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Abstract

Spatial-temporal local motion features have shown
promising results in complex human action classification.
Most of the previous works [6],[16],[21] treat these spatial-
temporal features as a bag of video words, omitting any
long range, global information in either the spatial or tem-
poral domain. Other ways of learning temporal signature
of motion tend to impose a fixed trajectory of the features
or parts of human body returned by tracking algorithms.
This leaves little flexibility for the algorithm to learn the
optimal temporal pattern describing these motions. In this
paper, we propose the usage of spatial-temporal correlo-
grams to encode flexible long range temporal information
into the spatial-temporal motion features. This results into
a much richer description of human actions. We then ap-
ply an unsupervised generative model to learn different
classes of human actions from these ST-correlograms. KTH
dataset, one of the most challenging and popular human ac-
tion dataset, is used for experimental evaluation. Our algo-
rithm achieves the highest classification accuracy reported
for this dataset under an unsupervised learning scheme.

1. Introduction

Accurate human action classification is a fundamental
problem in computer vision as well as an active field of re-
search in recent years. However, it still remains a challeng-
ing task for computers to achieve robust action recognition
due to cluttered background, camera motion, occlusion and
geometric and photometric variances of the foreground per-
son(s). A good example is shown in Fig.1. In this dataset,
many different subjects perform the same action (e.g. walk-
ing, or hand waving) against different background (e.g. in-
door, outdoor), recorded by a moving camera (e.g. zoom in
and out).

Recently, a number of works using spatial-temporal fea-

Figure 1. Examples of the KTH database. In this dataset, many different
subjects perform the same action (e.g. walking, or hand waving) against
different background (e.g. indoor, outdoor), recorded by a moving camera
(e.g. zoom in and out). It still remains a challenging task for computers to
achieve robust action recognition under these conditions.

tures of video clips have shown great promise in action
recognition and classification. For example, Efros et al. [7]
propose the use of motion descriptors based on optical flow
to characterize motion in very low resolution video se-
quences. Their method relies on previously segmented and
aligned clips of human actions. Blank et al. [3] represent
actions by describing the spatial-temporal shape of silhou-
ettes. Their approach relies on background subtraction to
obtain a silhouette of the moving subject. Another line of
work is that of Fanti et al. [8] and Song and Perona [23],
which integrate multiple cues, such as velocities and posi-
tions of tracked feature points, to model actions with tri-
angulated graphs. Our work is mainly inspired by Dollar
et al. [6] and Niebles et al. [16]. In both of these works,
fragments of spatial-temporal features are extracted based
on salient changes of the appearance of the patch. These
spatial-temporal features are local descriptors of a video
clip, subtending a spatial-temporal cuboid. In [6], a sim-
ple but supervised framework is deployed to discriminate
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human action classes via these local spatial-temporal de-
scriptors. Specifically, the authors use an SVM classifier
and achieve highly discriminative results. Recently, [14]
propose to model human actions by segmenting the video
in spatio-temporal super-pixels; [12] introduce a scheme
for matching video sequences using intra-frame and inter-
frame constrained local features; [15] introduce the tensor
canonical correlation analysis for extracting correlation fea-
tures across videos in the joint space-time domain.

Unlike the aforementioned contributions, Niebles et
al. [16] have demonstrated the usage of spatial-temporal
features in an unsupervised generative model. Local fea-
tures are clustered into spatial-temporal codewords called
video words and then the distributions of these video
words are learnt by a probabilistic lantent semantic analysis
(pLSA). Though this framework is unsupervised, it achieves
competitive results compared to [6, 14, 12]. Interesting is
also the work by [18] which have modified the pLSA model
to include position information of the local features. Un-
like [16], however, the method requires labeled and seg-
mented video sequences as an input.

While these spatial-temporal local features have demon-
strated their effectiveness in action classification, the works
mentioned above fail to capture long range temporal pat-
terns of action classes. Fig.2 shows an example where two
classes share a similar distribution of video words result-
ing in an ambiguous representation for the unsupervised
generative learning scheme. Our goal in this paper is to
preserve the unsupervised nature of the generative models
proposed by Niebles et al. [16], but incorporate the learn-
ing of discriminative temporal patterns across these local
features. A number of works have proposed to learn tem-
poral trajectories of motions (e.g. Yilmaz and Shah, [24]).
But most of these papers rely on a tracking algorithm that
might or might not provide reliable information. In addi-
tion, the temporal pattern that is learnt via these methods
is imposed to be the ’global’ temporal patterns of the en-
tire action sequence. The coverage of the temporal window
is pre-designed and inflexible. Ideally, one would like to
learn these patterns at flexible temporal scales so that the
algorithm is more robust to occlusion in the temporal di-
mension.

We introduce the idea of correlograms to capture the
temporal co-occurrences patterns of the spatial-temporal
features. This idea is initially proposed by Savarese et
al. [19] for learning object classes in static images. The
correlograms are used to capture the long-range spatial pat-
terns beyond the local appearance of patches. We suggest
that a similar idea can be extended in the time domain. In
this paper, we propose to use spatial-temporal correlatons,
or ST-correlatons to model the temporal correlation patterns
among these spatial-temporally local codewords in differ-
ent human action classes. We will give the formal defini-

tion of the ST-correlatons in Sec.2. We test our algorithm
in the most challenging human action dataset: the KTH ac-
tion dataset [20]. We obtain the best action classification
results reported for this dataset under an unsupervised learn-
ing scheme.

The rest of the paper is organized in the following way.
Sec.2 introduces the concept of correlogram and show how
we can modify and extend it to the spatial-temporal do-
main. Sec.3 illustrates an action classification model based
on these spatial-temporal correlograms. We show the ex-
perimental results and comparison with previous works in
Sec.4 and conclude the paper in Sec.5.

2. Spatial-temporal correlograms

The original concept of correlogram goes back to
Juletz [2] Haralick [17]. The idea was to describe the two-
dimensional spatial dependence of gray scale values by a
multi-dimensional structure called the co-occurrence ma-
trix. Such matrix encodes the correlation of pairs of gray
scale values as function of distance and angular variations
and in turn provides powerful models for image classifi-
cation. Huang et al. [11] extend this work and simplify
the structure of the co-occurrence matrix by only retain-
ing the correlation of pairs of intensity values (here the
color values are considered as well) as function of dis-
tance. The shape context descriptor proposed by Belongie
et al. [1] generalizes and complements these ideas for im-
ages with binary labels. Recently, Savarese et al. [19] have
suggested to usage of correlograms for capturing the spa-
tial arrangement of codewords. Furthermore, the authors
achieve compact spatial modeling without loss of discrimi-
nation through the introduction of adaptive vector quantized
correlograms, which they call correlatons. A correlaton is
representative of a typical spatial co-occurance of a pair of
codewords. Then, object models are obtained as histogram
of codewords and correlatons. The former captures the ap-
pearance information of the object in terms of distribution
of typical appearence elements (i.e. codewords); the latter
captures the distribution of typical spatial relationships, (or,
correlations between codewords - i.e., correlatons).

In this paper we follow the same philosophy of [19] and
extend it to the spatial-temporal domain. Given a video-
sequence, the action may be represented as a collection of
spatial-temporal interest points. Each interest point has an
associated label (membership). The label can be assigned
by associating each interest point to the closest element of a
vocabulary of representative spatial-temporal interest points
which are called video words. Fig.2 shows examples of a
spatial-temporal distribution of interest points where each
of them is assigned to a video word (depicted by a color
code). As Fig.2 shows, several interest points present the
same label (i.e. same color code), hence creating the pres-
ence of spatial-temporal patterns of labels. Thus, the idea is
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Figure 2. The action is visualized as distribution of video words. This
distribution clearly forms patterns of visual words in time-space. The idea
is to exploit correlograms to capture the spatial-temporal correlation of
such patterns of labels. The graph depicts the top view of two different
actions across time. The x axis represents the horizontal position on a
x, y, t plot. Each color is associated with a different label. This figure is
best viewed in colors

to exploit correlograms to capture the spatial-temporal cor-
relation of such patterns of labels.

Similarly to [19], correlograms can be vector quan-
tized, and we call the resulting quantized vectors spatial-
temporal correlatons (or, ST-correlatons). The set of ST-
correlatons effectively captures the multi modal nature of
spatial-temporal correlations of video words. Then, a video
sequence can be characterized by the distribution of appear-
ance elements (video words) and spatial-temporal relation-
ships (i.e. ST-correlatons). This representation has the ad-
vantage of being very compact, reducing over fitting prob-
lems and yet being able to guarantee a high level of inter
class discriminability as the experimental section shows.

2.1. Definitions

We follow the notation in [19]. Given a spatial-temporal
distribution of spatial-temporal interest points and their cor-
responding label, we define a local histogram H(Π) as a
vector function which captures the number of occurrences
of each label i within a kernel Π (Fig.3). For each interest
point location p we consider a set of K kernels centered on
p and with different shapes and size (Fig.4). The rth kernel
of this set is denoted as Πr. For each kernel we can com-
pute the corresponding local histogram H(Πr,p). Now,
since we want to capture the correlation between group of
spatial-temporal interest points sharing the same label, we
define the average local histogram Ĥ(Πr , i) as the vector

Ĥ(Πr, i) =

|pi|∑

p∈{pi}

H(Πr,p)

|pi|
(1)

where {pi} is the set of interest points with label i and |pi|
is its cardinality. A correlogram is built by concatenating
in a matrix structure such local histograms for all combi-
nations of labels and kernels. If we fix a pair of labels i, j

and we observe the co-occurences of i, j as function of the

kernel type, we obtain a correlogram element V(i, j). Ex-
amples of correlogram elements are shown in Fig.5. Since
correlograms are computed in a spatial-temporal domain we
will denote them with ST-correlograms
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Figure 3. Examples of kernels and their location in the spatial-temporal
pattern of codewords. The membership label (color) of each video word is
not shown for clarity reasons.
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Figure 4. Two examples of kernel shape and size. The larger kernel has
a maximum size of 60 frames along the temporal dimension and 40 pixels
along the spatial dimension. The kernel ”thickness” is about 10 frames
times 5 pixels

2.2. Choice of the kernel

As opposed to [19] where only a single kernel with radial
symmetry was used, here we build our correlograms with a
set of kernels of various shapes. Fig.3 and Fig.4 show some
examples. The motivation for this relies on the observation
that different combinations of kernels of different shape and
size may be more or less effective in capturing the underly-
ing distributions of video words across categories. Our ex-
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Figure 5. Examples of ST-correlogram element. Panel (a) shows a dis-
tribution of video words. A ST-correlogram element with respect a pair of
video words labels (i.e. two color codes) is computed. The ST-correlogram
element is shown in panels (b-d) and it expresses the co-occurrence of the
pair of video words as function of the kernel shape and size. Panels (b), (c)
and (d) express such co-occurrence as the kernel increases its size along
the X, Y and T axis respectively.

periments show that this is indeed the case. We choose to
use cubic-shaped kernels (as opposed to spheric ones) for
reasons of computational efficiency (see in [19] for details).

3. Categorization based on spatial-temporal
correlograms

In this section we describe how to use video words and
ST-correlatons for modeling human actions classes. We
first review the technique for extracting video words and
ST-correlaton as well as for modeling human action classes
based on distributions of video words. Then we review a
unsupervised learning scheme based on the pLSA graphical
model for building models of video sequences. Finally, we
describe how to achieve categorization.

3.1. Representation by distribution of video words
and ST-correlatons

The first step is to detect space-time interest points from
the video sequence. We use a technique based on separa-
ble linear filters as proposed by Dollar et al. [6] and modi-
fied by Niebles et al. [16]. See relevant papers for details.

The output of this algorithm is an interest point located in
the video sequence and shaped as a space-time cube. For
each spatial-temporal cube, we extract a descriptor formed
by concatenating brightness gradients into a vector. The de-
scriptors are clustered using a K-means algorithm. The re-
sulting cluster centers form the vocabulary of video words.

Once the vocabulary of video words is computed, for
each video sequence, spatial-temporal interest points are la-
beled with the closest video word in the vocabulary. Then,
for each pair of video word labels we compute the corre-
sponding ST-correlogram element by using a given set of
kernels. We collect these vectors for all relevant video se-
quences in the training set and cluster them by using a K-
means algorithm. The result is the set of representative ST-
correlogram elements which we have called ST-correlatons.
Notice that during the K-means clustering the membership
of the ST-correlogram elements is lost (i.e. we do not know
anymore which pair of video word have generated which)

3.2. Learning action classes via pLSA

Probabilistic topic models, especially probabilistic
Lantent Semantic Analysis (pLSA) and Latent Dirichlet Al-
location (LDA) were initially proposed as a technique for
semantic processing of the text documents [10, 4]. They
are first introduced into the computer vision realm by Fei-
Fei & Perona [9] and Sivic et al. [22] as a framework to
learn scenes and object classes. More recently, Niebles et
al. [16] demostrated the application of pLSA to learn hu-
man action classes from video sequences. Generally, the
application of this model to vision tasks implied to adopt the
“bag of keypoints” assumption, where the spatial-temporal
arrangement of visual interest points is ignored. In this pa-
per, we relax this assumption, by augmenting the pure “bag
of keypoints” representation with the spatial-temporal rela-
tionships captured by the correlatons. Next, we review the
statistical formulation of the pLSA model, following the
presentation in [22] and [16] and extending it to our pro-
posed method.

Suppose we have a training set of M video sequences,
each containing observations from an augmented vocabu-
lary that encodes appearance and spatial-temporal corre-
lations. The size of the vocabulary is denoted as V. The
corpus of training examples can be represented by a co-
occurrence table M̄ of size V ×M . The elements of M̄ are
denoted by m(wi, dj), with i = 1 . . . V and j = 1 . . .M ,
which count the number of occurrences of codeword wi

in video dj . Note that the nature of wi can be of appear-
ance (video word) or spatial-temporal co-occurrences (cor-
relaton), since our augmented vocabulary incorporates both
types of information.

An intermediate latent variable zk is also introduced, and
associated with each occurrence of codeword wi in a partic-
ular sequence dj . We enforce the number of topics K to
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Figure 6. The probabilistic Latent Semantic Analysis (pLSA) graphical
model. Nodes are random variables. Shaded ones are observed and un-
shaded ones are unobserved. The plates indicate repetitions. This figure is
reproduced from [5].

be equal to the number of action classes to be discovered,
so that each zk represents one of the categories such as jog-
ging, hand-waving, etc.

Following the relationships of the model variables, as
shown in Figure 6, the joint probability can be written as:

P (dj , wi) = P (dj)P (wi|dj) (2)

The observed pairs (dj , wi) are assumed to be generated
independently, and P (wi|dj) can be obtained by marginal-
izing as follows:

P (wi|dj) =

K∑

k=1

P (zk|dj)P (wi|zk) (3)

Here, P (zk|dj) is the probability of action class zk occur-
ring in video dj . Also, P (wi|zk) represents the probability
that codeword wi occurs in a particular action category zk.
We can interpret this model as explaining the representation
P (wi|dj) of a particular video sequence as a linear combi-
nation of action specific codewords distributions P (wi|zk)
with weights P (zk|dj).

Learning using the pLSA framework consists of estimat-
ing the model parameters P (wi|zk), which are common to
all examples, and P (zk|dj), which are specific to each train-
ing point. The parameters can be learnt using EM, by max-
imizing the likelihood term:

V∏

i=1

M∏

j=1

P (wi|dj)
m(wi,dj) (4)

where P (wi|dj) is given by Equation 3.

3.3. Actions Categorization and Localization

The goal in recognition is to categorize novel sequences
(dtest) given the learnt human action classes. The learn-
ing procedure has estimated the distribution of codewords
for each particular action P (w|z), and the task is to obtain
the mixture coefficients P (zk|dtest). This is again accom-
plished following a EM procedure. A categorization result
can be obtained by choosing:

Action Category = argmax
k

P (zk|dtest) (5)

Although the model is not particulary suitable for exact
segmentation of the foreground data, an approximate local-
ization of the performed action can be obtained by calculat-
ing the posteriors:

P (zk|wi, dj) =
P (wi|zk)P (zk|dj)∑K

l=1 P (wi|zl)P (zl|dj)
(6)

By choosing the action class that maximizes P (zk|wi, dj)
for each codeword wi, we can effectively assign an action
class to each codeword in the dictionary. When the code-
word wi corresponds to a video word instead of a correla-
ton, we can label its support region as containing evidence
of the action class performed. In the case of wi being a cor-
relaton, the model captures likely co-occurrences instead of
local region evidence. This becomes a subtle nuisance when
defining its support region, and thus cannot be used for the
purpose of localization in an straightforward manner.
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Figure 7. Confusion tables. The table on left shows the results by models
based on distribution of video words. The table on right shows results by
models based on the joint distribution of video words and ST-correlatons.

4. Experiments and results

In this section we assess the performance of our recog-
nition scheme by reporting results for a set of experiments.
We show that: i) models based on distribution of both video
words and ST-correlatons systematically outperform mod-
els based on video words only; ii) different sizes of the
vocabulary of video words and ST-correlatons lead to dif-
ferent performances, but models based on the combination
video words and ST-correlatons achieve the best results con-
sistently; iii) we explore performance dependency with re-
spect to the different type and configuration of kernels for
building the vocabulary of ST-correlatons. This indicates a
possible design choice for an optimal set of kernels; iv) we
report the results with models learnt on splitted sequences;
this creates a more challenging test bed for models based on
video words only (see details below) and shows that added
spatial information helps boosting performance even more.

Our experiments are carried out on the KTH
database[20]. This dataset is very challenging as it
contains different configurations of video sequences, such
as moving cameras, variable background and cluttered



scenes. The dataset features as many as six different types
of human actions (see Fig.7). The database contains several
instances of the same actions performed by 25 subjects.
Different indoor and outdoors background environments
are also used. See for example Fig.1.

The baseline for our experiments are the results pre-
sented in [16]. We use a similar learning strategy ( [16]
for details) based on the following key aspects: i) video
words are built from two videos of each action from three
subjects. ii) Recognition is carries through a leave-one-out
(LOO) scheme. More specifically, at each round of the LOO
iteration, a model from the videos of 24 subjects is learnt
and tested on the videos of the remaining subject. The vo-
cabulary of video words and ST-correlatons are learnt from
videos of three subjects which are excluded from the testing
beforehand.

We used a set of cubic-shaped kernels for building the
vocabulary of ST-correlatons. The kernels size varies from
2 to 40 pixels along the two spatial dimensions, and from
2 to 60 frames along the temporal dimension. Notice that
a video sequence is typically several hundreds of frames
long, whereas a video words is only a few frames long, with
an extension of a few pixels along the spatial dimensions.
This suggests that correlatons may be useful to capture the
co-occurrences of video words at different and intermediate
spatial-temporal scales.

The results are summarized in Fig.7. The figure shows
a side-to-side comparison of the two methods. The left
panel presents results obtained by models in [16] with a
vocabulary of video words of 500. Notice the large confu-
sion between class running and jogging as well as between
class boxing and clapping. These class share a similar dis-
tribution of video words resulting in an ambiguous distri-
bution of topics for the pLSA model. Clearly, it is hard
to learn models that guarantee the required discriminabil-
ity without taking advantage of some additional degree of
spatial-temporal information between visual words. The
right-panel presents results obtained by using the joint dis-
tribution of video words and ST-correlatons. The size of
vocabularies of video words and ST-correlatons is respec-
tively 500 and 100. Performance is higher overall and the
confusion between the critical classes is partially resolved.
Fig. 8 shows examples where the joint distribution of video
words and ST-correlaton resolves the ambiguity and allows
the correct classification of these two instances. Table 1
compares performances of recent methods in the literature.
Up to our knowledge, our method achieves the best results
compared to current state-of-the art results using unsuper-
vised learning, and reaches competitive results using super-
vised learning.

We assess performances with respect to different size of
the vocabulary of both video words and ST-correlatons. The
results are reported in Fig. 9 and Fig. 10. Fig. 9 compares

Methods Recogn. accuracy (%) Learning

Our method 86.83 unlabeled
Niebles et al. [16] 81.50 unlabeled

Kim et al. [15] 95.33 labeled
Jiang et al. [12] 84.40 labeled
Dollár et al. [6] 81.17 labeled

Schuldt et al. [20] 71.72 labeled
Ke et al. [13] 62.96 labeled

Table 1. Comparison of different start-of-the-art methods. Our recogni-
tion accuracy is the highest on the KTH dataset using unsupervised learn-
ing.

Configuration 50 100 200 500
V. words + ST-Corr. 71.65 74.10 76.36 79.34

V. words only 68.61 70.20 69.36 69.74
ST-Correlatron only 55.05 63.54 67.62 72.00

Improv. over v. words 3.04 3.90 7.00 9.60
Table 2. Summary of the results obtained by various models (histogram of
video words, ST-correlatons, joint video words and ST-correlatons). These
results were computed using 300 video words and the training scheme in
experiment 2.

the classification accurary for different models as function
of the size of vocabulary of video words. Models based on
joint video words and ST-correlatons systematically over-
perform those based on video words alone. Notice that
models based on video words reaches a peak for a vocab-
ulary size of 500 video words as reported in [16]. Models
based on joint distributions reach a peak earlier (200−300)
and saturate from that point on. Fig. 10 compares the classi-
fication accuracy for models based on joint distributions as
function of the size of the vocabulary of ST-correlatons. No-
tice that performances are fairly constant as the size of the
vocabulary increases. This suggests that a vocabulary com-
posed by small set of representative correlatons are suffi-
cient to maintain the added accuracy. Finally, Fig. 11 shows
performances as function of the kernel size.

We carry out a second experiment by splitting the video
sequences of KTH database in two or four legs. This in-
creases the size of the training set but at same time makes
the classification task harder. For instance, the walk se-
quence consists of a long video of a person walking left-to-
right, right-to-left twice. By splitting this sequence in four
legs, we obtain shorter walk sequences each showing only
one direction of walking. Learning models from the split-
ted sequences is harder due to the multi-modality of the two
training sequences: each of them are assigned to the label
walk regardless of the direction of motion. This difficulty is
reflected to the overall performances as shown in Table 2.
Performances of models based on video words drop to as
low as 69%. However, models based on joint video words
and ST-correlatons achieve an improvement of almost 10%.



Figure 8. Examples of corrected mistakes. The right panel shows some
instances where the appearance-only model misbehaves. Each color labels
the action category. In this case, red for boxing and blue for handwaving.
The left panel demonstrates that the join model increases the population of
correct labels.
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Figure 9. Performance as function of the size of the vocabulary of video
words. The plots shows the improvement of our method over state-of-the-
art results

5. Conclusion

Taking the simple idea of capturing temporal patterns for
local motion features, our paper demonstrates that the usage
of spatial-temporal correlograms proves to be highly effec-
tive in classifying complex human motions. We propose a
framework for learning action class models from such cor-
relogram features. Our results are very encouraging. We
report the highest classification accuracy on the challeng-
ing KTH dataset compared to all previous methods, under
unsupervised learning. We attribute the success to the flex-
ibly learnt temporal signature of these motions. Much still
needs to be done to further improve this work. For exam-
ple, we would like to explore the possibility of adding addi-
tional global spatial and shape information into the model.
Finding the optimal size/shape of kernels might be another
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Figure 10. Performance as function of the size of the vocabulary of ST-
correlatons.
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Figure 11. Performances as function of the size of the kernels. As the
maximum size of the kernel is reduced performances drop significantly.
The red plot shows performance drop when the maximum spatial dimen-
sion of the kernels is reduced from 20 pixels to 2 pixels; The green plot
shows performance drop when the maximum temporal dimension of the
kernels is reduced from 30 frames to 2 frames. The blue plot shows per-
formance drop when the maximum of all dimensions are reduced.

direction of research. Finally, handling occlusions and mul-
tiple actions preformed at same time is still a fertile play
ground for research. This effort should be coupled with the
one of having available datasets comprising a more chal-
lenging kind of temporal/spatial variability.
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