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 Very high sampling rates: 
    hardware excessive solutions 

 
  High DSP rates 
 

 
    
 

Sampling: “Analog Girl in a Digital 
World…”  Judy Gorman 99 

Digital world Analog world 

Sampling 
ADC 

 Signal processing  
 Image denoising 
 Analysis… 

 Music 
 Radar 
 Image… 

ADCs, the front end of every digital 
application, remain a major bottleneck 

Reconstruction 
DAC 
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Today’s Paradigm 

The Separation Theorem: 

Circuit designer experts design samplers  

     at Nyquist rate or higher 

DSP/machine learning experts process the data  

Typical first step: Throw away (or combine in a “smart” way 
e.g. dimensionality reduction) much of the data … 

Logic: Exploit structure prevalent in most applications to reduce 
DSP processing rates 

DSP algorithms have a long history of leveraging structure: 
MUSIC, model order selection, parametric estimation … 

However, the analog step is one of the costly steps 

 

 

 

 

 

Can we use the structure to reduce sampling rate + first 
DSP rate (data transfer, bus …) as well? 
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Key Idea 

 

Reduce storage/reduce sampling rates 

Reduce processing rates 

Reduce power consumption 

Increase resolution 

Improve denoising/deblurring capabilities 

Improved classification/source separation 

 

 

 
Exploit analog structure to improve processing performance: 

Goal:  

Survey the main principles involved in exploiting analog structure 

Provide a variety of different applications and benefits 
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Motivation 

Classes of structured analog signals 

Xampling: Compression + sampling 

Sub-Nyquist solutions 
Multiband communication: Cognitive radio 

Time delay estimation: Ultrasound, radar, multipath 
medium identification 

Ultrasound and compressed beamforming 

Nonlinear compressed sensing: Phase retrieval 
 

Talk Outline 
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Classical/Modern  Sampling 
Theory 

 Subspace prior 
 Recovery filter 

Perfect Reconstruction in a Subspace 



 Sampling theory has developed tremendously in the 60+ years since Shannon 
 Many beautiful results, and many contributors 

  (Unser,Aldroubi,Vaidyanathan,Blu,Jerri,Vetterli,Grochenig,Feichtinger,DeVore,Daubechies,Christensen,Eldar, …)  

 Recovery methods have been developed for signals in arbitrary subspaces 
 Recovery from nonlinear samples as well (Landau, Mirenker and Sandberg 60’s for bandlimited 

inputs, Dvorkind, Matusiak and Eldar 2008 arbitrary subspaces and filters) 
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Optical modulators Power amplifiers CCD arrays Companding 

Nonlinear Sampling 

Theorem (Uniqueness) 

(Dvorkind, Eldar & Matusiak, 08) 

 Since there is a unique stationary point any appropriate descent method will 
converge to the true input 
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Recovery from Nonlinear Samples 

More information: 
Y. C. Eldar and T. Michaeli, “Beyond Bandlimited 
Sampling,” IEEE Signal Proc. Magazine, 26(3): 48-
68, May 2009 
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Structured Analog Models  

 Can be viewed as            bandlimited (subspace) 
 But sampling at rate                  is a waste of resources 
 For wideband applications Nyquist sampling may be infeasible 
 Previous work either assumes known carriers or uses samplers with  

   Nyquist-rate analog bandwidth 

Multiband communication:  
(Landau,Scott,White,Vaughan,Kohlenberg,Lin,Vaidyanathan,Herley,Wong,Feng,Bresler,Mishali,Eldar …)  

 

Question: 
How do we treat structured (non-subspace) models efficiently? 

Unknown carriers – non-subspace 
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Cognitive Radio 

Cognitive radio mobiles utilize unused spectrum ``holes’’ 
Spectral map is unknown a-priori, leading to a multiband model 
 

Federal Communications Commission (FCC) 
frequency allocation 

Licensed spectrum highly underused: E.g. TV white space,  guard bands and more 
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Structured Analog Models 

 Digital match filter or super-resolution ideas (MUSIC etc.) (Quazi,Brukstein,  
   Shan,Kailath,Pallas,Jouradin,Schmidt,Saarnisaari,Roy,Kumaresan,Tufts …) 

 But requires sampling at the Nyquist rate of  
 The pulse shape is known – No need to waste sampling resources! 

Medium identification: 

Unknown delays – non-subspace 

Channel 

Question (same): 
How do we treat structured (non-subspace) models efficiently? 

Similar problem arises in radar, UWB 
communications, timing recovery problems … 
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Ultrasound 
 
High digital processing rates 

Large power consumption 

 

Tx pulse Ultrasonic probe 

Rx signal Unknowns 

(Collaboration with General Electric 
Israel) 

Echoes result from scattering in the tissue 

The image is formed by identifying the 
scatterers 
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To increase SNR the reflections are viewed by an antenna array 

SNR is improved through beamforming by introducing appropriate 
time shifts to the received signals 

 

 

 

 

 

 

 

Requires high sampling rates and large data processing rates 

One image trace requires 128 samplers @ 20M, beamforming to 150 
points,  a total of 6.3x106 sums/frame 

 

 

Processing Rates 

Scan Plane 

 Xdcr 

Focusing the received 
 beam by applying delays 

Portable  
Systems 

Low-End 
Systems 

High-End 
Systems 

 

Goal: reduce ultrasound machines to a size of a laptop at same resolution 

Compressed Beamforming 
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Resolution (1): Radar 
 

    Principle: 
  A known pulse is transmitted 
  Reflections from targets are received  
  Target’s ranges and velocities are identified 

   Challenges: 

  Targets can lie on an arbitrary grid 
  Process of digitizing  

     loss of resolution in range-velocity domain 
 Wideband radar requires high rate sampling and processing 

which also results in long processing time 
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Resolution (2): Subwavelength Imaging 

    Diffraction limit:  Even a perfect optical imaging system has a 
resolution limit determined by the wavelength λ 

The smallest observable detail is larger than ~ λ/2 

This results in image smearing  

100 nm 

474 476 478 480 482 484 486

462

464

466

468

470

472

474

476

(Collaboration with the groups of Segev and Cohen) 

Sketch of an optical microscope:  
  the physics of EM waves acts  
     as an ideal low-pass filter 
 

Nano-holes  
as seen in  

electronic microscope 

Blurred image  
seen in  

optical microscope 
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Imaging via “Sparse” Modeling 

Union method 

150 nm 

 Radar: 

 Subwavelength Coherent Diffractive Imaging: 

Szameit et al., Nature Photonics, ‘12 

Bajwa et al., ‘11 

474 476 478 480 482 484 486

462

464

466

468

470

472

474

476

Recovery of  
sub-wavelength images  
from highly truncated  
Fourier power spectrum 
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Proposed Framework  

Instead of a single subspace modeling use union of subspaces 
framework 

 

Adopt a new design methodology – Xampling  

 

 

 

Results in simple hardware and low computational cost on 
the DSP 

Union + Xampling = Practical Low Rate Sampling  

Compression+Sampling = Xampling 

X prefix for compression, e.g. DivX 
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 Motivation 

Classes of structured analog signals 

 Xampling: Compression + sampling 

 Sub-Nyquist solutions 
Multiband communication: Cognitive radio 

Time delay estimation: Ultrasound, radar, multipath 
medium identification 

Ultrasound and compressed beamforming 

Nonlinear compressed sensing: Phase retrieval 

Talk Outline 
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Union of Subspaces 

 Model: 
 

 Examples: 
 

(Lu and Do 08, Mishali and Eldar 09) 
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Union of Subspaces 

 Model: 
 

 Standard approach: Look at sum of all subspaces  
 

Signal bandlimited to  
                High rate 

(Lu and Do 08, Mishali and Eldar 09) 
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Union of Subspaces 

 Model: 
 
 
 
 
 
 
 
  Allows to keep low dimension in the problem model 
  Low dimension translates to low sampling rate 

(Lu and Do 08, Mishali and Eldar 09) 
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Talk Outline 

 Motivation 

Classes of structured analog signals 

 Xampling: Compression + sampling 

 Sub-Nyquist solutions 
Multiband communication: Cognitive radio 

Time delay estimation: Ultrasound, radar, multipath 
medium identification 

Ultrasound and compressed beamforming 

Nonlinear compressed sensing: Phase retrieval 
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~ ~ ~ ~ 
Naïve attempt: direct sampling at low rate 
Most samples do not contain information!! 
 
 
 
 
Most bands do not have energy – which band should be sampled? 
 
 
 

Difficulty 
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 Alias all energy to baseband before sampling (analog projection) 
 Can sample at low rate 
 Resolve ambiguity in the digital domain 
 
 
 

~ ~ ~ ~ 

 Smear pulse before sampling  
   (analog projection – bandwidth reduction) 

 Each sample contains energy 
 Resolve ambiguity in the digital domain 

 
 
 

Intuitive Solution: Pre-Processing 
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Create several streams of data 

Each stream is sampled at a low rate 

     (overall rate much smaller than the Nyquist rate) 

Each stream contains a combination from different subspaces 

 

 

 

Identify subspaces involved  

Recover using standard sampling results 

Xampling: Main Idea 

Hardware design ideas 

DSP algorithms 
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For linear methods: 

Subspace techniques developed in the context of array 
processing (such as MUSIC, ESPRIT etc.) 

Compressed sensing: only for subspace identification 
Connections between CS and subspace methods: (Malioutov, Cetin, and Willsky , Lee and Bresler, 
Davies and Eldar, Kim, Lee and Ye, Fannjiang, Austin, Moses, Ash and Ertin) 

 

For nonlinear sampling: 

Specialized iterative algorithms: quadratic compressed 
sensing and more generally nonlinear compressed sensing 

Subspace Identification 

We use CS only after sampling and only to detect the subspace 
Enables efficient hardware and low processing rates 
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Compressed Sensing 

(Donoho 2006) 

(Candès, Romberg, Tao 2006) 
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Compressed Sensing 
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Optimal Xampling Hardware 

Sampling Reconstruction 

White 
Gaussian 

noise 

We derive two lower bounds on the performance of UoS estimation: 

Fundamental limit – regardless of sampling technique or rate 

Lower bound for a given sampling rate 

Allows to determine optimal sampling method 

Can compare practical algorithms to bound 

(det. by   ) 

(Ben-Haim, Michaeli and Eldar 10) 
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Bounds for Noisy UoS 

Theorem: Sample-Free CRB Rate of innovation 

Bound on estimating a continuous time function: 

Typically bounds are derived for finite-dimensional parameters 

Here we need bounds on continuous-time structured functions 

To prove the bound we use ideas of CRB with measure theory and 
Pettis expectation 

Rate of innovation: Number of degrees of freedom per unit time, coined by Vetterli et. al. 
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Bounds for Noisy UoS 

Theorem: Sample-Free CRB 

Theorem: CRB for given sampling method 

Rate of innovation 
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Optimal Sampling 

 

Goal: recover a segment of a random process         , with autocorrelation                                                          

       from      samples 

Method: optimize MSE using previous bound 

 

 

 

 

 

When                     then  

Sampling Reconstruction 

 
The minimal MSE is obtained with                where            are 
the eigenfunctions of 

Theorem (Generalized KLT) 

Sampling with Sinusoids is Optimal 
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Xampling Hardware 

            - periodic functions 

                                            sums of exponentials 

 The filter H(f) allows for additional freedom in shaping the tones 

The channels can be collapsed to a single channel 
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Some Earlier Work … 
 

Prony 1795, Caratheodory 1900, Rife and Boorstyn 70s:  Sampling of 
pure tones 

Beurling 1938: Spectrum extrapolation of pulses using CT L1 

Bresler, Feng, and Venkataramani 1996-2000: Certain classes of MB 
signals 

Vetterli et. al. 2002: Finite rate of innovation framework 

Tropp et. al. 2010: Random demodulator 

Goal: Target System-Level Challenges  

Unified framework for continuous time models 

Broad class of signals 

Efficient and robust hardware 

Low rate DSP 

Applications: nonlinearities, correlations and more 
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Talk Outline 

 Motivation 

 Classes of structured analog signals 

 Xampling: Compression + sampling 

 Sub-Nyquist solutions 
 Multiband communication 

 Time delay estimation: Ultrasound, radar, multipath 
medium identification 

Ultrasound and compressed beamforming 

Nonlinear compressed sensing: Phase retrieval 
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no more than N bands, max width B, bandlimited to   

1. Each band has an uncountable 
number of non-zero elements 

2. Band locations lie on the continuum 

3. Band locations are unknown in advance 

Signal Model 

~ ~ ~ ~ 

(Mishali and Eldar 07-09) 
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Rate Requirement 

Average sampling rate 

Theorem (Single multiband subspace) 

(Landau 1967) 

Theorem (Union of multiband subspaces) 

(Mishali and Eldar 2007) 

1. The minimal rate is doubled. 
2. For                 , the rate requirement is           samples/sec (on average). 
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The Modulated Wideband Converter 

~ ~ ~ ~ 
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Time-Interleaved ADCs 

A high-rate ADC comprised of a bank of lowrate devices 

 Both T/H and mux operate at the Nyquist rate 
 Digital processing and recovery requires    

interpolation to the high Nyquist grid 
 Accurate time-delays      are needed 
Channels cannot generally be collapsed 

T/H 
Qnt. 

T/H 
Qnt. 

T/H 
Qnt. 

1 
3 

4 1 1 
3 

3 
4 

4 

(Lin and Vaidyanathan, Herley and Wong, Feng and Bresler, Mishali and Eldar) 
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Recovery From Xamples 

~ ~ ~ ~ 

Spectrum sparsity: Most of the           are identically zero  
For each n we have a small size CS problem 
Problem: CS algorithms for each n  many computations 
Solution: Use the ``CTF’’ block which exploits the joint sparsity and 
reduces the problem to a single finite CS problem 
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A 2.4 GHz Prototype 

Rate proportional to the actual band occupancy 
All DSP done at low rate as well 
2.3 GHz Nyquist-rate, 120 MHz occupancy 
280 MHz sampling rate 
Wideband receiver mode: 

49 dB dynamic range, SNDR > 30 dB over all input range 

ADC mode: 
1.2 volt peak-to-peak full-scale, 42 dB SNDR = 6.7 ENOB 

 

(Mishali, Eldar, Dounaevsky, and Shoshan, 2010) 
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Sub-Nyquist Demonstration 

FM @ 631.2 MHz AM @ 807.8 MHz 

1.
5 

M
H

z 

10 kHz 100 kHz 

Overlayed sub-Nyquist  
aliasing around 6.171 MHz 

+ + 

FM @ 631.2 MHz AM @ 807.8 MHz Sine @ 981.9 MHz MWC prototype 

Carrier frequencies are chosen to create overlayed aliasing at baeband 

Reconstruction 
(CTF) 

Mishali et al., 10 
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Online Demonstrations 

  GUI package of the MWC 
 
 
 
 
 
 
 
Video recording of sub-Nyquist sampling + carrier recovery in lab 
 

SiPS 2010 
2010 IEEE Workshop on 

Signal Processing Systems  
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Streams of Pulses 

            is replaced by an integrator 

 Can equivalently be implemented as a single channel with  

 

 

Application to radar, ultrasound and general localization problems such as GPS 

  

 

 

(Gedalyahu, Tur, Eldar 10, Tur, Freidman, Eldar 10) 
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Unknown Pulses 

Output corresponds to aliased version of Gabor coefficients 
Recovery by solving 2-step CS problem  
 

 

Row-sparse Gabor Coeff. 

(Matusiak and Eldar, 11) 
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Noise Robustness 
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proposed method

integrators
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proposed method

integrators

L=2 pulses, 5 samples L=10 pulses, 21 samples 

MSE of the delays estimation, versus integrators approach  (Kusuma & Goyal ) 

The proposed scheme is stable even for high rates of innovation! 
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Application:  
Multipath Medium Identification 

 
LTV channel  

         propagation paths 

Medium identification (collaboration with National Instruments): 
Recovery of the time delays 
Recovery of time-variant gain coefficients 

    pulses per period  

The proposed method can recover the channel parameters from  
sub-Nyquist samples 

(Gedalyahu and Eldar 09-10) 
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Each target is defined by: 
Range – delay 
Velocity – doppler 
 

Application: Radar 

(Bajwa, Gedalyahu and Eldar, 10) 

In theory, targets can be identified with infinite 
resolution as long as the time-bandwidth 
product  satisfies 
Previous results required infinite time-
bandwidth product 
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Xampling of Radar Pulses 

analog filter banks ADCs 

splitters 

low pass filter 

(Itzhak et. al. 2012  in collaboration with NI) 

Demo of real-time radar at NI week as we speak .. 
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Low SNR: -25 dB 

Target delay and Doppler chosen randomly in the continuous 
unambiguous interval 
L =5, PRI = 0.1 mSec, P = 100 pulses, bandwidth B = 10MHz 
Nyquist rate generates 2000 samples / pulse, Xampling uses 200 samples 
 
 
 

MF: 2/5 detections 
Xampling: 4/5 detections 

(Bar-Ilan and Eldar, 12) 
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Low SNR 
Target delay and Doppler chosen randomly in the continuous 
unambiguous interval 
L = 5, PRI = 0.1 mSec, P = 100 pulses, bandwidth B = 10MHz 
Nyquist rate generates 2000 samples / pulse, Xampling uses 200 samples 
 
 
 

Hit rate as a 
function of SNR 
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Application to Ultrasound 

Ultrasonic pulse is transmitted into the tissue 

Pulse is conducted along a relatively narrow beam 

Echoes are scattered by density and propagation-velocity perturbations 

Reflections detected by multiple array elements. 

Beamforming is applied – digital processing , signals must first be 
sampled at Nyquist rate (~20MHz) 

 

 

 

 

 

 

 

 

Individual traces  

 
  

 Nyquist Sampling  
(~20MHz / element) 

 
Beamforming 

 

Wagner, Eldar, and Friedman, ’11 
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Standard Imaging - Beamforming 

 

 

 

 

 

 

 

 

Non-linear scaling of the received signals 
 
 
 
       
     - distance from     ’th element to origin , normalized by    . 

Performed in the digital domain (after sampling at Nyquist-rate) 

Beamformed Signal  

Individual traces  

 
  

 Nyquist Sampling  
(~20MHz / element) 

 
Beamforming 

 

• Focusing along a certain axis – reflections originating from 
off-axis are attenuated (destructive interference pattern) 

• SNR is improved 
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Sample Rate Reduction - Motivation 

Portable  
Systems 

Low-End 
Systems 

Mid-Range 
Systems 

High-End 
Systems 

Reduction of sampling rate implies potential reduction of machinery 
size and power  consumption 

Recent developments in medical treatment typically imply increasing 
the number of transducer elements involved in each imaging cycle 

Amount of raw data that needs to be transmitted and processed grows 
significantly, effecting machinery size and power consumption 

By reducing sampling and processing rate, we may achieve significant 
reduction of data size - this implies potential reduction of machinery 
size and power consumption, while maintaining image quality 

 

 

Our Approach:  
 Integrate Xampling and beamforming 
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Possible approach (does not work in practice….): Replace Nyquist rate sampling 
by Xampling, then reconstruct signals and apply beamforming 

Problems:   

Low SNR: erroneous parameter extraction by sub-Nyquist scheme 

Reflections from a relatively wide region: complicated algorithm for 
matching pulses across signals 

Proposed solution -  Xample the beamformed signal 

 

 

 

 

 

 

 

Macroscopic Reflectors 

Noise 

Problem:  beamformed signal may only be Xampled “conceptually”  
in practice – we only have access to individual receivers! 

Ultrasound and Xampling 
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Compressed Beamforming Scheme 

 

 

 

 

 

 

 

 

 

 

 

Scheme combines signals from multiple elements for SNR improvement. 

Similar to beamforming techniques used in standard ultrasound imaging.  

Here, the beamforming is moved to the compressed domain – samples at 
output corresponds to the beamformed signal. 

 

 

 

 

 

 

 

 





Beamformed  
signal 

Distortion, m 

Conceptual beamforming 1D Xampling 

Distortion, m 

Distortion, -M 

Distortion, M 
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Applying receiver-dependent distortions to 
two of the modulating kernels  





1D Xampling 

Distortion, m 

Distortion, m 

Samples from  
the rest of the  
active elements 

Samples from  
the rest of the  
active elements 

Compressed Beamforming Scheme 
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Digital Compressed Beamforming 

 *

1s t 1 t 1
V

1

T
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K


ˆ
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 ĉ1M 

 *

Ms t M t M
V

M

T
t n

K


ˆ
McMAMΦ

Using some algebraic manipulations we can show that the same affect can 
be obtained digitally 
Use existing schemes to extract extended set of Fourier series coefficients 
(e.g. Sum of Sincs or multichannel bank) and then apply appropriate linear 
transform on the coefficients 

Low rate sampling Low rate beamforming 
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Results 

Standard Imaging Xampled beamforming  scheme 1  Xampled beamforming  scheme 2  

 

Xampling results in an error in the peaks with standard deviation being 
0.42mm. 

We obtain a more than 7-fold reduction in sample rate. 
 

* Applying 2nd scheme – Max. number of samples (for some line angles & sensor indexes) -  266 

 
1662 real-valued samples, per sensor  

per image line 

 
200 real-valued samples, per sensor per 

image line (assume L=25 reflectors per line) 

 
232 real-valued samples, per sensor  

per image line (average *) 
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Results can be extended to include many classes of nonlinear sampling  

 

Example: 

 

 

In particular we have extended these ideas to phase retrieval problems 
where we recover signals from samples of the Fourier transform 
magnitude (Candes et. al., Szameit et. al., Shechtman et. al.) 

Many applications in optics: recovery from partially coherent light, 
crystallography, subwavelength imaging and more 

Nonlinear Sampling 

Michaeli & Eldar, ’12 

Nonlinear Sampling 

Optical modulators Power amplifiers CCD arrays Companding 
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Define a matrix 
 
Look for X  that is: 

Rank 1 
Row sparse 
Consistent with the measurements 
PSD 
 
 
 

 

Quadratic Compressed Sensing 

*:X aa

 

 

1/2

2

argmin . .

0

X

ab

a b

u u

Rank X s t

X

tr M X y u U

X





 
 

 

   



 

In practice we replace Rank(X) with log det (X+b I) and solve iteratively  
Can generalize the approach to more general nonlinearities and use efficient 
greedy methods (Beck and Eldar 2012) 

Fazel, Hindi, Boyd 03 

Shechtman, Eldar, Szameit and Segev, ’11 
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Phase Retrieval  

 Subwavelength Coherent Diffractive Imaging: 
   Sub-wavelength image recovery from highly truncated Fourier spectrum  

 Quadratic CS: based on SDP-relaxation and log-det approximation 
 

 

Szameit et al., Nature Photonics, ‘12 

474 476 478 480 482 484 486
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100 nm 
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Compressed sampling and processing of many signals 

Wideband sub-Nyquist samplers in hardware 

Union of subspaces: broad and flexible model 

Practical and efficient hardware 

Many applications and many research opportunities: extensions to 
other analog and digital problems, robustness, hardware … 

Exploiting structure can lead to a new sampling 
paradigm which combines analog + digital 

Conclusions 

More details in:  
M. Duarte and Y. C. Eldar,  “Structured Compressed Sensing: From Theory to Applications,” Review for TSP. 
M. Mishali and Y. C. Eldar, "Xampling: Compressed Sensing for Analog Signals", book chapter available at 
http://webee.technion.ac.il/Sites/People/YoninaEldar/books.html 
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Xampling Website 

webee.technion.ac.il/people/YoninaEldar/xampling_top.html 

Y. C. Eldar and G. Kutyniok, "Compressed Sensing: Theory and Applications", 
Cambridge University Press, 2012 

http://webee.technion.ac.il/people/YoninaEldar/xampling_top.html
http://webee.technion.ac.il/people/YoninaEldar/xampling_top.html
http://webee.technion.ac.il/people/YoninaEldar/xampling_top.html
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Thank you 


