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Part I

The Invention of Compressive Sensing
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Sampling
Interface between analog and digital world

Fundamental question: When can we reconstruct a signal from its
samples?
Whittaker-Nyquist-Kotelnikov-Raabe-Gabor-Shannon-Someya
sampling of BL signals
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What is Compressed Sensing/Compressed Sampling?

Sparsity?

Minimum sampling rate?

Greedy algorithm?
Theoretica

l g
uarantee?

ℓ
1 recovery?

Convex relaxation?

Fundamental limits?

Random sampling?

Gaussian i.i.d sensing matrix?
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Sparse Signals

Key notion: sparse (or sparsely representable) signals

◮ Sparsity level: 3

◮ Sparsity rate: 3/10

◮ f(t) = c0+c1t+c2t2+c3t
3+c4t

4+c5t
5

◮ Sparsity level: 6

◮ Sparsity rate: 6/∞

◮ Sparsity rate = occupied
bandwidth/total bandwidth
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Sparse Signals

Key notion: sparse (or sparsely representable) signals

Sparsity rate: 0.4946 Sparsity rate: 0.0324
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Toward a Definition of Compressed Sampling

(i) Sampling at the sparsity rate: Signal is reconstructed from
samples acquired at a rate essentially proportional to sparsity rate.
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Toward a Definition of Compressed Sampling
(i) Sampling at the sparsity rate: Signal is reconstructed from

samples acquired at a rate essentially proportional to sparsity rate.

Examples:

0 1 2 3 4 5 6 7 8 9 10

Signal Bandwidth: 2

Sampling Frequency: fs = 2

0.5 1 1.5 2 2.5 3 3.5 4 4.5−0.5−1−1.5−2−2.5−3−3.5−4−4.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5−0.5−1−1.5−2−2.5−3−3.5−4−4.5
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Toward a Definition of Compressed Sampling

(i) Sampling at the sparsity rate

(ii) Universality: Sampling scheme (pattern) is universal- same for
all signals in a given class.
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Toward a Definition of Compressed Sampling

(i) Sampling at the sparsity rate

(ii) Universality: Sampling scheme (pattern) is universal- same for
all signals in a given class.

Sampling Frequency: fs = B = 1

0.5 1 1.5 2 2.5 3 3.5−0.5−1−1.5−2−2.5−3−3.5

0.5 1 1.5 2 2.5 3 3.5−0.5−1−1.5−2−2.5−3−3.5

No aliasing, but can’t recover without additional information!
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Toward a Definition of Compressed Sampling
(i) Sampling at the sparsity rate
(ii) Universality
(iii) Blind Recovery: Signal can be (uniquely, stably) recovered

without detailed prior knowledge or side information.
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Toward a Definition of Compressed Sampling
(i) Sampling at the sparsity rate
(ii) Universality
(iii) Blind Recovery: Signal can be (uniquely, stably) recovered

without detailed prior knowledge or side information.
Polynomial sampling satisfies all three, but isn’t “compressed
sensing”

−3 −2 −1 0 1 2 3

L(x) =
n∑

k=0

yk

k∏

m=0
m 6=k

x− xm
xk − xm
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Toward a Definition of Compressed Sampling
(i) Sampling at the sparsity rate
(ii) Universality
(iii) Blind Recovery
(iv) Sampling rate independent of signal dimension: Signal lives in

high dimensional space, but # of samples is much smaller than
dimension of space.
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Toward a Definition of Compressed Sampling
(i) Sampling at the sparsity rate
(ii) Universality
(iii) Blind Recovery
(iv) Sampling rate independent of signal dimension: Signal lives in

high dimensional space, but # of samples is much smaller than
dimension of space.
Example: Spectral estimation of a sum of sinusoids with uniformly
spaced sampling
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xc(t) =
d∑

i=1

sie
j2πfiT x(m) = xc(mT ) λi = ej2πfiT
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Prony’s Method (1795)

x(m) should be a solution to a difference equation:

x(m) = −b1x(m− 1)− b2x(m− 2) . . .− bdx(m− d)

m = d, d+ 1, . . .M + 1

b(z) = 1 + b1z
−1 + . . . bdz

−d = 0

zi = λi

If M = 2d, system matrix is d× d and nonsingular!

⇒ unique solution for λi, si

⇒ perfect recovery of x(t) from 2d samples.

Satisfies all four defining features of CS with an efficient,
guaranteed algorithm.
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Was CS invented in 1795?

Missing feature: Broad applicability to important classes of
practical signals.
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Aspects of Compressed Sensing
Algorithms

Guarantees

Fundamental Limits Formulations

Applications
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Aspects of Compressed Sensing

Formulations
◮ Signals in Euclidean space

(discrete-index, finite length)
◮ 1-dimensional, multi-dimensional
◮ Analog signals
◮ Fourier-sparse signals
◮ Sparsifiable signals
◮ Signals sparse in a dictionary
◮ Generalized sampling

Fundamental Limits: Necessary and
sufficent conditions
Recovery algorithms

◮ Computational efficency
◮ Empirical performance
◮ Theoretical analysis & guarantees
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Compressive Sensing – Discrete, finite dimensional
y = Aζ, A ∈ C

p×L, ζ ∈ C
L

p = (# of measurements), ‖ζ‖0 = (sparsity level)
Single measurement vector (SMV)

=

1p´ p L´ 1L´

y
A

z
single

measurement

vector

-sparseq

krank(A) ≥ s =⇒ Every s+ 1 columns of A are linearly
independent

P0: min
ζ

‖ζ‖0 subject to y = Aζ.

Support recovery problem: Find {ki}qi=1 s.t. ζki 6= 0
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Compressive Sensing – Discrete, finite dimensional

“Multiple Measurement Vector Problem” (MMV)
- or “Jointly-sparse recovery”

=

p N´ p L´ L N´

Y A

(1)z

multiple

measurement

vectors

jointly -sparseq
L

L

(2)z ( )Nz

y(n) = Aζ(n), n = 1, 2, · · · , n, N = # snapshots

Y = A[ζ(1), ζ(2), · · · , ζ(N)]

Joint support recovery problem
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Spectrum Blind Sampling (SBS) [Feng & Bresler 1996]

Compressed Sensing of Analog Signals

Multiband signal

fmin fmax
f

X(f )

a1 b1 a2 b2 a3 b3

1-D continuous-time signals

x(t) ↔ X(f) t, f ∈ R

Spectrum-Sparse

X(f) = 0, f 6∈ F , F =

n⋃

i=1

[ai, bi) ⊆ [fmin, fmax]

λ(F)

fmax − fmin
≤ Ω < 1
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Questions

Sampling rate requirements?
◮ Known F
◮ Unknown F

Sampling at the minimum rate?
◮ Design of sampling scheme

◮ Reconstruction

How achieve:
◮ Universal (non-adaptive sampling)

◮ Perfect (or robust) blind reconstruction

◮ Computation linear in the data size

18



Sampling Rate

Throw in the towel (sufficient condition)

Nyquist sampling: fNyq = fmax − fmin

Necessary condition, arbitrary pointwise sampling [Landau ’67]

Landau lower bound: D− ≥ λ(F)

Sufficient condition, known F , packable or not [Kahn & Liu ’65]

D− ≈ λ(F) ≤ ΩfNyq

Sufficient condition, unknown F [Feng & Bresler 1996]

D− ≈
{

2ΩfNyq for all signals
ΩfNyq for almost all signals
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Periodic Sampling
Non-uniform sampling

Cosets = 0,1,2Cosets = 0, 1, 3
Multicoset   sampling Bunched   sampling

(a) (b) (c)

0

0

1

1

0

0

1

1

2

2

(not reprentable by cosets)

3
3

p

x(t)

1t=(nL+c )T 

t=(nL+c )T 

1

T
≥ fNyq

(L, p) sampling pattern: C = {ci : 1 ≤ i ≤ p}
Period = L
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Periodic Sampling
Spectral support at resolution L

fmin fmax
f

X(f ) 5 active bins

10 spectral bins

Active spectral cells:
Fi ∩ F 6= ∅, i = 1, 2, . . . , q

ΩL , q
L ≈ Ω

F0 = [0, 1
LT ], Fℓ = F0 + ℓ/L, ℓ = 1, . . . , L− 1

Vectorized signal spectrum
Xℓ(f) , X(f +

ℓ

LT
)χF0

(f)

ζ(f) , [X1(f), . . . , XL(f)]
′, f ∈ F0

Vectorized sample spectrum
xi(m) = x(Lm+ ci),m ∈ Z ↔ Xi(f)

y(f) , LT [e−j2πc1fTX1(LTf), . . . , e
−j2πc1fTXp(LTf)]

′

y(f) = Aζ(f), f ∈ F0, A ∈ C
p×L = submatrix of DFT L× L
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Compressive Sensing & Blind Reconstruction

y(f) = Aζ(f), f ∈ F0, A ∈ C
p×L = submatrix of DFT L× L

‖ζ(f)‖0 ≤ ΩLL, f ∈ F0

P0: for each f ∈ F0

min
ζ(f)

‖ζ(f)‖0

subject to y(f) = Aζ(f)

Common sparsity pattern for all

MMV Problem

But, uncountably infinite number of measurement vectors
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Spectral Support Recovery
Active spectral cell indices:

k = [k1, k2, . . . , kq]
′ : Fkr ∩ F 6= ∅

kr ∈ {1, 2, . . . , L} r = 1, . . . , q,

P1: k̂ = arg min
q,‖k‖0=q

∫

f∈F0

‖P⊥
R(Ak)

y(f)‖22df

P2: k̂ = arg min
q,‖k‖0=q

tr
(
P⊥
R(Ak)

R
)

R ,

∫

f∈F0

y(f)y∗(f)df

(R)kℓ =
〈
xk(n− ck

L
), xℓ(n− cℓ

L
)
〉

Finite dimensional problem!
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Finite-dimensional optimization

P2: k̂ = arg min
q,‖k‖0=q

tr[P⊥
R(Ak)

R]

L
H

f pairwise
inner product

LL
H

f

LL
H

f
p

Z
-C

x (n)

x (n)

. . . 

x (n)p

  Rs

1

2
L

Z
-C

Z
-C1

2
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More equivalent problems

P3: Given R
p×p find the smallest integer q and spectral cell index vector

k of length q such that R = AkZA∗
k

for some Z ∈ C
q×q, Z ≥ 0

Let R = UsΛsU
∗
s , U ∈ C

p×r, r = rank(R) = rank(Z)

P4: Given U find the smallest integer q and spectral cell index vector k
of length q such that U = AkQ for some Q ∈ C

q×q

Proposition
Problems P0 – P4 are equivalent

P4 is the (now) classical MMV problem!

Mishali+Eldar (2007) proposed to solve it using MMV compressed
sensing methods.
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Algebraic Bound: Fundamental Limit
[Wax and Ziskind ’89], [Feng 1997], [Cotter et al. ’05], [Chen and Huo ’06]

krank(A) ≥ s ⇔ any s columns of A are linearly independent
⇒ rank(AX0) = rank(X0) = r

Full krank (= ambiguity free): krank(A) = m
(always krank(A) ≤ m+ 1)

Algebraic bound for full krank case:
support J0 (indices of nonzero rows of X0) can be uniquely
determined iff the sparsity level s satisfies

s <
m+ r

2
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MUSIC
MUltiple SIgnal Classification

Algorithm for Spectrum Blind Sampling

[Feng & Bresler 1996], [Feng 1997]

R = AkZA∗
k
, Z =

∫
f∈F0

z(f)z∗(f)df ≥ 0

P3: Find smallest q and k ∈ [L]q: R = AkZA∗
k

MUSIC-like algorithm: (MUSIC [Schmidt ’78], [Bienvenu & Kopp ’78])

R =
[
Us : UL

S

] [ Λ 0
0 0

] [
Us : UL

S

]∗

q̂ = # non-zero eigenvalues of R

k̂ = {k : U∗
Sak = 0}

Theorem: If rank(Z) = q (full rank) and krank(A) ≥ q + 1, then
k = k̂, q = q̂ (perfect recovery).
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Alternating Projections for Spectrum Blind Sampling

Alternating Projection (AP) Algorithm [Wax & Ziskind ’88]

Application to the sampling problem [Feng & Bresler 1996], [Venkataramani &

Bresler 1998]

Solve
P2 : min

q,‖k‖0=q
tr
(
P⊥
Ak

R
)

or
min
q

‖q‖0 subject to tr
(
P⊥
Ak

R
)
≤ ǫ

Theorem (Feng & Bresler,1996, 1997; Venkataramani & Bresler,
1998)

Suppose krank(A) = p. Then if p > q+rank(Z)
2 , the minimizing k is the

correct support. Furthermore, for almost all Z of any rank, the
minimizing k is the correct support if p > q + 1.
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Alternating Projections for Spectrum Blind Sampling

Solve:
P2 : min

q,‖k‖0=q
tr
(
P⊥
Ak

R
)

or
min
q

‖q‖0 subject to tr
(
P⊥
Ak

R
)
≤ ǫ

Greedy algorithm (normalized version of M-OMP, now known as
Orthogonal Least Squares- OLS)

In the m-th step, fix {k1, · · · , km−1} , k
m−1, optimize over k

min
k∈[L]

tr
(
P⊥
[A

km−1 , ak]
R
)

For Computational efficiency: P[A, b] = PA + PP⊥

A
b
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Sampling Conditions

Theorem (Feng & Bresler, 1996)
Let X consist of signals with spectral support of spectral occupancy at
most ΩL at resolution L. Then, all signals in X can be uniquely
reconstructed from their samples on a periodic pattern with average
rate ≈ 2ΩLfmax and almost all signals can be reconstructed from
samples at rate ≈ ΩLfmax.

Proof.

(a) For bunched pattern with p ≥ 2q + 1

krank(A) ≥ 2q + 1

(b) Almost all Z have full rank.
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Numerical Experiments
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Compression On-The-Fly

Decoder
Reconstruct

    Image Encoder

 Source

x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

Conventional

    Image

Imaging
F. T.

x x x x x x x x
x x x x x x x x
x x x x x x x x

Physics
Imaging

Compression On-The-Fly

Decoder
Quantizer

   Scalar

x

x

x

x
x

x

x

 Bresler et al., 1999 - IEEE IT Workshop on Detection Estimation Classification and Imaging

32



2D Spectrum-Blind2D Spectrum Blind

Sampling*
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100 200 300 400 500 600

250

300

(a) (b)

*ICIP 1998

Venkataramani & Bresler 1998
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Sampling Pattern Design [Feng & Bresler 1996], [Feng 1997]

Universality (maximal Kruskal Rank) is easy:
Bunched pattern
⇔ A Vandermond
(⇔ uniform linear array w/ half wavelength spacing
⇔ “Ambiguity free array manifold”)
Can we do better? Design Criterion:

κq , max
‖k‖0=q

σ2
max(Ak)

σ2
min(Ak)

(q-sparse condition #)

Select sampling pattern (row of DFT matrix) to minimize κq

Z(f) = AL
k
y(f)

Deterministic design (exhaustive search)
Monte-Carlo design

◮ Random sampling patterns
◮ Random k ∈ [L]q for testing
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Spectrum Blind Sampling and Image Compression on
the Fly
[Bresler,Feng, Venkataramani, Gastpar, 1996-1999]

Analog (infinite dimensional) compressed sensing

Formulated as an MMV problem with infinitely many snapshots
(locations of active spectral bins ⇆ support)

Reduction to a finite dimensional MMV problem through
eigenvalue decomposition of empirical correlation.

Guaranteed MUSIC algorithm for support recover in full rank case.

Conditions for ℓ0 recovery in arbitrary rank case.
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Spectrum Blind Sampling and Image Compression on
the Fly
[Bresler,Feng, Venkataramani, Gastpar, 1996-1999]

M-OLS: Greedy algorithm for arbitrary rank case with good
empirical performance.

Both deterministic and randomized schemes for design of
sampling scheme, with

explicit RIP-like criterion

Versions for 1D and 2D

Versions for discrete-index and finite dimensions

Applications to imaging

Information-theoretic analysis of fundamental limitations
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Compressed Sensing in 1999
Algorithms

Guarantees

Fundamental Limits Formulations

Applications
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Compressed Sensing Today
Algorithms

Guarantees

Fundamental Limits Formulations

Applications
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Is Random Sampling a defining feature of
Compressed Sampling?

Even uniformly spaced sampling works fine in many cases (e.g,
sinuoid retrieval, sensor array processing, etc)

There are non-random, periodic, non-uniform universal sampling
schemes [Feng & Bresler, 1996] [Venkataramani & Bresler, 1998]

Expander graphs [Indyk, 2010]

Other designs [Calderbank, 2010]

⇒ Random sampling in CS is a Marriage of Convenience:
convenient tool to generate sampling schemes with provably good
properties, and to prove theoretical results about such schemes.

Random sampling is neither essential for compressed sensing,
nor is it optimal for finite size problems.
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Is ℓ1 Relaxation for Sparse Recovery a defining feature
of Compressed Sensing?

ℓ1 penalties used since the 1970’s for sparse recovery with
missing frequency information in seismic signal processing
[Claerbout & Muir, 1973] [Levy & Fullager, 1981] [Santosa & Symes, 1986]

Recovered sparse signal, but not at the sparsity rate! Only had a
fraction of missing frequency data.

ℓ1 sufficient condition from the 1980’s:
2s(N −m) < N.M < N/2 → s = 0. To recover one spike, need at
least half of the Fourier measurements!

Similar condition from early Fourier uncertainty principle analysis
[Donoho & Logan, 1992]
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Is ℓ1 Relaxation for Sparse Recovery a defining feature
of Compressed Sensing?

ℓ1 is just a method for sparse recovery that admits efficent
algorithms.

Early work (1970’s – 2000) on sparse recovery using ℓ1 was not
on Compressed Sensing
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Partial list of Contributions in Compressed Sensing
1991 Leahy & Jeffs : ℓp minimization (0 < p < 1) for sparse beamforming array
1992 Rao et al. : iterative reweighted least squares for Magnetoencephalography

(MEG)
1995 Rao et al. : FOCUSS – ℓp relaxation (0 < p < 1) using reweighted least-squares

with equality constraints
1996 J.J. Fuchs: Sensor array processing using ℓ1.
1996 Feng & Bresler : spectrum blind sampling, guarantee of MUSIC for MMV, spark

conditions
1996 Delaney & Bresler : iterative tomographic reconstruction from sparse samples

with non-convex relaxation and reweighting algorithms
1997 Harikumar & Bresler : sparse solutions to linear inverse problems using convex

and non-convex relaxations, and reweighting algorithms
1997 Feng : algebraic conditions for MMV
1998 Venkataramani & Bresler : algebraic conditions (spark) for uniqueness
1999 Bresler, Gastpar, & Venkataramani : “Image Compression on the Fly”
1999 Fuch et al. : ℓ1 minimization
2000 Couvreur & Bresler : guarantee for backward greedy
2000 Gastpar & Bresler : information-theoretic analysis of compressive sensing with

noise and with quantization
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Partial list of Contributions in Compressed Sensing
2001 Chen, Donoho, & Saunders : basis pursuit, ℓ1 minimization
2002 Vetterli et al.: sampling signals with finite rate of innovation
2002 Ye, Bresler & Moulin : non-linear image reconstruction from sparse Fourier

samples, using sparsity of object edges
2003 Donoho & Elad : algebraic conditions (spark, coherence) for the uniqueness of

the sparsest representation, ℓ1-ℓ0 equivalence
2004 Tropp : guarantee of OMP by cumulative coherence
2005 Candes & Tao : restricted isometry property, guarantee of ℓ1 minimization
2005 Rao et al.: algorithms for MMV (M-OMP / M-FOCUSS / M-ORMP), algebraic

bound
2006 Donoho : guarantee of basis pursuit for random sensing matrix
2006 Candes Roberg Tao : guarantee of basis pursuit for random partial Fourier matrix
2006 Tropp : guarantee of convex relaxation for MMV
2006 Tropp et al : S-OMP + guarantee for MMV
2006 Chen & Huo : guarantee of convex relaxation for MMV for the noiseless case
2006 Baron et al.: distributed compressed sensing
2006 Indyk et al. : ℓ1-RIP of expander graph
2008 Baraniuk et al. : RIP of i.i.d. Gaussian matrix
2008 Baraniuk et al.: single pixel camera for compressed sensing
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Partial list of Contributions in Compressed Sensing
2008 Chartrand : RIP and guarantee of ℓp minimization (0 < p < 1)
2008 Lu & Do : theory of sampling signals from a union of subspaces
2008 Rudelson & Vershynin : RIP of random rows of DFT matrix
2008 Tropp : conditioning of random submatrices
2009 Dai & Milenkovic : subspace pursuit + guarantee
2009 Needell & Tropp : CoSaMP + guarantee
2009 Blumensath :iterative hard thresholding + guarantee
2009 Wainwright : information theoretic analysis
2009 Wainwright : guarantee of LASSO
2009 Reeves & Gastpar : information theoretic analysis
2009 Goyal et al. : information theoretic analysis
2009 Guo, Baron, & Shamai : information theoretic analysis
2009 Eldar & Mishali : repetition and variations on spectrum blind sampling
2010 Akcakaya & Tarokh : information theoretic analysis
2010 Baraniuk et al.: model based compressed sensing, algorithms and guarantees
2010 Calderbank et al. : statistical RIP of Deterministic Matrices
2010 Lee & Bresler : SA-MUSIC + guarantee for MMV
2010 Kim, Lee, & Ye : compressive MUSIC + guarantee for MMV
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Would a rose by any other name smell as sweet?

Spectrum-Blind Sampling Compressed Sampling

Image Compression on the Fly Compressed Sensing
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Part II

Subspace Methods for Joint Sparse Recovery

Why joint sparse recovery (MMV)?

Non-asymptotic guarantees for MUSIC with noise

MUSIC Revitalized: overcoming the limitations of MMV algorithms
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Problem Statement

Multiple Measurement Vectors (MMV)

Joint sparse recovery: given Y and A, estimate

J0 = supp(X0) , {indices of nonzero rows of X0}
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Joint Sparse Recovery (JSR)?

Discretized Direction of Arrival Estimation [Feng & Bresler, 1996,

Malioutov et al. 2005]

Compressed Sensing of Analog Signals

◮ Spectrum-Blind Sampling of Multiband Signals [Feng & Bresler 1996,
Mishali & Eldar 2009]

◮ Modulated Wideband Converter [Mishali & Eldar, 2010]

Compressive Fourier Imaging
[Bresler & Feng, Bresler, Venkataramani, & Gastpar, 1998]

Diffuse Optical Imaging [Lee, Kim, Bresler, Ye 2011]

Multivariate Regression [Obozinski et al. 2011]
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Discretized Direction of Arrival (DOA) Estimation

Direction of arrival is discretized (the sine of the angle is uniformly
discretized on the interval [−1, 1), larger n → more accurate)

m sensors, s sources, N snapshots

Discretized DOA estimation = joint sparse recovery with partial
DFT matrix [Feng & Bresler 1996, Malioutov et al. 2005]]
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Spectrum Blind Sampling (SBS) [Feng & Bresler 1996]

Multiband signal

Multi coset sampling at sub-Nyquist rate
Non-uniform sampling

Cosets = 0,1,2Cosets = 0, 1, 3
Multicoset   sampling Bunched   sampling

(a) (b) (c)

0

0

1

1

0

0

1

1

2

2

(not reprentable by cosets)

3
3
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Spectrum Blind Sampling

Analog (infinite dimensional) compressed sensing

Formulated as an MMV problem with ∞ snapshots

Reduced to a finite dimensional MMV problem through eigenvalue
decomposition of empirical correlation matrix [Feng & Bresler 1996]

Wish to recover sparse support = locations of active spectral bins

m: # cosets in spectrum blind sampling (multi-coset sampling)

m/n: subsampling factor relative to Nyquist-rate
⇒ Make m small!
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Special MMV Problems (DOA, SBS)

We focus on special MMV problems (DOA, SBS) where subspace
methods are preferred m NY ´Î£

snapshotsN Þ

L

M

measurements

(per snapshot)

m

expensive

(Dch OAeap -- large (SBS)o) rN N = ¥

ß

Support recovery is explicitly required.

A is a random partial DFT matrix.
(Columns of A are not statistically independent)
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Playing MUSIC with Noise and Finite Data

Assumption: universal sampling pattern

Ideal Scenario: zero noise, or white noise with ∞ snapshots

⇒ perfect signal subspace estimate

⇒ With “full-rank” signal, MUSIC is guaranteed for m > s [Feng &

Bresler, 1996]

Non ideal Scenario

◮ Q: What happens with finite data and noise?

◮ A: Expect graceful degradation.

◮ Non-asymptotic guarantees?
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MUSIC for JSR: Signal Subspace Estimation

0

n NX ´Î£

reduction

to nonzero rows
L

L

0

0

J s NX ´Î£

Þ

0 0: support ofJ X

S , R(AJ0X
J0
0 ): subspace spanned by signal component

Goal: estimate a signal subspace (an r-dim subspace of S) from
finitely many noisy measurement vectors

Y = AJ0X
J0
0 +W
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MUSIC for JSR: Signal Subspace Estimation

Rank-revealing eigenvalue decomposition of sample correlation
matrix

U (= r-principal eigenvectors of Y Y ∗

N )
⇒ Ŝ = R(U) estimated signal subspace

r can be smaller than rank(XJ0
0 )
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MUSIC for JSR: Support Recovery

Algebraic subspace criterion:

P⊥
Ŝ
ak = 0 iff k ∈ Ĵ

An analytic subspace criterion (thresholding with normalization):
find s indices k’s that maximize

‖P
Ŝ
ak‖2

‖ak‖2
= ‖P

Ŝ
PR(ak)‖ℓn2→ℓn

2
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Algebraic Analysis of MUSIC in an Ideal Case

Definition (Kruskal rank)
krank(A) is maximum number q such that every q columns of A are
linearly independent.

Ideal scenario

◮ S , R(AX0) = R(AJ0
): full row rank condition of XJ0

0

◮ Ŝ = S: perfect subspace estimation

MUSIC is guaranteed (in this scenario) if krank(A) > s

A is a partial DFT matrix with a universal sampling pattern
(krank(A) = m) (e.g. consecutive rows)
⇒ MUSIC is guaranteed (in this scenario) if m ≥ s+ 1

m ≥ s+ 1 is also a necessary condition for ANY method
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Restricted Isometry Properties

s-restricted isometry property (RIP) [Candes & Tao 2005]:
◮ Any s columns of A are uniformly well conditioned
◮ Provides a uniform guarantee for all sparse signals
◮ Holds for partial DFT if m ≥ Cs ln4 n where C is an unspecified

constant

Weak-1 RIP [Eldar & Rauhut 2009]:
◮ For fixed s columns & any one additional column
◮ Provides an instance guarantee for a single sparse signal
◮ Holds for partial DFT if m ≥ Cs lnn where C is a fully specified

constant

Weak-1 restricted isometry constant (weak-1 RIC):

δweak
s+1 (A; J) = max

k 6∈J
‖A∗

J∪{k}AJ∪{k} − Is+1‖.
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MUSIC with Imperfect Subspace Estimate

Scenario

◮ S , R(AX0) = R(AJ0
): full row rank condition of XJ0

0

◮ ‖PŜ − PS‖ ≤ η: good subspace estimation

MUSIC is guaranteed if δweak
s+1 (A; J0) < (1− 2η)2

Suppose A is a random partial DFT matrix
⇒ MUSIC is guaranteed with probability 1− ǫ if

m ≥
(
8(1− η + η2)

3(1− 2η)4

)

︸ ︷︷ ︸
=Cη

{
ln

(
2(n− s)

ǫ

)
+ ln(s+ 1)

}
(s+ 1)

︸ ︷︷ ︸
≈s lnn

.
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MUSIC with Imperfect Subspace Estimate

Constant Factor Vs. Perturbation in Subspace Estimate
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Comparison of Instance Performance Guarantees

Guarantees hold for a single signal instance with high probability
when m ≥ Cs lnn for random partial DFT matrix

Eldar & Rauhut Candes & Plan Lee, Bresler, Junge

SMV/MMV MMV SMV MMV
Algorithm M-BP Lasso MUSIC

Constant C
specified unspecified specified

(e.g. < 100) (e.g. < 17,000) (e.g. < 100)

Signal Model
exactly sparse

arbitrary
exactly sparse

multichannel model full row rank
Noise Assumption noiseless i.i.d. Gaussian good subspace est
Noise Amplification

N/A poly log n specified constant
in Reconstruction
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Conclusion?

MUSIC proposed for JSR in the 1990s is still a good algorithm (in
special scenarios)

◮ Good empirical performance at low computational cost
◮ Guaranteed by minimal requirements on the number of

measurements

But, when dim(S) < s (rank defective case), MUSIC loses both
advantages.

A problem in practice! (Signal correlation, multipath effects, etc)

Goal: improved JSR for the rank-defective case using the
subspace idea behind MUSIC

◮ Keep the order of # measurements in the guarantee of MUSIC at
the cost of increased constant

◮ Good empirical performance at low computational cost
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Subspace-Augmented MUSIC (SA-MUSIC)

Q: can we make Ŝ into a good estimate of R(AJ0)?
=⇒ Given a partial support with at least s− r elements, we can

augment Ŝ to an s-dim subspace S̃ = estimate of R(AJ0).

Definition
Matrix X is row-nondegenerate if krank(X∗) = rank(X).

Rows of X are in general position ⇒ X is row-nondegenrate

Proposition (Subspace augmentation)

Suppose XJ0
0 is row-nondegenerate. Let S̄ be an r-dim subspace of S.

Let J1 ⊂ J0 and |J1| ≥ s− r. If AJ0 has full column rank, then

S̄ +R(AJ1) = R(AJ0).
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Subspace-Augmented MUSIC (SA-MUSIC)

Ŝ: estimated signal subspace of dim r

S̄: an r-dim subspace of S that minimizes ‖P
Ŝ
− PS̄‖

Given a partial support J1 (|J1| ≥ s− r), we construct an
augmented subspace S̃ by S̃ = S̄ +R(AJ1).

SA-MUSIC: MUSIC applied to S̃.

Proposition (Perturbation in augmented subspace)

Suppose XJ0
0 is row-nondegenerate and ‖P

Ŝ
− PS̄‖ ≤ η. If κ(AJ0) <

1
η ,

then

‖P
S̃
− PR(AJ0

)‖ ≤ κ(AJ0)

1/η − κ(AJ0)
.
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SA-MUSIC + “Oracle”

Assumptions

◮ Given arbitrary partial support J1 of size s− r (oracle)
◮ ‖PŜ − PS̄‖ ≤ η: good subspace estimation

SA-MUSIC is guaranteed by δweak
s+1 (A; J0) ≤ δ
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MUSIC
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Partial Support Recovery

Q: how to obtain a correct partial support?

A: any MMV algorithm that can recover a partial support reliably.

Early stopping of forward greedy algorithms for partial support
recovery saves computation and also avoids selection outside the
true support
⇒ forward greedy algorithms are good candidates!

RA-ORMP [Davies and Eldar 2012] shares the same guarantee of
MUSIC in an ideal scenario (full row rank, noiseless, exact
sparsity) but is sensitive to noise

⇒ Modification of RA-ORMP provides guarantees not restricted to
the ideal scenario [Lee, Bresler, Junge 2012]
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Rank-Aware Order-Recursive Matching Pursuit
(RA-ORMP)[Davis & Eldar 2012]

A forward greedy algorithm

Update rule: add the index for the subspace R(ak) minimizing the
distance between two subspaces R(P⊥

R(AJ )
Y ) and P⊥

R(AJ )
R(ak) in

the “angle function” (a subspace metric)

Rank-aware?: yes, in the noiseless case, RA-ORMP works with
the subspaces whose dimensions are determined by the rank of
XJ0

0 .

In the noisy case, Y may have full rank due to additive noise.
=⇒ RA-ORMP loses its “rank-aware” ability.

Q: what’s the fix?
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Orthogonal Subspace Matching Pursuit (OSMP)

Like MUSIC, OSMP performs rank-revealing EVD once to
estimates Ŝ.

Update rule: add the index for the subspace R(ak) that minimizing
the distance between P⊥

R(AJ )
Ŝ and P⊥

R(AJ )
R(ak)

instead of the distance between R(P⊥
R(AJ )

Y ) and P⊥
R(AJ )

R(ak)

Slight but important change from RA-ORMP

OSMP avoids the repetition of RR-EVD

We propose to run OSMP up to s− r iterations to get a partial
support for SA-MUSIC (∵ empirically performed better in this way
than running full s steps).
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Comparison of Empirical Performance

Simulation Setup (relevant to DOA and SBS)

All parameters except m are fixed
→ Full support recovery with minimal m is desired
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Empirical Performance of Subspace Methods
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Noiseless SNR = 30 dB

A ∈ C
m×n: partial Fourier (n = 128). X0: exactly 8 row-sparse.

N = 256 snapshots. Rank-defective: rank(X0) = 6 and κ(X0) = 1.
MUSIC fails in the rank defective case.
Full run of OSMP is vulnerable to noise.
SA-MUSIC + OSMP is good!
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Empirical Performance of Subspace Methods
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κ(XJ0
0 ) = 10 κ(XJ0

0 ) = 50

Rank defective (dim(Ŝ) < s) when XJ0
0 is ill conditioned.

SA-MUSIC + OSMP is robust against this rank defect.
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Empirical Performance of Subspace Methods

2 4 6 8 10 12 14 16

10
−2

10
0

10
2

10
4

scale factor

ru
nt

im
e 

(s
ec

)

 

 

MUSIC
M−BP
OSMP
SA−MUSIC+OSMP

n = (scale factor)× 64
Other parameters also increase proportionally

SA-MUSIC + OSMP is faster than M-BP!
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Analysis of OSMP

Full Row Rank + Noiseless: OSMP = RA-ORMP ⇒ RA-ORMP is
guaranteed (in this scenario) if krank(A) > s [Davies & Eldar 2012]

Full Row Rank + Imperfect Subspace Estimate: OSMP 6=
RA-ORMP ⇒ MUSIC is guaranteed (in this scenario) if
δweak
s+1 (A; J0) < (1− 2η)2 [Lee, Bresler, Junge 2012]

Rank-defective: OSMP is guaranteed if δweak
s+1 (A; J0) ≤ δ such that

η ≤
√

1− δ

1 + δ
·

√
1− δ −

√
δ

2 +
√
1− δ −

√
δ

⇒ Of course, also guarantees the first s− r steps
[Lee, Bresler, Junge 2012]
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Analysis of OSMP in Rank Defective Case

Weak-1 RIC Vs. Perturbation
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OSMP r/s = 0.9
MUSIC
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⇒ SA-MUSIC step is easier to guarantee than partial support
recovery by OSMP
⇒ SA-MUSIC + OSMP is guaranteed by the same weak-1 RIP
condition
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Analysis of SA-MUSIC+OSMP for Fourier

SA-MUSIC + OSMP is guaranteed with probability 1− ǫ if

m ≥
(
8(1− η + η2)

3(1− 2η)4

)

︸ ︷︷ ︸
=fη(r/s)

{
ln

(
2(n− s)

ǫ

)
+ ln(s+ 1)

}
(s+ 1)

︸ ︷︷ ︸
≈s lnn
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η = 0.02
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⇒ benefits from larger r/s
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Related Works

Compressive MUSIC (CS-MUSIC): a similar independently
developed idea [Kim, Lee, Ye 2012]

Like SA-MUSIC, CS-MUSIC provides a complete JSR algorithm
when combined with another algorithm for partial support
recovery.

OSMP provides better empirical performance and stronger
guarantees than 2-thresholding and Subspace S-OMP proposed
to be used with CS-MUSIC.

CS-MUSIC analyzed for i.i.d. Gaussian A in the asymptotic case
⇒ No implication for problems of finite size or with non-Gaussian
matrix (not relevant to compressed sensing)

Obozinski et al 2011: sharp phase transition of group Lasso for
i.i.d. Gaussian A in the non-asymptotic case (target application:
multivariate regression, another MMV problem)
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Summary – Part 2

New analysis shows MUSIC for JSR (from the 1990s) to be a
guaranteed algorithm for the noisy, full-row-rank case, with
best-in-class performance and guarantees.

SA-MUSIC extends MUSIC to the rank-defective case.

Overcomes the open problem in sensor array processing of signal
coherence.

Performance competitive with relaxation methods, with
computation lower by orders of magnitude

Performance guarantees

◮ for the noisy case
◮ with practical sensing matrices (random partial Fourier)
◮ reveal the role of signal rank and advantage of MMV over SMV
◮ modest, fully-specified empirical constant
◮ non-asymptotic
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Part III

Oblique Pursuits
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Compressed Sensing Fourier Imaging

=

measurements my Î£

m nA ´Î£ n nD ´Î£

-sparse ns x Î£

sensing matrix sparsifying dictionary

signal nf Î£

Sensing matrix A: dictated by the physics of modality
⇒ i.i.d. Gaussian A is not interesting

Dictionary D: provides sparse approximation of signal of interest
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Problem Formulation

A: random partial DFT matrix

◮ W : n× n DFT matrix (W ∗W = nIn)

◮ ω1, . . . , ωm: m i.i.d. copies of a random variable ω

ω ∼ P(ω = j) = pj j = 1, . . . , n

◮ Construction of A: (kth row of A) = (ωkth row of W ) × 1√
m

D = [d1, . . . , dn]: sparsifying basis (invertible matrix).

*The algorithms and analysis are not restricted to this case.
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RIP-Guaranteed Recovery

s-restricted isometry property (RIP) of Ψ:

δs(Ψ) , max
|J |=s

‖Ψ∗
JΨ− Is‖ ≪ 1

© Various methods (BP, Lasso, CoSaMP, SP, IHT, HTP, etc) provide
an approximation of x⋆ of guaranteed quality
if δks(Ψ) < c for some k ∈ {2, 3, 4} and c ∈ (0, 1)
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RIP of Ψ = AD

Key assumptions:
◮ EΨ∗Ψ = In: isotropy

◮ maxj,k |(Ψ)j,k| ≤ K: incoherence

Atoms (columns) of D are incoherent to the rows of DFT

Compressed sensing is possible:

m ≥ Cδ−2s ln4 n ⇒ δs(Ψ) < δ

Q: When is “isotropy” satisfied?
A: E.g. D is an orthogonal matrix (D∗D = In) and pj =

1
n , ∀j

(sampling with uniform distribution)
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Isotropy Breaks Down ...

§ Energy of natural images is concentrated at lower frequencies
⇒ Variable density recommended [Bresler et al. 1999, Lustig et al. 2007]

§ Data-adaptive D: orthogonality constraint is too restrictive

=⇒ Motivates the study of the “anisotropic” case
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Q: Solution for the Anisotropic Case?

Goal: close the gap between empirical success and theoretical
guarantee of compressed sensing Fourier imaging

Key idea: use properly designed Ψ̃∗ instead of Ψ∗ for recovery by
greedy algorithms

Roadmap
◮ extend RIP of Ψ∗Ψ to restricted biorthogonality property (RBOP) of

Ψ̃∗Ψ

◮ construction of Ψ̃ that satisfies RBOP

◮ modify RIP-guaranteed algorithms to RBOP-guaranteed algorithms
(oblique pursuits)
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Restricted Biorthgonality Property

Intuition: EΨ∗Ψ = In too restrictive? How about EΨ∗Ψ full rank?
Much weaker condition!

Restricted Biorthogonality Property (RBOP)

|〈Ψ̃y,Ψx〉 − 〈y, x〉| ≤ δ‖x‖2‖y‖2, ∀ jointly s-sparse x, y

Restricted biorthogonality Constant (RBOC)

θs(Ψ̃
∗Ψ) , max

|J |=s
‖Ψ̃∗

JΨJ − Is‖

θs(Ψ̃
∗Ψ) is the smallest δ satisfying the above inequality.

RBOP of (Ψ, Ψ̃) ⇐⇒ ∀J s.t. |J | = s, (ΨJ , Ψ̃J) ≈ a biorthogonal
basis
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Construction of Ψ̃

ω1, . . . , ωm: m i.i.d. copies of a random variable ω

ω ∼ P(ω = j) = pj j = 1, . . . , n

Construction of A and Ã:

(kth row of A) = (ωkth row of DFT) × 1√
m

(kth row of Ã) = (ωkth row of DFT) × 1√
m

× 1

npωk

⇒ EÃ∗A = In

Construction of D̃: D̃ = D† = D(D∗D)−1

Construction of Ψ̃: Ψ̃ = ÃD̃
⇒ EΨ̃∗Ψ = ED̃∗Ã∗AD = In

84



RIP of Ψ: Anisotropic Case

Incoherence: maxj,k |(AD)j,k| ≤ K

δs(Ψ) < δ + ρ0 holds with probability 1− η provided that

m ≥ C1(1 + ρ0)
2K2δ−2s(ln s)2 lnn lnm

m ≥ C2K
2δ−2s ln(η−1)

for universal constants C1 and C2

ρ0 = 0 in the isotropic case (D∗D = In and pj = 1

n
, ∀j uniform distr.)

Penalty for anisotropy: constant ρ0 increases as (pj)
n
j=1 and D

deviate from the ideal case (uniform distr. & orthogonal matrix)

ρ0 does not vanish by increasing m
Larger ρ0 ⇒ conservative upper bound on RIC (no guarantee) §
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RBOP of (Ψ, Ψ̃)

θs(Ψ̃
∗Ψ) < δ hold with probability 1− η provided that

m ≥ C1(1 + ρ1)
2(ρ2K)2δ−2s(ln s)2 lnn lnm,

m ≥ C2(ρ2K)2δ−2s ln(η−1)

for universal constants C1 and C2

Penalty for anisotropy: constants ρ1 and ρ2 increase as (pj)
n
j=1

and D deviate from the ideal case (uniform distribution &
orthogonal matrix)

pj > 0, ∀j satisfied ↔ EΨ∗Ψ has full rank (mild condition)

© Still provide good upper bound (of just δ) on RBOC without the
“isotropy” property

86



Oblique Projection
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Building Blocks for Greedy Algorithms

Greedy pursuit algorithms consist of common building blocks:

1) Thresholding of correlation

2) Least-squares

3) Orthogonal matching

RIP guarantees that these blocks work well so that the algorithms
converge to the desired estimate

We modify these blocks using Ψ̃ so that they are guaranteed by
RBOP of (Ψ, Ψ̃)
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Building Blocks for Greedy Algorithms 1

Conventional: matching to Ψ (thresholding of correlation)

◮ input: Ψx for s-sparse x

◮ output: estimated support of x

◮ find s indices k’s that maximize |(Ψ∗Ψx)k|
◮ RIP of Ψ =⇒ Ψ∗Ψx ≈ x =⇒ good estimate

Modified: matching to Ψ̃ (thresholding of oblique correlation)

◮ find s indices k’s that maximize |(Ψ̃∗Ψx)k|
◮ RBOP of (Ψ, Ψ̃) =⇒ Ψ̃∗Ψx ≈ x =⇒ good estimate
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Building Blocks for Greedy Algorithms 2

Conventional: approx. by least-squares (pseudo inverse)

◮ input: J , Ψx such that |supp(x) ∪ J | ≤ 2s

◮ output: estimate the components of x on J

◮ LS solution ẑ = argminz ‖Ψx−Ψ
Ĵ
z‖22 satisfies

ẑ = x|J + (Ψ∗
JΨJ)

−1Ψ∗
JΨsupp(x)\Jx|supp(x)\J

◮ RIP of Ψ =⇒ Ψ∗
JΨsupp(x)\J ≈ 0 =⇒ small error

Modified: approx. by weighted LS (oblique inverse)

◮ WLS solution ẑ = argminz ‖Ψ̃∗
J(Ψx−ΨJz)‖22 satisfies

ẑ = x|J + (Ψ̃∗
JΨJ)

−1Ψ̃∗
JΨsupp(x)\Jx|supp(x)\J

◮ RBOP of (Ψ, Ψ̃) =⇒ Ψ̃∗
JΨsupp(x)\J ≈ 0 =⇒ small error
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Building Blocks for Greedy Algorithms 3

Conventional: orthogonal matching

◮ input: J , Ψx such that |supp(x) ∪ J | ≤ 2s

◮ output: estimate support elements of x outside J

◮ find s indices k’s that maximize |(Ψ∗PR(ΨJ )⊥Ψx)k|
◮ RIP of Ψ =⇒ Ψ∗PR(ΨJ )⊥Ψx ≈ x ⇒ good estimate

Modified: oblique matching

◮ find s indices k’s that maximize |(Ψ̃∗ER(Ψ̃J )⊥,R(ΨJ )⊥
Ψx)k|

◮ RBOP of (Ψ, Ψ̃) =⇒ Ψ̃∗ER(Ψ̃J )⊥,R(ΨJ )⊥
Ψx ≈ x ⇒ good estimate
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Oblique Pursuits

Each building block has been modified.

It remains to assemble the blocks.

Subspace Pursuit (SP) → Oblique Subspace Pursuit (ObSP)

CoSaMP → ObCoSaMP

IHT → ObIHT

HTP → ObHTP

OMP → Oblique Matching Pursuit (ObMP)

...

92



RBOP-based Guarantees

Oblique pursuits extend the RIP-based guarantees of the original
counterparts to RBOP-based guarantees.

Dx⋆: best s-sparse approximation of f over D.

Let ALG ∈ {ObSP,ObCoSaMP,ObIHT,ObHTP}. If (AD, ÃD̃)
satisfies the RBOP, then ALG provides x̂ such that

‖f −Dx̂‖2 ≤ C

(
ǫ+

‖f −Dx⋆‖1√
s

)

ObSP ObCoSaMP ObIHT ObHTP
θ3s < 0.325 θ4s < 0.38 θ3s < 0.5 θ3s < 0.58

With exact arithmetic, ObCoSaMP, ObSP, and ObHTP converge in
finite iterations (at most O(s), possibly O(ln s)).
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1D CS with Biorthogonal Basis
A ∈ C

m×n: generic, κ(EA∗A) = 2 (anisotropic)
Ã ∈ C

m×n satisfies EÃ∗A = In
f is sparse in the std. basis (D = In), nonzeros are random ±1

Support recovery rate was observed (x-axis: m/n, y-axis: s/n)

Thres OMP CoSaMP SP IHT HTP

ObThres ObMP ObCoSaMP ObSP ObIHT ObHTP

Oblique pursuits perform competitively with, or sometime better
than the conventional counterparts.
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2D CS Fourier Imaging
Sensing matrix A: partial Fourier with nonuniform sampling

Basis D: learned dictionary that applies to non-overlapping 8× 8
patches (image size: 512× 512)

Isotropy property is not satisfied (variable density sampling)

D is incoherent to DFT with K = 7.6

Input image: exactly s-sparse phantom s
n = 1

8

Downsample by 3, error measured by PSNR

Sampling Mask Input ObSP (36.26 dB)
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Error Images

Thres IHT ℓ1 Analysis
9.34 dB 9.34 dB 29.75 dB

ObThres ObIHT Zero Filling
31.01 dB 30.95 dB 31.46 dB
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Error Images

CoSaMP SP HTP
29.38 dB 34.58 dB 31.02 dB

ObCoSaMP ObSP ObHTP
32.27 dB 36.26 dB 36.40 dB
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General Framework

(φω)ω∈Ω: (continuous, not necessarily tight) frame for Cn

(φ̃ω)ω∈Ω: oblique dual frame

ω1, . . . , ωm: m i.i.d. copies of a random variable ω following a
distribution ν on Ω

Construction of A and Ã:

(kth row of A) = φT
ωk

× 1√
m

(kth row of Ã) = φ̃T
ωk

× 1√
m

× 1

npωk

(D, D̃) satisfies RBOP (e.g. D̃ = D if D satisfies RIP)

Ψ̃ = ÃD̃
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Discussion

Schnass & Vandergheynst 2008

◮ Modified thresholding and (O)MP using Ψ̃∗ instead of Ψ∗

◮ Heuristic design of Ψ̃
◮ Design criterion: guarantee by Babel function (more conservative

than RIP)

“RIPless” analysis of basis pursuit [Kueng & Gross 2012]: noiseless
case

Iterative greedy algorithms Vs. ℓ1
◮ Guarantees of ℓ1 formulations are based on optimality conditions

(KKT or dual certificate) and are not explicitly related to any specific
algorithm.

◮ Guarantees of greedy algorithms are based on the success of
iterations of algorithms (Modification of algorithms were necessary).
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Summary – Part 3

The isotropy property of Ψ = AD is often violated in practice
=⇒ RIP-based guarantees for CS algorithms break down §

New oblique pursuits replace “orthogonal-type” building blocks in
existing greedy CS recovery algorithms by “oblique-type” or
“bio-orthogonal-type” blocks.

Oblique pursuits are guaranteed by a new Restricted
Biorthogonality Property (RBOP), replacing RIP.

⇒ Guarantees apply to the anisotropic case. ©

Oblique pursuit also improve empirical performance over
conventional pursuits. ©
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Conclusion

Spectrum Blind Sampling and Image Compression on the Fly
(Bresler, Gastpar, Feng, Venkataramani) - compressed sensing in
the 1990’s.

The ideas first proposed for SBS and Image Compression on the
Fly lead to new, best in class guaranteed algorithms for
jointly-sparse recovery.

A new set of theoretical and algorithmic tools- oblique pursuits -
overcome limitations of current methods for compressive sensing
in physical imaging systems.
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