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Abstract

Despite recent successes, pose estimators are still some-

what fragile, and they frequently rely on a precise knowl-

edge of the location of the object. Unfortunately, articu-

lated objects are also very difficult to detect. Knowledge

about the articulated nature of these objects, however, can

substantially contribute to the task of finding them in an im-

age. It is somewhat surprising, that these two tasks are usu-

ally treated entirely separately. In this paper, we propose

an Articulated Part-based Model (APM) for jointly detect-

ing objects and estimating their poses. APM recursively

represents an object as a collection of parts at multiple

levels of detail, from coarse-to-fine, where parts at every

level are connected to a coarser level through a parent-

child relationship (Fig. 1(b)-Horizontal). Parts are fur-

ther grouped into part-types (e.g., left-facing head, long

stretching arm, etc) so as to model appearance variations

(Fig. 1(b)-Vertical). By having the ability to share appear-

ance models of part types and by decomposing complex

poses into parent-child pairwise relationships, APM strikes

a good balance between model complexity and model rich-

ness. Extensive quantitative and qualitative experiment re-

sults on public datasets show that APM outperforms state-

of-the-art methods. We also show results on PASCAL 2007

- cats and dogs - two highly challenging articulated object

categories.

1. Introduction

Detecting and estimating the pose (i.e., detecting the lo-

cation of every body parts) of articulated objects (e.g., peo-

ple, cats, etc.) has drawn much attention recently. This

is primarily the result of an increasing demand for an auto-

mated understanding of the actions and intentions of objects

in images. For example, person detection and pose estima-

tion algorithms have been applied to the fields of automo-

tive safety, surveillance, video indexing, and even gaming.

Most of the existing literature treats object detection and

pose estimation as two separate problems. On the one hand,

most of the state-of-the-art object detectors [8, 13, 19, 2]

do not focus on localizing articulated parts (e.g., location

of heads, arms, etc.). Such methods have shown excel-
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Figure 1. Panel (a) shows large appearance variation and part deformation

of articulated objects (people) with different poses (sitting, standing, and

jumping, etc). (b) we propose a new model for jointly detecting objects and

estimating their pose. Inspired by Marr[14], our model recursively repre-

sents the object as a collection of parts from a coarse-to-fine level (e.g.,

see horizontal dimension) using a parent-child relationship with multiple

part-types (e.g., see vertical dimension). We argue that our representation

is suitable for “taming” such pose and appearance variability.

lent results on rigid vehicle-type objects (e.g., cars, motor-

bikes, etc) but less so on the articulated ones (e.g., human

or animals) [7]. On the other hand, most pose estimators

[12, 20, 10, 5, 16, 15, 11] assume that either the object lo-

cations, the object scales, or both are predetermined by ei-

ther a specific object detector, or given manually. We argue

that these two problems are two faces of the same coin and

must be solved jointly. The ability to model parts and their

relationship allows to identify objects in arbitrary config-

urations (e.g., jumping and sitting, see Fig. 1) as opposed

to canonical ones (e.g., walking and standing). In turn, the

ability to identify the object in the scene provide strong con-

textual cues for localizing object parts.

Some recent works partially attempt to solve the prob-

lems in a joint fashion. [1] combines a tree-model with

discriminative part detectors to achieve good pose estima-

tion and object detection performance. However, good

detection performance is only demonstrated on the TUD-

UprightPeople and TUD-Pedestrians datasets [1], which

have fairly restricted poses. Alternatively, [4, 3] propose

a holistic representation of human body using a large num-

ber of overlapping parts, called poselets, and achieve the

best performance on PASCAL 2007∼2010 person category.

However, poselet can only generate a distribution of pos-



sible locations for each part’s end points independently,

which make it difficult to infer the best joint configuration

of parts for the entire object.

Our Model. We present a new model for jointly detecting

articulated objects and estimating their part configurations

(Fig. 1(a)). Since the building blocks of this model are ob-

ject parts and their spatial relationship in the image, we call

it the Articulated Part-based Model (APM). Our approach

based on APM seeks to satisfy the following properties.

Hierarchical (coarse-to-fine) Representation. Inspired by

the articulated body model in the 1980s [14] which recur-

sively represents objects as generalized cylinders at differ-

ent coarse to fine levels (Fig. 1(b)), our model jointly mod-

els the 2D appearance and relative spatial locations of 2D

parts (Fig. 1(b)) recursively at different Coarse-to-Fine (CF)

levels. We argue that a coarse-to-fine representation is valu-

able because distinctive features at different levels can be

used to jointly improve detection performance. For exam-

ple, the whole body appearance features are very useful

to prune out false positive detection from the background,

whereas detail hand appearance features can be used to fur-

ther reinforce or lower the confidence of the detection.

Robustness to Pose Variability by Part Sharing. Artic-

ulated objects exhibit tremendous appearance changes be-

cause of variability in: i) view point location (e.g. frontal

view, side view, etc); ii) object part arrangement (e.g. sit-

ting, standing, jumping, etc); iii) self-occlusions among ob-

ject parts (Fig. 1(a)). We refer to the combination of these

effects as to the pose of the object. Methods such as [8, 25]

capture such appearance variations by introducing a num-

ber of fully independent models where each model is spe-

cialized to detect the object observed under a specific pose.

Clearly such representation is extremely redundant as ap-

pearance and spatial relationship of parts are likely to be

shared across different poses (e.g., a ”stretched arm” is ob-

served in both a sitting (Top) and standing (Bottom) per-

son as Fig. 1(b) highlights in red). While this representa-

tion may be suitable for rigid objects (for which appearance

changes are mostly dictated by the view point location of

the observer), it may be less so for articulated objects. In

order to obtain a more parsimonious representation while

keeping the ability to capture rich pose variability, we in-

troduce the concept of ”part-type”. A part-type allows to

characterize each part with attributes associated to semantic

or geometrical properties of the part. For example a human

arm can be characterized by part-types such as ”stretched”

or ”fore-shortened” at a given level of the hierarchy. The

introduction of part-types lets parts be shared across object

poses if they can be associated to the same part-type. By

having the APM to share parts, we seeks to strike a good

balance between model richness (i.e., the number of dis-

tinct poses) and model complexity (i.e., the number of part-

types) (Sec. 3.3).

Methods CF Type Sub. E.I

PS [10] N N N Y

Yao et. al. [23] N Y N N

Wang et. al. [21] Y Y Y N

Yang et. al. [22] N Y Y Y

Grammar [26, 24] Y Y Y N

APM (Ours) Y Y Y Y
Figure 2. A comparison of the properties satisfied by our APM

model versus other models. The CF column indicates if a coarse-

to-fine recursive representation is supported or not. ”Type” indi-

cates if multiple part-types are supported or not. ”Sub” indicates if

the model complexity grows sublinearly as function of the number

of poses. ”E.I” indicates if exact inference is tractable (Sec. 2).

Efficient Exact Inference & learning Following the re-

cursive structure of an APM, we use efficient dynamic pro-

gramming algorithms to jointly (and exactly) infer the best

object location and estimate their pose (Sec. 3.1, 3.2). We

learn the parameters regulating part appearance and their

relationships across coarse-to-fine levels by using a Struc-

tured Support Vector Machine (SSVM) [18] with a loss

function penalizing incorrect pose estimation (Sec. 4).

Novel Evaluation metric. Because the detection and

pose estimation are often performed separately, no standard

method exists for evaluating algorithms that address both

problems. The popular Percentage of Correctly estimated

body Parts (PCP) metric measures the percentage of cor-

rectly detected parts for the objects that have been correctly

detected. This is problematic in that PCP can be high while

detection accuracy is low. To fix this, we propose to di-

rectly compare the recall vs False Positive Per Image (FPPI)

curves of the whole object and all parts. Using this new

measure as well as standard evaluation metrics, we show

that APM outperforms state-of-the-art methods. We also

show, for the first time, promising pose estimation results

on two very challenging categories of PASCAL: cats and

dogs.

The rest of the paper is organized as follows. Sec.2 de-

scribes related work. Model representation, recognition,

learning, and implementation details are discussed in Sec.3,

4, and 5 respectively. Experimental results are given in

Sec. 6.

2. Related Work

Pictorial Structure (PS) based methods such as [10, 8]

are the most common approaches for pose estimation and

object recognition. Similarly to our model, the PS object

representation is part-based. Unlike ours, however, in PS’s

model parts are not organized at different coarse-to-fine lev-

els with multiple part-types. Moreover, as discussed earlier,

object models are learnt independently for each object pose

without having the ability to share parts across poses. As

a result, the number independent models used in PS grows

linearly with the number of distinct poses that one wishes

to capture (Fig. 2).

Our model bears some similarity to recent works (Fig. 2).
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Figure 3. Graphical illustration of the recursive coarse-to-fine structure

of APM. Panel (a)-Top: An APM (blue trapezoid) can be obtained by re-

cursively combining atomic APMs (AAPM) (black boxes) such as arm-

AAPM, lower-arm-AAPM, etc, into higher-level part-APM such as the

arm-APM (green trapezoid). Panel (b) shows examples of selected part

locations (white windows) at the different levels. The selected part-types

are highlighted by red boxes in panel (a).

In [23] a procedure is presented for capturing the typical

relationship between body part configurations and objects.

While the concept of part type is used to increase the flexi-

bility of the representation, pairwise relationships between

body parts are not shared across classes. As a result, the

number of parameters that are used to model spatial rela-

tionship grows linearly with the number of pose classes.

Moreover, unlike our approach, parts are not organized in

a recursive coarse-to-fine structure. [21] propose a hierar-

chical poselet model for both detection and pose estimation.

However, the model requires loopy belief propagation algo-

rithm for approximate inference. [22] propose a mixture of

parts model which achieves outstanding performance and

speed. However, because the representation is not hierar-

chical, it is not suitable to detect objects at a small scale.

APM is also related to grammar models for images or

objects [26, 24]. In such models, the object is represented

by reusing and sharing common object elements. However,

these models rely on complex learning and inference proce-

dures which can only be made tractable using approximate

algorithms (Fig. 2). On the contrary, despite the sophis-

ticated structure of APMs, we show that a tractable exact

inference algorithm can be used (Sec. 3.1 and 3.2).

3. Articulated Object Representation
Given a still image containing many articulated objects

(e.g., persons in Fig. 1(a)), our goal is to jointly localize

the objects and estimate their poses (i.e., localize articulated

parts such as arms, legs, etc).

We introduce a new model called Articulated Part-based

Model (APM) to achieve this goal. In designing the APM

model, we seek to meet the desiderata discussed in the

Sec. 3.3 and propose a representation that is hierarchical,

robust to pose variability and parsimonious. An APM for

an object category (object-APM) is a hierarchical struc-

ture constructed by recursively combining primary elements

called atomic APM (AAPM). An AAPM is used to repre-

sent an object part at each level of the object representation

(e.g., an AAPM can represent a lower arm, the torso, or the

whole body, etc.). An AAPM just models the appearance

of a part and it is characterized by a number of part types

(e.g., an head-AAPM is characterized by types such as left,

front, etc.) (Fig. 3). AAPMs can be recursively combined

into APMs by following a parent-child relationship. E.g., an

arm-AAPM and a lower-arm-AAPM are subject to a parent-

child relationship (a lower-arm is part of an arm) and are

combined into an APM called arm-APM. As an other ex-

ample, children APMs such as the arm-APM, or head-APM

can be combined with their parent (the body-AAPM) and

form the person-APM (Fig. 3). An APM models the part

appearance of both parent and children as well as the 2D

geometrical relationships between parent and children.

Since each AAPM can be characterized by several part

types, and since AAPM or APMs can be reused toward con-

structing new APMs, an object-APM has the nice property

of being able of capturing an exponentially large number of

pose configurations by just using a few AAPMs. For in-

stance, suppose that a person is described by 5 parts (head,

torso, arm, lower-arm) (thus 5 AAPMs) and that each part

is characterized by 4 types. A person-APM model can then

encode up to 45 different poses in total by only using the

5 AAPMS. This way, the APM allows us to strike a good

balance between model richness (i.e., the number of dis-

tinct object poses that the model can capture) and model

complexity (i.e., the number of model parameters) (See

Sec. 3.3(i)).

The structure of the APM model (i.e., number of parts,

part-types, and parents-child relationships) may be pre-

defined following the kinematic construction of the object.

Given such a structure, the goal of learning is to jointly learn

the appearance model for every part-type and parent-child

geometric relationships so that the importance of different

part-types and the discriminative power of different parent-

child relationships can be automatically discovered. During

recognition (inference), the goal is to determine the most

likely configuration of object parts and part-types that is

compatible with the observation and the learnt APM model.

The next section describes how to utilize the recursive struc-

ture of APM to efficiently estimate the most likely configu-

ration.

3.1. Recognition

Finding the best part configuration (i.e., in our case, both

the part locations and types) for arbitrary part-based models

corresponding to the highest likelihood or score is in general

computationally intractable since the configuration space

grows exponentially with the number of parts. By leverag-

ing the recursive structure of an APM, we show that an ef-

ficient top-down search strategy for exploring pose config-

uration hypotheses in the image is possible. Then we show

how to compute a matching score for each hypothesis with



a time that is at most quadratic with the number of hypothe-

sis per part by using a bottom-up score assignment scheme.

This matching scores are used to guide the top-down search

to reach the best pose configuration hypothesis. The result

is an efficient inference algorithm that reaches the optimal

solution in at most quadratic time.

Top-down Search strategy. The image is explored at dif-

ferent levels of decompositions (from coarse-to-fine) using

a recursive strategy. At each level, the image is decomposed

into regions (windows) and each region is associated with a

part type. Based on the selected part type and the parent-

child relationship, each image region is further processed

and the next level of decomposition is initiated. The exam-

ple below clarifies this process.

Let us consider an APM for the object person (Fig. 3). At

the first (coarsest) level of decomposition only a single part

is considered. This corresponds to the whole object (per-

son). Part types are different human poses (sitting, jumping,

standing, etc). The image is explored at different locations

(i.e., a score is assigned at different locations following a

sliding window approach) and a part type (hypothesis) is

associated to each window location. E.g., the white win-

dow in Fig. 3(b) is associated with the part type jumping.

Following the structure of the APM, jumping is a parent

of a number of child parts (head, torso, left arm, etc), and

the goal is to identify each of these child parts within the

current working window. Now the next level of decompo-

sition is initiated. Let us consider the child left-arm part as

an APM. The area within the current working window is

explored at different locations and each of these are associ-

ated to a left-arm part type (hypothesis). At this level, part

types are, for instance, stretched or foreshortened. E.g., the

white window in Fig. 3(b) is associated with the part type

stretched. Following the structure of the APM, left-arm is

a parent of a number of child parts (upper-arm, lower arm),

and the goal is to identify each of these child parts within

the current working window. This initiates the next level of

decomposition. The process terminates when all the image

windows are explored, all parts are processed and no addi-

tional decompositions are allowed. In the Fig. 3, the active

part types across levels are highlighted by red edges. Notice

that the levels of recursion depends on the structure design

of the model.

Bottom-up matching score assignment. While the best

hypothesis is found using a top-down strategy, the process

of assigning a matching score to each hypothesis follows a

bottom-up procedure. The benefit of such procedure is that

all the scores can be computed in time at most quadratic to

the number of hypothesis per part. Notice that special forms

of geometric relationship can even be computed in linear

time as in [9]. In details, each matching score is computed

by combining an appearance score and a deformation score.

The appearance score is obtained by matching the evidence

within the working image window against the learned part

type appearance model. The deformation score is obtained

by: i) computing the parent-child geometrical configura-

tion - that is, the location and orientation (angle) of a part

within its parent reference frame; ii) matching this config-

uration with the learnt parent-child geometrical configura-

tion. These scores are collected and combined bottom-up so

as to obtain a final score that indicates the confidence that an

image window (at the coarsest level) contains a person with

a certain pose and part configuration. Details are explained

in Sec. 3.2.

3.2. Matching Scores

Let us first introduce the parameterization of a part hy-

pothesis in an APM. A part hypothesis is described by the

location h = (x, y, l, θ) and type s of the part, where (x, y)
is the part reference position (e.g.,the top-left corner of the

part), (l, θ) are the part scale (coarse-to-fine) and 2D ori-

entation, respectively. The task of joint object detection

and pose estimation is equivalent to finding a set of part

hypotheses H = {(h0, s0), . . . , (hk, sk), . . . } such that the

location h = (x, y, l, θ) and type s is specified for all parts.

As previously introduced, the matching scores can be di-

vided into two classes: appearance and deformation scores.

The appearance score of a specific part-type is obtained

by matching the feature ψa(h, I) extracted from the image

within the window specified by the part location h against

the learned appearance model A, and the score is defined as

fA(h; I) = AT ψa(h, I) (1)

The deformation score is obtained by: i) computing the

parent-child geometrical relationship - that is, the difference

ψd(h, ĥ) = (∆x,∆y, ∆θ) of position and orientation be-

tween the expected child hypothesis ĥ and the actually child

hypothesis h at the child reference scale; ii) matching this

relationship with the learnt parent-child deformation model

d. The score is defined as,

fD(h, ĥ) = −dT ψd(h, ĥ) = −(d1 · (∆x)2 + d2 · (∆x)

+d3 · (∆y)2 + d4 · (∆y) + d5 · (∆θ)2 + d6 · (∆θ)) (2)

where d = (d1, d2, d3, d4, d5, d6) is the model parameter

for parent-child deformation.

The final score for each person hypothesis is recursively

calculated by collecting and combining scores associated to

AAPMs into scores associated to APMs from bottom to up-

per levels. In details, the score fi,si
(hi, I) for an APM with

index i and type si, is obtained by aggregating: i) its own

appearance score fA
i,si

(h, I); ii) the scores from each child

APM fc,sc
(hc, I); iii) the deformation score fD(hc, ĥc)

calculated with respect to its child APM as defined in Eq. 2.

This process of estimating the score fi,si
(hi, I) by ag-

gregating the scores from its child APMs is achieved by



performing the following three steps: i) Child Location Se-

lection step. Given an expected child part hypothesis ĥc

with index c and part type sc, we select among all the lo-

cation hypotheses hc for this part the one associated to the

largest score. The score associated to part c of type sc is

then: fc,sc
(ĥc, I) = maxhc

(

fc,sc
(hc, I) + fD(hc, ĥc)

)

.

ii) Child Alignment step: we need to align score con-

tributed from each part child. Let us indicate by sc the type

of cth child part. Then, the expected location of the child

part c is given by T (hi, t
si,sc

i,c ), such that T (h, t) = h− t =
(x − tx, y − ty, l − tl, θ − tθ), where t

si,sc

i,c is the expected

displacement between type si of part i and type sc of part c.

iii) Child Type Selection step: For each child part, we need

to select the part type corresponding to the highest score as

follows:

fc(hi, I) = max
sc∈Sc

(

fc,sc
(T (hi, t

si,sc

i,c ), I) + b
si,sc

i,c

)

(3)

where Sc is the set of types for part c, b
si,sc

i,c is the bias

between type si of ith part and type sc of cth part. Such

biases capture the property that some types may be more

descriptive than other and therefore they can affect the rele-

vant score function differently. We learn such biases during

the learning procedure (Sec. 4).

Finally, the score fi,si
(hi, I) is obtained as fi,si

(hi, I) =
fA

i,si
(hi, I) +

∑

c∈Ci fc(hi; I), where Ci is the set of child

APMs. Notice that the score fi,si
(hi, I) for an atomic

APM (AAPM) is simply given by its own appearance score

fA
i,si

(hi, I). These are computed first as they are the pri-

mary elements of the overall object APM structure. Using

this way of aggregating the scores, the matching scores for

all the parts in the APM structure can be calculated once the

scores of its child APMs are computed. Notice that the time

required to compute the scores is linearly related to the total

number of part-types in the APM.

3.3. Model Properties (APM)
In the following, we discuss the important properties of

our APM: i) Sublinearity. As illustrated in Fig. 3, a com-

plex APM is constructed by reusing all APMs at finer levels.

If an APM contains M parts and each part contains N types,

such APM can represent NM unique combination of part-

types (poses) with the cost of storing N×M appearance and

deformation parameters, respectively (i.e., in Eq. 4, A, d are

indexed by part i and type si). As a result, the number of

parameters in APM grows sublinearly with respect to the

number of distinct poses; ii) Efficient Exact Inference. De-

spite the complex structure of APM, the “bottom-up” pro-

cess is efficient, since the scores of different part-types are

reused by parent APMs at higher levels. Once the match-

ing scores are assigned, the “top-down“ process is efficient

as the search for the best part configuration can be done in

linear time. Compared to most of the other grammar mod-

els which only find the best configuration among a smaller
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Figure 4. Visualization of a learned APM. Panel (a) shows the learned

Histogram of Oriented-Gradient (HOG) templates with the corresponding

example images for each part-type. Panel (b) shows the parent-child geo-

metric relationships in our model, where different parts are represented as

color coded sticks. Panel (c) shows samples of object poses obtained by

selecting different combinations of part-types from the APM.

subset of the full configuration space, our method can effi-

ciently explore the full configuration space (e.g., inference

on a 640×480 image across ∼ 30 scales and 24 orientation

in about 2 minutes) making exact inference tractable.

4. Model Learning
The overall model parameter w = (A, . . . , d, . . . , b . . . )

is the collection of appearance parameters As, deforma-

tion parameters ds, and biases bs. In this section, we il-

lustrate how to learn the model parameters w. Since all the

model parameters are linearly related to the matching score

(Eq. 1, 2, 3), the score of a specific set of part hypotheses H

can be computed as wT Ψ(H; I), where Ψ(H; I) contains

all the appearance features ψa(.), geometric features ψd(.).
The matching score can be decomposed into

wT Ψ(H; I) =
∑

i∈V

AT
(i,si)

ψa(hi; I) +

∑

(i,j)∈ε

(

b
(si,sj)
i,j − dT

(j,sj)
ψd(hj , T (hi, t

(si,sj)
ij ))

)

(4)

where V is the set of part indices, ε is the set of parent-child

parts, A(i,si) specify the appearance parameter for type si of

part i, d(i,si) specify the deformation parameter for type si

of part i, and b
(si,sj)
i,j and t

(si,sj)
ij specify bias and expected

displacement of selecting part j with type sj as the child of

part i with type si.

Consider that we are given a set of example images and

part annotations {In, Hn}n=1,2,...,N . We can cast the pa-

rameter learning problem into the following SSVM [18]

problem,



minw, ξn≥0 wT w + C
∑

n

ξn(H)

s.t. ξn(H) = max
H

(△(H;Hn) +

wT Ψ(H; In) − wT Ψ(Hn; In))

, ∀n , ∀H ∈ H (5)

where △(H;Hn) is a loss function measuring incorrect-

ness of the estimated part configuration H , while the true

part configuration is Hn, and C controls the relative weight

of the sum of the violation term with respect to the reg-

ularization term. The loss is defined to improve the pose

estimation accuracy as follows,

△(H;Hn) =
1

M

M
∑

i=1

△((hm, sm); (hn
m, sn

m))

=
1

M

M
∑

i=1

(1 − overlap((hm, sm); (hn
m, sn

m))) (6)

where overlap((hm, sm); (hn
m, sn

m)) is the intersection area

divided by union area of two windows specified by the

part locations and types. Here we use a stochastic sub-

gradient descent method within the SSVM framework

to solve Eq. 5. The subgradient of ∂wξn(H) can be

calculated as Ψ(H∗; In) − Ψ(Hn; In), where H∗ =
arg maxH(△(H;Hn) + wT Ψ(H; In)). Since the loss

function can be decomposed into a sum over local losses

for each individual part i, H∗ can be solved similarly to the

recognition problem in Sec. 3.1.

Analysis of our learned model. Fig. 4(a) shows learned

part appearance models from a person APM with 3 lev-

els of recursion with typical part-type examples. Since all

the part-type appearance models are jointly trained by min-

imizing the same objective function (Eq. 5), the appearance

model captures the shapes of the part-type examples as well

as the strength of the HOG weights reflecting the impor-

tance of each part-type (See Fig. 4 for learned HOG tem-

plates). Fig. 4(b) illustrates a few parent-child geometric re-

lationships in the APM. For example, our model learns that

a head appears on the upper-body of a person with differ-

ent orientations (Fig. 4(b)-Left), and learn the stretched and

bent configurations for the left-arm (Fig. 4(b)-Middle). No-

tice that these parent-child geometric relationships indeed

capture common gestures that appear in daily person activi-

ties, like ”arms akimbo” (Fig. 4(c) red box). Fig. 4(c) shows

more object poses by selecting different combinations of

part-types.

5. Implementation Details

Feature representation: We use the projected His-

togram of Oriented-Gradient (HOG) feature implemented

in [8] to describe part-type appearance. Manual supervi-

sion: In order to train an APM, a set of articulated part

(a) Poselet [4] (b) IIP [15]
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Figure 5. Panel (a) shows that our detector applied on Poselet dataset

[4] slightly outperforms the state-of-the-art person detector [3] (dashed

curves). Panel (b) shows that APM significantly outperforms [3] on chal-

lenging Iterative Image Parsing dataset [15]. Recall-vs-FPPI curves are

shown for each human part (with different color codes) by using our

method (solid curves).

annotations is required. For people, we use the 19 key-

points provided in the poselet dataset [4] as the part supervi-

sion. We manually annotated cats and dogs with 24 and 26

keypoints, respectively. Type discovery: We use the key-

points configuration and part length to object height ratio to

initially group parts into different types. After this initial

grouping, each example can be discriminatively assigned

into different groups according to the appearance similarity.

Discretized part orientation: We follow the common con-

vention to divide the part orientation space into 24 discrete

values (15◦ each).

6. Experiments
We evaluate our method on three main datasets, all

of which contain objects in a variety of poses in clut-

tered scenes. Object detection datasets that contain objects

with very restricted poses (e.g., TUD-UprightPeople, TUD-

Pedestrians [1]) are not suitable for evaluation here, since

we are interested in datasets that make the detection and

pose estimation equally challenging. First, we compare our

object detection performance on the poselet [4] and Iter-

ative Image Parsing [15] datasets with the state-of-the-art

person detector [3] and demonstrate superior performance,

especially on [15] which contains challenging sport images

with unknown object scale. We introduce a new evalua-

tion metric called recall-vs-False Positive Per Image (FPPI)

to show joint object detection and pose estimation perfor-

mance. More detail about the recall-vs-FPPI can be found

in the technical report [17]. Second, on the ETHZ stickmen

dataset [5], we show APM outperforms state-of-the-art pose

estimators [16, 5] using detection results provided by APM.

In order to prove that our method can be used to detect ar-

ticulated objects other than humans, we test our method on

(a) APM (b) Eichner et. al. [5] (c) CPS [16]

0 1 2 3 4 5
 

 

lower-arms

FPPI

re
ca

ll

upper-arms
head object&torso

CPS [16]

0.8

0.6

1

0.4

0.2

obj
head
lower-arms
torso
upper-arms

0 1 2 3 4 5
 

 

FPPI

re
ca

ll

0.8

0.6

1

0.4

0.2

torso
upper-arms

head
lower-arms

0 1 2 3 4 5
 

 

FPPI

re
ca

ll

0.8

0.6

1

0.4

0.2

torso
upper-arms

head
lower-arms

Figure 6. Joint object detection and pose estimation performance com-

parison between our method (a) and [5, 16] (b,c) using recall vs. FPPI

for 4 upper-body parts on stickmen dataset. ”obj” indicates the detection

performance of our object detector.
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Figure 7. Comparison with other methods for recall/PCP0.5 @ 4 FPPI.

Red figures indicate the highest recall for each part. We perform better

than the state-of-the-art in term of recalls for every part except lower arms.

the PASCAL 2007 cat and dog categories [6], and obtain

convincing joint object detection and pose estimation per-

formance on these extremely difficult categories.

6.1. Comparing with Poselet [3]

The Poselet dataset [4] contains people annotated with

19 types of keypoints, which include joints, eyes, nose, etc.

We use the keypoints to define 6 body parts at 3 levels: at

the coarsest level, the whole body has 6 types; at the mid-

dle level, head has 4 types, torso has 4 types, left&right-

arms both has 7 types; at the finest level, left&right-lower-

arms both has 2 types. By assuming that body parts and

object bounding boxes annotations are available, we train

our APM on the same positive images used in [4] and neg-

ative images from PASCAL’07 [6]. Fig. 5(a,b) shows that

our object detection performance is slightly better than [3]

(which achieves the best performance on PASCAL 2010 -

human category) on poselet dataset [4] but significantly out-

performs [3] on [15], respectively. We observed that [3]

tends to fail when the aspect ratios of the object bound-

ing boxes vary due to severe articulated parts deformations.

Fig. 5(a,b) also show our joint object detection and pose es-

timation performance using part recall vs FPPI curves on

these challenging datasets. Typical examples are shown in

the 1 ∼ 2 rows of Fig. 9.

6.2. ETHZ Stickmen dataset

The original ETHZ stickmen dataset [5] contains 549

images, and it is partially annotated with 6 upper-body parts

for each person. In order to evaluate the joint object de-

tection and pose estimation performance, we complete the

annotation for all 1283 people. Previous algorithms eval-

uated on this dataset are just pose estimators, which rely

on an upper body detector to first localize the person. Be-

cause of this, the PCP performance is only evaluated on the

360 detected people that were found by the upper body de-

tector (see [17] for more details). In order to obtain a fair

comparison of the joint object detection and pose estima-

tion performance, we use recall/PCP0.5 (same as [5]) vs.

FPPI curves for all parts. We believe this is a better per-

formance measure than PCP at a specific FPPI. Indeed PCP

ignores to what degree the pose estimation performance is

affected by the accuracy of object detectors. Notice that

PCP at different FPPI can be easily calculated from the part

recall v.s. FPPI curves by dividing the recall of each part by

the recall of the object. As an example, the latest PCP from

[16] is equivalent to the sample points (indicated by dots)

at 4 FPPI shown in Fig. 6(a). Notice that our method sig-

nificantly outperforms [16] for each body part (except for

lower arm where [16] and ours are on par).

(a) Cat (b) Dog (c) System Analysis

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
ca

ll

FPPI

 

 

obj
tail

head

torso
forelegs

LSVM[8]

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
ca

ll

FPPI

 

 

obj
tail

head

torso
forelegs

LSVM[8]

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
c

a
ll

FPPI

 

 

APM

APM baseline

Figure 8. Joint object detection and pose estimation performance shown

in recall (following the PCP0.7 criteria as defined in [5]) vs. FPPI for cats

(a) and dogs (b) on the PASCAL VOC 2007 dataset. Both performances

are compared with [8]. Panel (c) compare our dog-APM with a Baseline-

APM with no finer parts.

We apply our APM learned from the Poselet dataset [4]

to jointly detect objects and estimate their poses on the

stickmen dataset (Fig. 6(a)). For a more fair comparison,

since APM detects 846 people which is much more than

the 360 people detected by the upper body detector [5], we

show the performance of [16, 5] by using APM’s detection

results (Fig. 6(b)(c)) Even though [16, 5] incorporate addi-

tional segmentation information and color cues, our method

shows superior performance for almost all parts. We be-

lieve that the main reason is because that [16, 5] assume

accurate person bounding boxes are given both in train-

ing and testing. Our method overcomes such limitation by

performing joint object detection and pose estimation. A

recall/PCP0.5@4FPPI table comparison is also shown in

Fig. 7 with the winning scores highlighted in red. We also

found that our detector detects 92.5% of the 360 people de-

tected by the upper-body detector. Among them, without

knowing the object location and scale, our PCPs for torso,

head, upper-arm, and lower-arm are 91.9%, 73.0%, 60.7%,

and 31.1%, respectively. Typical examples are shown in the

3 ∼ 5 rows of Fig. 9.

6.3. PASCAL 2007 cat and dog

From the PASCAL 2007 dataset, 548 images of cats

were annotated with 24 keypoints and 200 images of dogs

were annotated with 26 keypoints including ears, joints,

tail, etc. Similar to the training procedure of the person

model, we train 5 parts at 2 levels1 APMs for cats and

dogs independently on a subset of the data and evaluated on

the remaining subset. Fig. 8 shows that APM outperforms

the state-of-the art object (LSVM) detector [8] trained on

the same set of training data using the voc-release4 code2.

We further conduct a system analysis on the dog dataset

(Fig. 8(c)). By adding articulated parts, the performance

increases compared to a baseline model with only a whole

object part. Typical examples are shown in the last 2 rows

of Fig. 9.

7. Conclusion
We propose the Articulated Part Model (APM) which is

a recursive coarse-to-fine and multiple part-type representa-

tion for joint object detection and pose estimation of artic-

1Whole body at the coarsest level. Head, torso, left-foreleg, right-

foreleg, and tail at the finest level.
2The code trains a model with 6 root components and 8 latent parts per

components.
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Figure 9. Typical examples of object detection and pose estimation. Sticks with different colors indicate different parts for different object categories. Blue bounding boxes

are our prediction and green ones indicate missed ground truth objects. The first 2 rows show the results on Poselet dataset [4] and Iterative Image Parsing dataset [15]. Rows

3 ∼ 5 show the comparison between our method and [5, 16] on the stickmen dataset [5]. The last two rows show the ground truth and our results on PASCAL’07 cats and dogs

[6], respectively.

ulated objects. We demonstrate on four publicly available

datasets that our method obtains superior object detection

performances. Using a novel performance measure (the part

recall vs. FPPI curve) we show that our part recall at all

FPPI are better than the state-of-the-art methods for almost

all parts.
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