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Abstract

Recognizing object classes and their 3D viewpoints is an

important problem in computer vision. Based on a part-

based probabilistic representation [31], we propose a new

3D object class model that is capable of recognizing un-

seen views by pose estimation and synthesis. We achieve

this by using a dense, multiview representation of the view-

ing sphere parameterized by a triangular mesh of view-

points. Each triangle of viewpoints can be morphed to syn-

thesize new viewpoints. By incorporating 3D geometrical

constraints, our model establishes explicit correspondences

among object parts across viewpoints. We propose an in-

cremental learning algorithm to train the generative model.

A cellphone video clip of an object is first used to initialize

model learning. Then the model is updated by a set of un-

sorted training images without viewpoint labels. We demon-

strate the robustness of our model on object detection, view-

point classification and synthesis tasks. Our model per-

forms superiorly to and on par with state-of-the-art algo-

rithms on the Savarese et al. 2007 and PASCAL datasets in

object detection. It outperforms all previous work in view-

point classification and offers promising results in viewpoint

synthesis.

1. Introduction

Visual recognition is a cornerstone task for an artifi-

cial intelligence system. In computer vision, object recog-

nition, particularly object categorization, has been one of

the most widely researched areas in recent years. Tremen-

dous progress has been made especially in image-level ob-

ject classification under limited geometric transformations,

such as classification of side-view cars, or frontal view faces

(e.g.[35, 12, 10]). Also relevant is the line of work in object

detection in cluttered real-world scenes, such as pedestrian

detection, or car detection [38, 11, 25, 37, 4, 7].

But most of the previous approaches can only handle

up to a small degree of viewpoint variations of the 3D ob-
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Figure 1: We propose a dense multi-view representation of 3D object

categories. Consider a car category as an example. The red circles on

the viewsphere indicate the viewpoints of the object class learned by our

model. Some sample training images are shown for two of the viewpoints,

demonstrating our model’s ability to automatically align unlabeled poses

at training time. Given a query image (dark blue circle) our model is ca-

pable of simultaneously categorize the object in the image and estimate its

correct viewpoint by synthesizing a novel pose at recognition time. Notice

that the viewpoint of the object in the query image does not have to be

observed during training (the dark blue circle does not overlap with the red

circle).

jects. As a result, they can hardly be used for robust pose

understanding, a crucial functionality for real-world appli-

cations where accurate recognition of objects under arbi-

trary view points and 3D poses are needed. A small but

growing number of recent studies have begun to address

the problem of object classification in a true multi-view set-

ting [32, 16, 14, 37, 5, 27, 28, 21]. While this is an important

step forward, the focus is still on object detection without

extensive quantitative analysis of 3D viewpoint estimation

(the exceptions being [27, 28, 21]).

In this paper, we propose a new framework for learning

a probabilistic 3D object model that can be used to catego-

rize and detect an object in a cluttered scene, estimate its

viewpoints accurately, or synthesize a new viewpoint given

a single test image. We focus on overcoming two major

challenges in representing and modeling 3D object classes.

• We develop a dense multi-view representation of ob-

ject classes through an incremental learning algorithm.

The probabilistic model construction process is initial-

ized from a cellphone video sequence of a single object

instance. Our algorithm then builds the object class

model from unsorted images without any viewpoint



supervision by automatically aligning arbitrary poses

at training time (Fig. 1).

• Our 3D object recognition algorithm is able to recog-

nize objects under arbitrary viewpoints, even if the ob-

ject instances were not observed during training. If

we define the viewing sphere as a collection of view-

points from which an object can be observed, our algo-

rithm accurately estimates the pose of the object on it

(Fig. 1). To our knowledge, this is the first probabilistic

model that is capable of representing and recognizing

unseen object views.

2. Related work
3D object recognition as well as pose estimation started

with a number of seminal papers in single object recognition

based on representing the object by highly discriminative

features [3, 22, 34, 13, 26], or by exploring their topological

structures [15, 2, 6]. Both types of models rely on encod-

ing rigid spatial and geometrical constraints that cannot be

used to accommodate large degree of intra-class variability

in object categories.

Several recent papers for 3D object classification and de-

tection can be roughly grouped as methods for object classi-

fication and detection without 3D pose estimation [32, 16,

14, 37, 5], and those with 3D pose estimation [27, 28, 21].

The former typically captures 3D object information by

linking features across views in a discriminative learning

framework. Compared to these previous work, our model is

probabilistic (thus, the model parameters can be learned in

a principled way) and requires less supervision (no need for

viewpoint labeling as in [32, 16, 37, 5]).

Our model is built upon our previous paper [31]. In [31],

we proposed a preliminary probabilistic model for repre-

senting multi-view object categories. Our method is supe-

rior to [31] in that: i) it requires far less supervision (no

object part or region segmentation and viewpoint labels); ii)

it allows much more accurate viewpoint representation. We

propose a learning scheme in which the probabilistic model

is initialized by learning from a cellphone video clip of an

object class. To allow for accurate viewpoints alignment

in training (without labels), we introduce a morphing pa-

rameter that enables the synthesis of the object appearance

in arbitrary locations on the viewing sphere based on view

morphing theories [30, 36]. We demonstrate the superiority

of our model over [31] and other related algorithms in three

types of recognition tasks: object detection, accurate view-

point estimation and new viewpoint synthesis given a single

test image.

3. Learning the probabilistic model
This section covers the learning of a 3D object category

model from a short video clip of a single real world ob-

ject and a set of unsorted images of the same object class

collected from the Internet. Our goal is to build a proba-

bilistic model that is a dense, multi-view representation of

a 3D object class with minimal supervision1. We choose a

part-based model for describing an object class (Fig. 2(b),

Fig. 4). For each viewpoint, an object class is an ensemble

of geometrically arranged parts, and each part is a collec-

tion of image patch features. Unlike [12, 18, 29], however,

our model establishes explicit correspondences among parts

across different viewpoints.

We start with a viewing sphere centered around the ob-

ject. A large number of viewpoints (termed as key views)

are sampled on the viewing sphere from a video sequence

that portrays the object from a continuum of view points

(Sec. 3.1). The 3D object generative model is constructed

by using viewpoints and the object parts that are linked

across different key views (Sec. 3.3). An important concept

introduced here is the morphing parameter S, which allows

the model to infer new poses when queried by an image of

unseen viewpoint. The model is then updated using a set of

images collected from the Internet (Sec. 3.4).

3.1. Parameterizing the viewing sphere

Most of the previous work in 3D object categorization

has taken the approach of assuming a small number of dis-

crete poses for the object class [32, 16, 37]. We argue that

a dense representation of poses can provide a more accu-

rate estimation of the object model (Fig. 8-Center). How-

ever, training a 3D object model by using human labeled

poses is not only laborious and expensive, but also prone

to errors because humans are not adept at quantifying 3D

viewpoints [24]. Our goal is, therefore, to learn a dense

representation without pose labels.

We circumvent the human labeling problem by initializ-

ing the dense multi-view representation of the 3D object

class with a (cellphone) video clip of an object instance

(Fig. 2(a)). We use the cellphone camera to take a short

movie by walking around the object, allowing the camera-

person to change viewing angles by raising and lowering the

device. We describe now how to parameterize the viewing

sphere.

Obtaining key views. Given the short clip of video,

we first apply a Lucas-Kanade tracker to obtain feature-

level correspondences between every consecutive frames

(Fig. 2(a)) [23]. For every set of linked frames2, we sample

uniformly a small number of them as “key views”. Given

a typical video clip, we obtain in the order of ∼100 key

views.

Triangulating the viewing sphere for view synthesis

and defined {T, S,A}. Neighboring key views are grouped

1Only object bounding boxes are provided in the unsorted images.
2The linkage between two frames is considered broken when the per-

cent of feature correspondences falls below an empirical threshold (in this

case 20%).
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Figure 2: Schematic illustration of key concepts of our model. (a) Viewing sphere, key views and tracked video frames. Using a cellphone video clip

of a single object, we obtain a dense sample of viewpoints (blue dots and red circles) on the viewing sphere. Features (dots on the car images) are tracked

between consecutive video frames using the Lucas-Kanade algorithm [23]. Some of the tracks are shown in red dotted lines between two pictures. A subset

of the viewpoints are assigned as key views (Sec. 3.1). (b) The viewing sphere and all the key views are parameterized as a triangle mesh (Sec. 3.1). We

formulate the view synthesis problem based on the view morphing theory. A morphing parameter S interpolates and extrapolates the triplet of viewpoints

Vi in a given viewpoint triangle T . The post-warping transformation of viewpoint alignment is denoted by A. (c) Illustration of a 3D geometrical constraint

across viewpoint triangles. Given any key view on the viewing sphere, it is shared by two connected viewpoint triangles. An affine transformation constraint

Hi→j is then enforced to ensure consistent part estimation across different views. This figure is best viewed in colors and with PDF magnification.

into triangles T such that the viewing sphere is covered by

a triangle mesh (Fig. 2(b)). This parameterization allows

the synthesis of new views within each triangle. Assume

for now that three key views are lying on the same plane

(i.e. the views are parallel or rectified). We denote such a

plane as a view plane. Under the assumption that feature

correspondences are available across key views, a new view

within T can be synthesized by introducing an interpolat-

ing (morphing) parameter S and a homography A [30, 36],

called post-warping transformation. S is a 3D vector in the

simplex space that regulates the synthesis of the new view

from the three key views. A enables the correct alignment

(registration) between the synthesized view and a query

view. If the assumption of parallel views does not hold (e.g.

the key views forming the triangle are not close enough)

we can use feature correspondences across the key views

to align the key views to the plane formed by the trian-

gle [36]. Note that different triangles may correspond to

view planes that are not mutually parallel (Fig. 2(c)). In this

case key views may need to be re-aligned and their view-

points adjusted through a homographic transformation H

(pre-warping transformation).

3.2. Obtaining candidate parts

We are now ready to learn the part-based generative

model of a 3D object class (Fig.4). We define parts as re-

gions within an object that: i) enclose discriminative ap-

pearance features that are frequently observed across differ-

Figure 3: Examples

of candidate parts

of different object

classes. Image patch

features are denoted

by “x”. x’s of the

same color indicate

that they belong to the

same candidate part.

ent instances of the object class; ii) form a more-or-less pla-

nar region such that affine transformation becomes a good

approximation when the part undergoes viewpoint changes.

We use a modified J-Linkage clustering algorithm [33] to

obtain candidate parts. In [33], given feature correspon-

dences, the algorithm segments them into a number of pla-

nar regions so that the corresponding regions can be fitted

by a unique affine transformation. Notice that tracks be-

tween every pair of views are equivalent to feature corre-

spondences. We can therefore apply the J-Linkage algo-

rithm to segment the tracks into planar regions for each pair

of several neighboring key views. We then apply an ag-

glomerative clustering algorithm to finalize the grouping of

tracks to planar regions. Fig. 3 shows some sample results

of this step.

3.3. A probabilistic model representation and initial
model learning

We use a probabilistic formulation to model a 3D object

class (Fig. 4), built upon our work in [31]. We first describe

the generative model in Sec. 3.3.1 and highlight the 3D geo-

metrical constraints encoded in the model in Sec. 3.3.2. We

then discuss the key differences between the current model

and the model in [31]. In Sec. 3.3.4, we describe briefly

how initial learning of the probabilistic model is done by

using a short cellphone video clip of 3D objects.

3.3.1 The generative model for view morphing

Given an image, a set of N image patches are extracted

and vector quantized into visual words3. Hence, for each

patch the model observes its position Xn and visual word

assignment Yn (Fig.4). To generate image patches, a view-

point is sampled from the parameterized viewing sphere.

Recall that we parameterize a viewpoint by view triangle

3we use the same feature detector and descriptor as [31] to generate the

codeword.



T ∼ Mult(φ) and morphing parameter S ∼ Dir(β),
where φ and β denote the parameters of the Multinomial

and Dirichlet distributions respectively (Sec. 3.1). Given

{T, S}, we are now ready to synthesize the sampled view

and generate the parts and image patches. The model first

generates a set of part location and appearance distribution

parameters (θ and η), as well as a part proportion parameter

(π). Image patches {X, Y } within each part K can then be

generated based on these parameters in the following steps.

Generate part parameters (θ, η, π). There are three

sets of parameters governing the distribution of each object

part K: part position (θ), part appearance (η) and part pro-

portion (π), each of them depending on the view triangle T

and morphing parameter S.

θ is further parameterized by a 2D Gaussian distribu-

tion of mean mTK (part center) and covariance ΣTK (part

shape).

mTK(S) =
∑3

g=1 m̂
g
TK · Sg (1)

ΣTK(S) = Σ̂g∗

TK , s.t. g∗ = G(S) = argmax
g=1,2,3

Sg (2)

where m̂
g
TK and Σ̂g

TK are the mean and covariance of part

K in key view g = {1, 2, 3} of the triangle T , and Sg

is the morphing proportion of each of the three key views

(
∑

g Sg = 1). mTK(S) denotes the generated new center

of the morphed part. Intuitively, it is the linear combination

of the centers of part K on the key views of T . ΣTK(S),
the new covariance matrix of the morphed part, is approxi-

mated to be equal to the covariance on the closest key view

in T , denoted by Σ̂g∗

TK .

Similarly, the part appearance parameter ηTK(S) equals

to η̂
g∗

TK , the appearance parameter of part K of closest key

view g∗ to the sampled viewpoint in triangle T .

We sample part proportion parameter π ∼ Dir(αT ). π

governs the likelihood of the different parts that will appear

under this view. For example, for a car model, π should be

large for the wheel part in the side view but small in a frontal

view. An object part K is then sampled from Mult(π).

Generate image features {Xn, Yn}. Given the part K,

the position X̂ of each image feature on the view plane

of triangle T is generated from N (mTK(S),ΣTK(S)).
In the image plane, the feature location X = A−1X̂ ,

where A is the post-warping affine transformation param-

eter. The appearance of each image feature Yn is encoded

by a codeword in a pre-obtained codebook. We obtain

Yn ∼ Mult(ηTK(S)), where ηTK(S) is the multinomial

distribution parameter that governs the proportion of the

codewords in each view given the object class.

Putting all the observable variables (X, Y, T, S) and la-

tent variables (K, π) together with their corresponding pa-
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Figure 4: A schematic representation of our 3D object model. Each cir-

cular node represents a random variable, whereas each rectangular node

represents a parameter. Solid arrows indicate conditional probability rela-

tionship between a pair of variables. Dashed arrows indicate the influence

of the viewpoint triangle T and morphing parameter S on the variables.

{Xn, Yn} indicate the position and appearance of an image patch feature.

K1, K2, · · · , K|K| are part assignment of image features. π is the part

proportion parameter governed by the Dirichlet parameter α. θ and η are

the part position and part appearance parameters describing each image

feature {Xn, Yn}. Finally A is the post-warping affine transformation pa-

rameter. Note that the graphical model does not depict the 3D geometrical

constraints used by this model (Sec. 3.3.2).

rameters, we write down the joint probability of the model.

P (X, Y, T, S, K, π) = P (T |φ)P (π|αT )P (S|β)
∏N

n {P (xn|θTKn
(S), A)P (yn|ηTKn

(S))P (Kn|π)} (3)

3.3.2 3D geometric constraints

A fundamental difference between our model and a typi-

cal mixture of parts model is the explicit correspondence

among parts across different views. This is done by apply-

ing two types of 3D geometric constraints on the model.

A. Within T constraints. Part configurations of key

views should be consistent with each other by an affine

transformation. Specifically, we use the tracks obtained by

Lucas-Kanade algorithm between key views Vi and Vj in a

triangle T to estimate the affine transformation MT
i→j , ex-

pecting MT
i→jm̂

i
TK = m̂

j
TK . This information is encoded

as a penalty term (C in Eq.4) in our Variational EM algo-

rithm described in Sec. 3.3.4. Thus, our probabilistic model

learning process favors those part configurations that have

consistent geometrical relationships across different views.

B. Across T constraints. As is shown in Fig. 2(c), each

key view is shared by neighboring triangles {Ti, Tj , . . .} . It

is therefore important to make the correct correspondences

between parts across the triangles. We estimate a transfor-

mation from Ti to Tj by using an affine transformation op-

eration Hi→j and enforcing that Hi→jm̂
gi

TiK
= m̂

gj

TjK for

part K, where m̂
gi

TiK
is the part center of the key view gi in

triangle Ti. Intuitively, this means that we can establish part

correspondences by enforcing the centers of the same part

in different planes defined by neighboring triangles to share

the same configuration in the coordinate system of the key



view. This constraint is encoded by F in Eq.4 in the Varia-

tional EM algorithm described in Sec. 3.3.4.

3.3.3 Differences between our model and [31]

We have made comparisons with [31] throughout the paper.

Here we highlight two fundamental differences.

• The generative 3D object class model of views and parts

in [31] encodes a small set of discrete viewpoints. Without a

morphing variable S, it has no ability to recognize and syn-

thesize a new pose. To our knowledge, we present here the

first probabilistic representation of a 3D object class model

that is capable of new viewpoint synthesis4.

• Through a dense, triangle mesh representation of the viewing

sphere, we introduce two convenient 3D geometrical con-

straints that are critical for establishing robust object part

correspondences. These constraints are simple affine trans-

formation constraints automatically estimated from tracks in

the video clip. In contrast, [31] used an epipolar line con-

straint that are provided by human supervision. The training

process is laborious and error-prone, and the result is less

robust compared to our method (Fig.10).

3.3.4 Learning the initial model with a video clip

To learn a 3D object class representation, we first use a cell-

phone video clip of a single object to initialize the model.

We see two advantages. First it enables us to obtain a ro-

bust initial model of parts and viewpoints by using a single

object instance, making it easier for the model to learn and

adjust to the intra-class variations in the ensuing training

stage where it sees a large set of unsorted images. Second

this method allows the algorithm to learn a 3D object class

model with little human supervision, compared to all exist-

ing methods.

As a first step of learning, we initialize {T, S,A} of each

frame by using the image feature correspondences:

{T, S,A} = argmax
T,S,A

∑
i∈(tracks in T ) ‖Axi − xi

T S‖2,

where XT = {xi
T ∈ R2×3} is a set of tracks on the three

key views in triangle T , and X = {xi ∈ R2} are the corre-

spondences in the frame. The estimated viewpoint parame-

ters are treated as observed variables in Fig.4.

We are now ready to estimate the model variables K, π

and model parameters θ, η5 in Eq. 3. Recall the 3D ge-

ometric constraints introduced in Sec. 3.3.2, we therefore

formulate the variational EM algorithm as an optimization

problem [1]:

maximize λL(u) − (1 − λ)C (u) s.t. F (u) = 0, (4)

4 [28] is the only other object class model capable of synthesizing new

viewpoints. But without a coherent probabilistic formulation, the method

relies on heuristics for learning the optimal values of the parameters.
5Due to space limitation, more detailed derivations can be found in an

accompanying technical report on the authors website.

where L is the marginal log likelihood P (X, Y |·), C is

the within triangle constraint function (Sec. 3.3.2(A)), F is

the across triangle constraint function (Sec. 3.3.2(B)), u de-

notes all the model variables and parameters, and λ is the

weight to balance the importance of the within triangle con-

straints vs the log likelihood.

We use a mean-field variational distribution to approxi-

mate the true posterior P (T, S,K, π|X, Y ) as follows:

q(T, S,K, π) = q(T |δ)q(S|ǫ)q(π|γ)
∏N

n q(Kn|ρn) (5)

where δ denotes the variational parameter of Multinomial

distribution of triangle T , ǫ and γ denote the variational pa-

rameters of the Dirichlet distribution which governs mor-

phing parameter S and part proportion π respectively. ρn

represents the variational parameter for the part assignment

variable Kn. It is initialized by the candidate parts de-

scribed in Sec. 3.2. {T, S,A} are obtained in the pre-

processing step through the video tracks.

We can now iterate between the following M- and E-

steps for model parameter updates.

M-Step: 1. Part appearance parameter η update.

η̂
gw
tK =

N
gw

tK

N
g

tK

(6)

N
gw
tK =

∑
j∈(Tj=t,G(Sj)=g)

∑
n∈(ynj=w) ρK

nj (7)

N
g
tK =

∑
w N

gw
tK (8)

where η̂
gw
tK is the probability that codeword w appears for

part K on key view g in triangle index t. N
gw
tK is the suffi-

cient statistics of the Multinomial distribution Mult(η̂g
tK).

2. Part position parameter θ = {m,Σ} updates.

Since part center m is constrained by the 3D geometric con-

straints, the update of m is formulated as a quadratic pro-

gramming problem with linear equality constraints which

can be solve efficiently. The update of part shape Σ is for-

mulated as a convex optimization problem, detailed in the

technical report.

E-Step: 1. Part proportion π update. For each image,

we update the variational distribution q(π|γ) of part pro-

portion π as γ = αT + N̂ , where N̂ =
∑N

n=1 ρn. Note

N̂ ∈ R|K| is the sufficient statistics of the Dirichlet distri-

bution Dir(γ).

2. Part assignment K update. For each patch, we up-

date the variational distribution q(Kn|ρn) of part assign-

ments, detailed in the technical report.

3.4. Incremental learning with unsorted images

Having initialized our 3D object class model with a

video clip of a single object instance, we can now complete

model learning through a set of unsorted images down-

loaded from the Internet. We propose an incremental learn-

ing procedure in the following three steps.
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Figure 5: Left. Illustration of the updates for position parameter θ dur-

ing incremental learning. As a new training image is assigned to the trian-

gle T , new evidence on the sufficient statistics is produced which results

in updating relevant model parameters of the key-views. Right. Examples

of object parts illustrated by automatically cropped image regions from

different training images. Three examples are shown for each part.

Initial viewpoint estimation. Given the set of video

frames of the initial object instances as well as the all the

training images seen so far, we first obtain the viewpoint

{T, S,A} of the new training image by matching it to the

closest video frame. This is done in a similar image re-

ranking scheme as proposed by [20]6.

Obtain object parts by variational inference. Given

{T, A, S} of the new training image, we can now run the

updates of {m,π, K} (See Sec. 3.3.4) to extract its object

parts (some examples are shown in Fig.5-Right).

Model parameter {η, θ} updates. Given a new ob-

ject instance j, appearance parameter η̂
G(Sj)w
TK can be up-

dated according to Eq.6 by using the sufficient statistics

N
G(Sj)w
TjK ← N

G(Sj)w
TjK +

∑
n∈(ynj=w) ρK

nj , where {Tj , Sj}
are the viewpoint parameter of the object instance obtained

from the matching algorithm, and w is the codeword index.

Part position parameter θ updates are detailed in the tech-

nical report. Fig. 5-Left is a schematic illustration of how

this is done.

4. Experiments and results
We have introduced a new probabilistic multi-view rep-

resentation for 3D object classes. With minimal supervi-

sion, our algorithm is capable of learning the 3D structures

of this part-based model across viewpoints. We test now

how our model can be used to perform three challenging

recognition tasks: object detection in cluttered background,

viewpoint classification upon detection, and new viewpoint

synthesis given a single test image.

4.1. Object class detection

A robust visual recognition system needs to detect and

categorize real-world objects under arbitrary viewpoints.

Having trained a part-based 3D object model, we could now

use this model to build a robust object class detector. Three

datasets are used for evaluating this task: the car and bicy-

cle classes in Savarese et al. [27], the car and bicycle classes

in PASCAL VOC 2006 dataset [9], and 8 household object

6Instead of the classification model used in [20], we use a KNN classi-

fier with parzen window to do the matching.
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Figure 6: Object detection results using the 3DObjects dataset [27] (up-

per left & upper right) and the PASCAL VOC06 dataset [9] (lower left &

lower right). Upper Left. We use an ROC curve to show the car detec-

tion results. Our model (red line) shows a performance of 82.3% mea-

sured by area under the curve (AUC), compared to 73.7% by using [27]

(green line), and 78.1% by using [31] (blue line). Upper Right. Bicycle

detection results. Our model (red line) obtains a 98.1% performance com-

pared to 82.9% by [27] (green line).Lower Left Object detection using

the PASCAL VOC06 car dataset. Lower Right Object detection using the

PASCAL VOC06 bicyle dataset. We use precision-recall curves to show

the results of our model (red line) compared with [21] and the detection

result of the 2006 challenges [9]-INRIA Douze , [9]-INRIA Laptev, [9]-

TKK, [9]-Cambridge, and [9]-ENSMP. Average precision (AP) scores are

shown in the legends.

classes collected from the ImageNet [8]. We first describe

briefly an object detector based on the learned object parts

and 3D structure.

Given all training images, we first obtain the image re-

gions of the corresponding parts by the method described in

Sec. 3.4. We then train a random forest classifier for each

part, by keeping the relative position information of the cen-

ter of the object. Positive examples are sampled from each

of the extracted part regions, whereas negative examples are

sampled in regions outside of the object parts. Given a test

image, we first apply the random forest classifier for each

object part to obtain their candidate locations. Based on

the 3D model trained for this object class, an object center

is proposed for each of the candidate parts. Next, a gen-

eralized Hough transform voting scheme is used to locate

candidate object locations [19]. Besides, to fuse evidences

of part level together with object level, an object verification

classifier is trained using a linear SVM. An object is repre-

sented as a spatial pyramid of codewords [17]. When test-

ing, we reclassify a proposed object candidate by assigning

the detection score as a linear combination of the original

score and this object verification score.

Fig. 6 compare the detection results7 of our model

with other state-of-the-art algorithms on the 3DObjects

dataset [27] and PASCAL VOC06 dataset [9] respectively.

Our model outperforms [27] and [31] significantly on the

7We choose an ROC measurement for the 3DObjects [27] dataset a

precision-recall measurement for the PASCAL VOC06 dataset [9] in order

to compare with the previous results.
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Figure 7: Left. Object detection results using the Household Objects

dataset. The thick red line shows the average ROC curve, whereas the thin

red lines show the standard deviation over 8 classes. Average AUC score

is 90.1%. Right. AUC score for each of the household object class.
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Figure 8: Left. Object detection with or without using the object parts.

We use a car detection task (3DObjects dataset [27]) to show the perfor-

mance difference between an object detector using the object parts learned

by the 3D model (red line) and an object detector built without the ob-

ject parts (blue line). Center. Effect of view synthesis for recognition via

learning with the morphing parameter S and number of viewpoints. We

demonstrate this by showing a binary detection task result (measured by

AUC) versus the number of key views used by the model. Our model (red

solid line) is compared with a discretized viewpoint model (blue dashed

line) [31]. Right. Effect of incremental learning.

3DObjects dataset, and shows comparable results to most

of the state-of-the-art methods on the PASCAL VOC06

dataset. Fig. 7 shows detection results on the new 3D ob-

ject dataset of eight household objects. These items have

significantly different image features compared to the often

used car and bicycle datasets. We show very promising de-

tection results in all eight classes of objects. Some example

detection results are shown in Fig. 10.

An important contribution of our work is to propose a

method that is able to learn these parts automatically and

in turn use them for building an object class detector. In

an object detection experiment using the 3DObjects dataset

(car class), we show that an object detector built by using

these proposed object parts significantly outperforms an ob-

ject detector that does not use the parts (Fig. 8-Left).

In a separate experiment, we examine the effect of using

dense viewpoint representation and view morphing frame-

work for building 3D object models. Fig. 8-Center shows

a detection experiment on the same car dataset measured

by AUC. Our model (red curve) is compared with a dis-

cretized viewpoint model (blue curve) [31]. We observe

two trends. For both of these models, as the number of

viewpoints increases during training, the detection perfor-

mance increases. But our model performs consistently bet-

ter than [31] even given the same number of viewpoints.

This is due to the effect of the morphing parameter S in

our model. It is capable of synthesizing intermediate views

to mitigate the unavoidable discrepancies existing in a dis-

cretized representation.

V1

V2

V3

V4

Classi�cation Accuracy

Discrete, CVPR ’09

Morphing, ICCV ‘09
Watch 61.9

Sewing Machine 71.4

Microscope 63.9

Iron 73.5

Swivelchair 58.6

Calculator 69.2

Flashlight 68.4

Teapot 60.0

Figure 9: Viewpoint classification results: Left. 8-view classification

of the 3DObjects car dataset. We compare our model (red bar) with [28]

(green bar). Center. 4-view classification of the PASCAL VOC06 car

dataset. Our model (red bar) is compared with with [31] (blue bar). Right.

Viewpoint classification accuracy for the household objects dataset.

Original OriginalSynthesized Synthesized

Figure 11: New views can be synthesized given a single test image. The

further right column (green) of each triplet of images indicates the original

test image. The other two columns (red) are two synthesized views.

We also evaluate the effect of incremental learning by

using detection of car on the 3DObjects dataset. Fig.8-Right

shows that as the number of training images increases, our

model is capable of taking advantage of the additional data

and continues to achieve higher performances.

4.2. Object viewpoint classification

Our model is capable of predicting the viewpoint of a

query object by estimating {T, S,A}. We show examples

of the viewpoint classification results in Fig.10. Similar to

the object detection experiment, we evaluate our model us-

ing three datasets: the 3DObjects dataset [27], PASCAL

VOC06 dataset [9] and the 8 classes of Household Ob-

jects dataset. The results of the first two are shown in

Fig. 9-Left&Center8, whereas results of household objects

are shown in Fig.9-Right9. On the 3DObjects our model

significantly outperforms [28], largely due to its richer rep-

resentation and view morphing ability to refine pose estima-

tions.

4.3. Viewpoint synthesis

Given a single test image, our model has the ability to

recognize its object class and synthesize an unseen view.

This is done through the recognition of object parts as de-

scribed in Sec. 3.4. Given the extracted parts, we are able to

synthesize any view specified by the viewpoint parameters

{T, S,A}. We show in Fig. 11 several synthesized views of

test images.

8The numbers of views are provided by the datasets. For 3DObjects,

there are 8 viewing angles, 3 scales and 2 heights. For PASCAL VOC06,

there are 4 viewpoints.
9For convenience, we discretize all views into 8 canonical views when

evaluating the performances.



Figure 10: Examples of viewpoint estimation for bicycle [27, 9], swivel chair, microscope and car [27, 9]. Blue arrows indicate the viewpoint T for the

detected object (in red bounding box). Green bounding box indicates correct detections of the objects, but in a different viewpoint.

5. Conclusion
We have proposed a 3D object class model based on a

dense, multiview representation of the viewing sphere. A

morphing parameter S is introduced to allow our model

to recognize and synthesize unseen views. Our experi-

ments show promising results in object detection, view-

point classification and synthesis tasks. For future work,

we would like to incorporate a more discriminative learning

process into the model building step, as well as to combine

viewpoint synthesis into incremental learning framework to

maximize the usage of the data.
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