

» Modified thresholding and (O)MP using U* instead of U*

» Heuristic design of ¥

» Design criterion: guarantee by Babel function (more conservative
than RIP)

@ “RIPless” analysis of basis pursuit > noiseless
case

@ lterative greedy algorithms Vs. /4

» Guarantees of /; formulations are based on optimality conditions
(KKT or dual certificate) and are not explicitly related to any specific
algorithm.

» Guarantees of greedy algorithms are based on the success of
iterations of algorithms (Modification of algorithms were necessary).
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Summary — Part 3

@ The isotropy property of ¥ = AD is often violated in practice
— RIP-based guarantees for CS algorithms break down ©

@ New oblique pursuits replace “orthogonal-type” building blocks in
existing greedy CS recovery algorithms by “oblique-type” or
“bio-orthogonal-type” blocks.

@ Oblique pursuits are guaranteed by a new Restricted
Biorthogonality Property (RBOP), replacing RIP.

= Guarantees apply to the anisotropic case.

@ Oblique pursuit also improve empirical performance over
conventional pursuits.
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Conclusion

@ Spectrum Blind Sampling and Image Compression on the Fly
(Bresler, Gastpar, Feng, Venkataramani) - compressed sensing in
the 1990’s.

@ The ideas first proposed for SBS and Image Compression on the
Fly lead to new, best in class guaranteed algorithms for
jointly-sparse recovery.

@ A new set of theoretical and algorithmic tools- oblique pursuits -
overcome limitations of current methods for compressive sensing
in physical imaging systems.
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