

Radar Signal Processing: Opportunities for SSPers

Randy Moses

Dept. of Electrical and Computer Engineering The Ohio State University

This research was supported by AFOSR, AFRL, and DARPA

- Advances in digital processing are enabling revolutionary opportunities for radar signal processing
- Opportunities for Statistical Signal Processing
 - Persistent sensing over space and time
 - More sophisticated radar image/volume reconstructions
 - Multi-function radars that can simultaneously perform imaging, detection, moving object tracking and recognition, ...
 - Uncertainty analysis and estimation bounds
- Challenges
 - Traditional models for radar backscattering may not apply over wide angles
 - Large data, processing, and communications tasks

Persistent Sensing enables:

- High resolution, volumetric imaging of stationary objects and scenes
- Continuous tracking of moving objects

Outline

- Radar 101
- Revisit modeling assumptions for wide angle radar
- How can sparsity play a role?
 - Parametric Modeling
 - Sparse Reconstruction
- Feature-Based Classification
- Transmit adaptation

Outline

Radar 101

- Revisit modeling assumptions for wide angle radar
- How can sparsity play a role?
 - Parametric Modeling
 - Sparse Reconstruction
- Feature-Based Classification
- Transmit adaptation

SAR Data Collection

SAR Image Formation

Traditional approach: tomography

Tomographic image I(x,y) is a matched filter for an isotropic point scatterer at location (x,y). [Rossi+Willsky]

3D Reconstruction

Large data size and processing requirements

Filled aperture is difficult to collect

X-Band Radar 3° aperture 1ft x 1ft res

Presented at: the 2012 Statistical Signal Processing Workshop, Ann Arbor

SAR Image Detail

Outline

Radar 101

Revisit modeling assumptions for wide angle radar

- How can sparsity play a role?
 - Parametric Modeling
 - Sparse Reconstruction
- Feature-Based Classification
- Transmit adaptation

Persistent, Wide-Angle SAR

Persistent Sensing enables:

- High resolution, volumetric imaging of stationary objects
- Continuous tracking of moving objects

AFRL Gotcha Radar

15.25 Km. 5 Km. 5 Km.

Data Storage: 90 G samples/circle Image formation: 45 Tflops/sec Communications: 190 M samples/sec

Wide Angle Scattering Behavior

- At high frequencies, radar backscatter is well-modeled as a sum of responses from canonical scattering terms.
- EM scattering theory provides a rich characterization of backscatter behavior as a function of object shape
 - Azimuth, elevation, frequency dependence
 - Polarization dependence
 - Phase response range
- Most backscatter does NOT behave like a point scatterer over wide angles
 - Standard imaging is not statistically (close to) optimal

Presented at: the 2012 Statistical Signal Processing Workshop, Ann Arbor

Jackson & RLM: 2009

When the radar measurement extent is \leq scattering persistence, the isotropic assumption is ~satisfied, and tomographic imaging is ~a matched filter.

For wide-angle measurements the isotropic scattering assumption breaks down.

- Tomography is no longer a matched filter

Coherent wide-angle image is not well-matched to limited persistence scattering behavior

GLRT Image Formation

GLRT Image: Image I(x,y) is GLRT output at (x,y) to a limitedpersistence scattering center with center ϕ_c and width α .

$$R(x, y, \phi_c, \alpha) = \text{std image with center } \phi_c$$
, width α

 $I(x, y) = \arg \max R(x, y, \phi_c, \alpha)$

 ϕ_{c}, α

Approximation: fix width α ; quantize ϕ_{c} .

Then the GLRT image is approximately max over sub-aperture images.

RLM, Potter, Cetin: 2004

GLRT Image: pixel
$$p_{ij} = \arg \max_{\phi_c} p_{ij}^{\phi_c} \approx \arg \max_k p_{ij}^k$$

azimuth

GRLT Imaging

Generalizes Rossi+Willsky matched filter result to wideangle imaging with limited-persistence scattering

Coherent and GLRT Image

110° Coherent Image

4 GHz bandwidth

110° GLRT Image

Outline

Radar 101

- Revisit modeling assumptions for wide angle radar
- How can sparsity play a role?
 - Parametric Modeling
 - Sparse Reconstruction
- Feature-Based Classification
- Transmit adaptation

Sparse 3D Radar Reconstruction

- 3D radar reconstruction necessarily will use (very) sparse measurements
- Is the radar reconstruction sufficiently sparse to overcome measurement sparsity?

AFRL Backhoe Data Dome, with sparse "squiggle path" shown

Polarization

Squiggle Path 3D Tomographic Reconstruction

Parametric: Canonical Scattering Model

Nonparametric: *l*_p Regularized Least-Squares

Sparsity

- Measurements y ($M \times 1$) : sparse sampling of full (f,az,el) radar measurement space
- Reconstruction: x ($N \times 1$): sparse set of (x,y,z) locations with significant radar scattering energy

$$y = Ax + \nu$$

$$A = \left[e^{-j(k_{x,m}x_n + k_{y,m}y_n + k_{z,m}z_n)} \right], \quad M \times N$$

Sparse reconstruction:

$$\hat{x} = \arg \min_{x} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{p}^{p} \quad p \le 1$$

Algorithmic Challenges

- For large scale problems, the algorithm can become very memory and computationally expensive.
 - E.g. for backhoe squiggle problem:
 - $M \approx 10^5$
 - $N \approx 10^7$
- A is structured and may not satisfy RIP for reconstruction samplings of interest.
 - Recent advances [e.g Austin, Fannjiang] incorporate structure in x to allow high coherence in A.

Squiggle Path Collection: l_p Regularized LS Reconstruction

Presented at: the 2012 Statistical Signal Processing Workshop, Ann Arbor

Austin, Ertin, RLM, 2011

Gotcha Vehicle Data

Gotcha *l*_p **Reconstructions: Camry**

Austin, Ertin, RLM, 2011

Outline

Radar 101

- Revisit modeling assumptions for wide angle radar
- How can sparsity play a role?
 - Parametric Modeling
 - Sparse Reconstruction
- Feature-Based Classification
- Transmit adaptation

Vehicle Classification

Sentra

Malibu

Taurus

Prism

Maxima

- Six sedans from a 10-class problem
- Spatially-varying signatures across
 large scene

Vehicle Classification; Attributed Point Sets

Outline

Radar 101

- Revisit modeling assumptions for wide angle radar
- How can sparsity play a role?
 - Parametric Modeling
 - Sparse Reconstruction
- Feature-Based Classification
- Transmit adaptation

Joint Communication and Radar Sensing

Image at UAV

Joint communication/ sensing link Can adaptive transmit waveforms be used to simultaneously sense a scene and communicate sensed data to a receiver?

> AFRL Gotcha Radar Communications: 190 M samples/sec

Communicated image at base station

OSU Software Defined Radar

TI SDR

FPGA

Xilinx Virtex-4

SX35

16

DAC

125 MSPS

2 CH

ADC

125 MSPS

Compact

MATLAB

m-code

- Wide Bandwidth (125 MHz)
- Real-time (DSP + FPGA)

Host Computer

DSP

DM6446

тι

С

RF

Module

5.4 - 6.4

GHz

- PN transmit signal waveform
- Measured and communicated range-Doppler maps
 - nth range-Doppler map used to adapt (n+1)st waveform set.

Take-Home Points

- Advances in sampling and digital processing are moving radar systems more firmly in the digital realm.
- Persistence and wide-angle sensing motivate rethinking the models and algorithms for radar processing.
- Effective 3D reconstruction from sparse apertures is possible
 - Surprising fidelity
 - Huge issues in computation, communication remain
- Huge opportunities for SSPers
 - Modeling; tractable algorithms; adaptation; persistent tracking; classification; performance estimation

Data Resources

AFRL Sensor Data Management System

- https://www.sdms.afrl.af.mil
- Backhoe Volumetric Data (synthetic)
- Civilian Vehicle Data Domes (synthetic)
- Gotcha data (measured)
- SAR-GMTI Challenge Problem

Presented at: the 2012 Statistical Signal Processing Workshop, Ann Arbor

Thank you!