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Abstract We propose a new coherent framework for joint
object detection, 3D layout estimation, and object support-
ing region segmentation from a single image. Our approach
is based on the mutual interactions among three novel mod-
ules: (i) object detector; (ii) scene 3D layout estimator;
(iii) object supporting region segmenter. The interactions
between such modules capture the contextual geometrical
relationship between objects, the physical space including
these objects, and the observer. An important property of
our algorithm is that the object detector module is capable of
adaptively changing its confidence in establishing whether a
certain region of interest contains an object (or not) as new
evidence is gathered about the scene layout. This enables
an iterative estimation procedure where the detector be-
comes more and more accurate as additional evidence about
a specific scene becomes available. Extensive quantitative
and qualitative experiments are conducted on the table-top
dataset (Sun et al. in ECCV, 2010b) and two publicly avail-
able datasets (Hoiem et al. in CVPR, 2006; Sudderth et al. in
1JCYV, 2008), and demonstrate competitive object detection,
3D layout estimation, and segmentation results.

Keywords Scene understanding - Object recognition -
Object detection - Focal length estimation - 3D
reconstruction - Surface estimation - Viewpoint estimation
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1 Introduction

As more and more reliable and accurate object recognition
methodologies become available, increasing attention has
been devoted to the design of algorithms that go beyond the
individual object detection problem and seek to coherently
interpret complex scenes such as the one in the center of
Fig. 1. Coherent scene interpretation requires the joint iden-
tification of object semantic labels (object classification), the
estimation of object 2D/3D location in the physical scene
space (2D object localization, depth inference) as well as
the estimation of the geometrical structure of the physical
space in relationship with the observer. The latter includes
the 3D geometry of the supporting surfaces (i.e., orientation
and location of the surfaces that are supporting objects in
the scene) as well as their 2D extent in the image (support-
ing surface segmentation).

Researchers have recognized the value of contextual rea-
soning as an important tool for achieving coherent scene
understanding. Two main types of contextual information
have been explored: Semantic context and geometrical con-
text. Semantic context captures the typical semantic rela-
tionship among object classes co-occurring in the same
scene category (Torralba et al. 2003; Li and Fei-Fei 2007;
Li et al. 2009; Ladicky et al. 2010; Gonfaus et al. 2010;
Rabinovich et al. 2007) (e.g. cars and roads are likely to
co-occur within an urban scene). Geometrical context cap-
tures typical spatial and geometrical relationships between
object classes and the scene geometric structure (Gupta and
Davis 2008; Sudderth et al. 2008; Hoiem et al. 2006, 2008;
Gould et al. 2009; Hedau et al. 2009; Heitz et al. 2008;
Li et al. 2010; Saxena et al. 2009; Bao et al. 2010) (e.g.,
a car is likely to be located on top of the road and unlikely
to float in the air).

In this paper, we present a new way to establish the con-
textual relationship between objects and the scene geometric
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Fig.1 The Context Feedback Loop. We demonstrate that scene layout
estimation and object detection can be part of a joint inference process.
In this process a supporting region segmentation module (RS) and a
scene layout estimation module (LE) provides evidence so as to im-

structure. Specifically, we are interested in modeling the re-
lationship between:

— objects and their supporting surface geometry. Geo-
metrical configuration of objects in space is tightly con-
nected with the geometry (orientation) of the surfaces
holding these objects (Fig. 2—Intuition 1);

— objects and observer’s geometry. Object appearance
properties such as the scale and pose are directly related to
the observer’s intrinsic (focal length) and extrinsic prop-
erties (camera pose and location) (Fig. 2—Intuition 2);

— objects and supporting regions. The statistics describ-
ing the 2D appearance (features, texture, etc.) of fore-
ground objects are different from those describing the
2D appearance of the supporting surfaces (Fig. 2—
Intuition 3).

Following these intuitions, our work’s main contributions
are:

1. A new coherent framework to model contextual reason-
ing for object detection, 3D layout estimation, and ob-
ject supporting region segmentation, which is based on
the mutual interactions among three modules: (i) object
detector; (ii) scene 3D layout estimator; (iii) object sup-
porting region segmenter (Fig. 1). The interactions be-
tween such modules capture the contextual relationships
discussed above.

2. Our approach leverages the estimations returned by the
detector (i.e., class label, object location, scale, and pose)

iteration2
Iterationl

iteration2

Iterationl

Init @
®
Layout Estimator
(LE)

prove the accuracy of an object detector module (OD). In turn, the
object detector module enables a more robust estimation of the scene
layout (supporting planes orientation, camera viewing angle) and im-
proves the localization of the supporting regions

in order to establish such contextual relationship. Thus,
it does not rely on using external holistic or local surface
detectors (Hoiem et al. 2005; Hedau et al. 2009) or ex-
plicit 3D data (Cornelis et al. 2006; Brostow et al. 2008).

3. Unlike other methods such as Li et al. (2009), Ladicky
et al. (2010), Gonfaus et al. (2010), Rabinovich et al.
(2007), Li and Fei-Fei (2007), Torralba et al. (2003)
where the typical co-occurrence between objects and
background (e.g., a car on road) is learnt during a training
stage and used to provide semantic context, our method
exploits the local appearance coherency of objects and
supporting surfaces (within a specific image) as well as
the typical joint spatial arrangement of objects and sup-
porting surfaces in order to reinforce (or weaken) the
presence of objects and to segment the object from its
supporting surface.

4. The estimation of the scene 3D layout (orientation and
location of the supporting planes, location of objects in
3D and camera parameters (focal length)) is carried out
from just one un-calibrated single image. Unlike other
methods such as Hoiem et al. (2005), Hedau et al. (2009)
wherein assumptions about the relationship between the
geometry of the ground plane and the camera parameters
are made (e.g., the camera is located at given height from
the ground plane and only one ground plane is allowed),
our approach can handle multiple supporting planes and
arbitrary observer viewing directions.

5. Most importantly, we introduce a new paradigm where
the object detector module is capable of adaptively
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(a) Intuition 1
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Fig. 2 List of intuitions in our paper and comparison with related
works. (a) Intuition 1: Rigid objects typically lie up-right on the sup-
porting plane. The coherence between object pose and plane normal is
used by our algorithm as well as our preliminary work (Bao et al. 2010;
Sun et al. 2010a), but not in Hoiem et al. (2006), Gould et al. (2009),
Hoiem et al. (2008). (b) Intuition 2: Under the perspective camera
model, the size of an object in the 2D image is an inversely propor-
tional function of its distance to the camera when the object pose is
fixed. Hoiem et al. (2006, 2008) use this relationship too. (¢) Intuition
3: The statistics describing the 2D appearance (features, texture, etc.)

changing the confidence in establishing whether a cer-
tain region of interest contains an object (or not) as new
evidence is gathered from the plane 3D layout estimator
and supporting region segmenter. Our method is con-
ceptually different from other methods such as Hoiem
et al. (2008), Cornelis et al. (2006) where geometric con-
text only modifies the confidence of the object detector
a posteriori (i.e., the detector always produces the same
confidence output which is subsequently modified by a
geometric context module). This enables an iterative esti-
mation procedure where the detector itself becomes more
and more accurate as additional evidence about a specific
scene becomes available.

6. We validated our method against an augmented table-
top dataset (Sun et al. 2010b) (so as to test the system
level properties of our framework) as well as on exist-
ing databases (viz. labelme (Russell et al. 2008) and Of-
fice (Sudderth et al. 2008) datasets). The experiments
demonstrate that our method: (i) is scalable to generic
scenes (indoors, outdoors) and generic object categories;
(ii) achieves state-of-the-art detection results; (iii) can
successfully infer scene 3D layout information and rea-
son about supporting regions from a single image in chal-
lenging and cluttered scenes.

The rest of this paper is organized as follows. In Sect. 1.1
we review the related work. In Sect. 2, we first describe in
detail the model representation and learning procedure of
our object detector, 3D layout estimator, and object support-
ing region segmenter modules; we then summarize the types
of interactions we used during inference. In Sect. 3, we show
quantitative and qualitative experimental results on three dif-
ferent datasets. Finally, we draw conclusions in Sect. 4.
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(b) Intuition 2

(c) Intuition 3

of foreground objects are likely to be different enough from those de-
scribing the 2D appearance of the supporting surfaces (e.g., we rarely
see green hulk playing on grass.). Unlike Rabinovich et al. (2007),
Gupta and Davis (2008), Li et al. (2009), Sudderth et al. (2008) where
the typical co-occurrence between objects and background is used to
provide semantic context, we exploit the local appearance coherency
of objects and supporting surfaces (within a specific image) as well as
the typical joint spatial arrangement of objects and supporting surfaces
(Color figure online)

1.1 Related Work

In this section we review some of the key methods that use
semantic and geometrical contextual cues for enhancing the
process of jointly recognizing scene elements and recon-
structing the scene layout. Torralba et al. (2003), Li and
Fei-Fei (2007), Li et al. (2009), Ladicky et al. (2010), Gon-
faus et al. (2010), Rabinovich et al. (2007) leverage seman-
tic context to capture the typical relationship among object
classes co-occurring within each image (e.g., cars and roads
are likely to co-occur) (Ladicky et al. 2010; Gonfaus et al.
2010; Rabinovich et al. 2007), or between object classes
and scene categories (e.g., cars are likely to occur within
an urban scene) (Torralba et al. 2003; Li and Fei-Fei 2007,
Li et al. 2009). Unlike semantic context, geometrical con-
text captures typical spatial and geometrical relationships
between object classes and the scene geometric structure.
While Gupta and Davis (2008), Sudderth et al. (2008) pro-
pose to model 2D relationships among scene components
in the 2D image plane (e.g., a person is likely to be on-top
of the ground), Hoiem et al. (2006) investigate the possibil-
ity of integrating cues from the 3D scene such as vertical
and ground surfaces (Hoiem et al. 2005) into the process
of jointly detecting objects and estimating the scene layout.
Moreover, Hoiem et al. (2006) use object scale as a crit-
ical cue for modeling the interaction between objects and
the scene as well as determining the distance (depth) of the
objects from the camera. Hoiem et al. (2008), Gould et al.
(2009) propose an interactive approach wherein additional
cues such as the occluding boundaries between objects and
the scene background in the image are injected into the in-
ference procedure. Hedau et al. (2009) models the explicit
relationship between the scene layout and objects in 3D us-
ing a box representation (i.e. a representation that approxi-
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mates the scene physical space as a 3D box). Other meth-
ods leverage the ability to infer the scene depth maps via
probabilistic inference to model spatial relationships among
scene elements in 2.5D (Heitz et al. 2008; Li et al. 2010;
Saxena et al. 2009; Payet and Todorovic 2011). Finally, Bao
et al. (2010) capture the interaction between the object pose
and the 3D supporting surfaces to estimate the 3D layout
even when cues from the underlying scene (e.g., vanishing
lines or scene surface orientations) are not available.

It is clear that the possibility of exploiting geometric
context for scene understanding is often coupled with the
ability of the object detector to extract object geometri-
cal properties such as position, scale and pose. For ex-
ample, object location is used to determine 2D relation-
ships such as “below” or “on top” (Gupta and Davis 2008;
Sudderth et al. 2008). Object scale is used to determine the
relative distance between objects and cameras (Hoiem et al.
2006). Object pose is used to determine the relationship be-
tween the object and its supporting surface in 3D (Bao et al.
2010). Unfortunately, most of the methods in the vision lit-
erature have focused on just determining object properties
such as location and scale (by estimating the object bound-
ing boxes). Notable examples are the 2D models or mixture
of 2D models presented by Viola and Jones (2002), Fei-Fei
et al. (2003), Felzenszwalb and Huttenlocher (2005), Grau-
man and Darrell (2005), Leibe et al. (2004), Fergus et al.
(2005). Only recently, a number of techniques have been
proposed that are capable of capturing the intrinsic 3D na-
ture of object categories and, in turn, of estimating 3D object
properties such as the object 3D pose (Thomas et al. 2006;
Savarese and Fei-Fei 2007; Sun et al. 2009, 2010b; Su et al.
2009; Liebelt and Schmid 2010). In particular, the work by
Sun et al. (2010b) is a key building block for the method pre-
sented in this paper in that it has the unique ability to infer
both pose, distance and rough 3D shape of the object from a
single image.

2 Geometrical Context Feedback Loop

In this section we first give an overview of our model which
fuses the information from the object detector (OD), lay-
out estimator (LE), object supporting region segmenter (RS)
modules in a coherent fashion (Fig. 1).

2.1 Model Overview

The critical building block of our system is the object de-
tector as it generates cues (e.g., object scale, location, and
pose) that can be fed to the layout estimator and the region
segmenter modules. We use a novel detector called Depth-
Encoded-Hough-Voting (DEHV) which is based on our own
work (Sun et al. 2010b). DEHV has the crucial capability

to produce an object detection confidence score which is
not just a function of the image local appearance but also a
function of the geometric structure of the scene (i.e., the 3D
layout information L and supporting region information S).
This information restricts the object’s likely scale, pose, and
background/foreground configurations. At the beginning of
the inference process (iteration 1 of the loop), no informa-
tion about 3D layout information L and supporting region
information S is available so the detector returns a number of
detection hypotheses by exploring all object categories, the
complete scale space, all possible object poses, and all back-
ground/foreground configurations in the image. Each detec-
tion hypothesis is associated to the object class O, location
x, scale (1-to-1 mapped to depth d° (see (2))), and pose ¢°
(zenith and azimuth angles). This information is fed to both
the layout estimator and region segmenter modules. In turn,
the layout estimator module produces an estimate of the 3D
layout of the scene. The layout information L includes the
camera focal length f and a set of supporting planes L;,
where L; is parameterized by camera-to-plane height » and
3D orientation n in the camera reference system. By follow-
ing intuitions 1 and 2 (Fig. 2), this can be done if at least
three objects are detected in the image (proved by Bao et al.
2010, see Appendix B for details). Moreover, as we shall
see in the region segmenter module, using the object’s loca-
tion and scale provided by the detector, the region segmenter
module returns probability of each pixel belonging to a sup-
porting region S(/), where [ specifies the 2D location of the
pixel. This information allows us to identify the extent of the
supporting region. Following intuition 3 (Fig. 2), this can be
done by using a superpixel representation to capture local
appearance coherency of objects and supporting surfaces,
and by exploiting the typical joint spatial arrangement of
objects (whose location and scale are given by the detector)
and supporting regions in the image. In turn, the outputs for
the layout estimator and region segmenter modules are fed
back to the object detector module and are used to help re-
duce the detector’s search space (i.e., object scale, location,
and pose). Specifically, location and orientation of the sup-
porting planes in the camera reference system, and camera
focal length (returned by the layout estimator) simplify the
complexity of the scale and pose search space. Moreover, the
estimation of the object supporting surface (returned by the
region segmenter) helps remove spurious patches (features)
that are used to build the Hough voting score in the DEHV.
Overall, the detector leverages these additional pieces of ev-
idence to increase the confidence of true positives and de-
crease that of false alarms following the iterative inference
procedure described in Sect. 2.4. An overview of the infer-
ence procedure is shown in Algorithm 1.
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2.2 Model Representation

We introduce in detail our three modules (object detector,
layout estimator, and supporting region segmenter) in this
section.

2.2.1 Object Detector Module

We employ a modified version of the Depth-Encoded-
Hough-Voting (DEHV) object categorical detector (Sun
et al. 2010b) to obtain an estimate of the object loca-
tion, scale, pose, and depth. Similar to Leibe et al. (2004),
the DEHV detector constructs a voting space V (O, x|D)
(see (1)), where O is object class (i.e. an object category
with a unique pose), x is the object’s 2D image location and
scale (i.e. a 2D bounding boxes enclosing the object), D
is the depth information (i.e., the distance from the camera
to the object), and different poses are encoded as different
object classes. The voting space V is constructed by collect-
ing probabilistic votes cast by the set of patches describing
object class O. Notice that the voting space V (O, x|D) de-
pends on the geometric structure of the scene since the ob-
ject hypothesis (O, x) is related to D. This novel property
gives DEHV the ability to detect objects whose locations
and poses are compatible with the underlying layout of the
scene.

The DEHV Detector Let {(C|, d]’.’, 1j)} be a set of patch
attributes, where C; denotes the appearance of image patch
J centered at image location /, and d /’.’ denotes the distance
from the camera center to the corresponding 3D location of
a patch. Appearance C; is a discrete codeword label (Dance
et al. 2004). Notice that each patch is associated with a phys-
ical 3D distance to the camera which affects the size of the
patch in 2D. We define V (O, x|D) as the sum of individ-
ual contribution over all 3D geometrically consistent images
patches, i.e.,

V (0, x|D) x Zp(x|0, cj,d]f.’,lj)p(0|cj)p(d§’|lj) (D
j

The first term p(x| O, Cj, d}” ,1j) characterizes the distribu-
tion of object location x given the predicted object class
O and patch attributes {(C;,d /’.7 ,1j)}. The second term,
p(O|C;) captures the probability that each codeword be-
longs to an object class O. Finally, p(d]’.? |/;) models the un-
certainty of the depth information of patch j. Please see Ap-
pendix A for details of the derivation.

Similar to Sun et al. (2010b), our detector enforces a 1-
to-1 mapping m between scale s and depth d for each patch.
This way, given the 3D information, our method determin-
istically selects the scale of the patch at each location /, and
given the selected patches, our method can infer the underly-
ing 3D information (Fig. 3). In detail, given the camera focal
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Fig. 3 The physical interpretation of (2). Under the assumption that
image patch (red bounding box) tightly encloses the 3D sphere with
radius r, the patch scale s is directly related to the depth d given camera
focal length f and the center / = (u, v) of the image patch. Notice that
this is a simplified illustration where the patch center is on the yz plane.
This figure is best viewed in color (Color figure online)

length f, the corresponding scale s at location / = (u, v) can
be computed as s = m(d, ) and the depth d can be inferred
from d = m~'(s,1). The mapping m obeys the following
relations:

5 =2(7 —v); v=tan(f + ¢) f;

0 :arcsin<L>; <p:arctan<£>
dy- f @

dy frP4+v*
N

Generating Object Hypotheses After accumulating votes
into the Hough voting space V (O, x| D), a set of detection
hypotheses {(O;, x;)} corresponding to peaks in the voting
space can be obtained. Given the object class O and the
2D location x, the image patches that cast votes for the hy-
pothesis can be retrieved (later referred as supporting image
patches). Hence, the depth to image patch information de-
scribed in (2) can be used to calculate the depths of all im-
age patches {df }. The depth of the object d° is defined as
the median depth of the depths of image patches dj’.’ . Sim-
ilarly, we can also retrieve the corresponding zenith angles
{¢f } corresponding to all supporting image patches, and we
use a verification support-vector-machine (SVM) classifier
to find the most likely zenith angle of the object ¢° among
the candidate zenith angles. Hence, the final output of the
detector is a set of hypotheses {(O;, x;, ¢7, d?)}.

One of the main contributions of this paper is that the de-
tector can modify its behavior as knowledge about the scene
layout (denoted by L) and the object supporting regions (de-
noted by S) are available.

dy, = d projected onto yz plane
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Knowledge of Supporting Region S The region segmenter
module provides knowledge about the supporting region S

and affects p(O|C;). Wereplace p(O|C;) with p(O|C},1;,S),

and we show that it can be decomposed as follows,
p(0I|C;,1j,S) = p(0, O ¢ bg|Cj,1;,S) (3)
=p(0]0 ¢bg,Cj)p(0 ¢ bg|Cj,1;,S) (4)

where O ¢ bg means the object class does not belong to
the background class. The first equality is true since we
only need to evaluate object classes that belong to the fore-
ground object classes during Hough voting. The second
equality follows the chain rule in probability theory and
conditional independent assumption between (/;, S) and O
given (O ¢ bg, C;). As aresult, only the second term p(O ¢
bg|Cj,1;,8) isrelated to the supporting region S. We define
p(O ¢ bg|Cj,1;,8) as follows,

p(O ¢ bg|Cj.1;,8) := p(O ¢ bg|C))(1 —S())) &)

where p(O ¢ bg|C}) is the probability that the codeword C
does not belong to the background class, and it is reweighed
by 1 —S(l;). Here, S(I;) is the probability that a pixel at lo-
cation /; belongs to a supporting region which is equivalent
to saying that such a pixel belongs to a background region
(see the region segmenter module for details). This proba-
bility is estimated by the region segmenter and allows the
algorithm to reduce the importance of patches that are likely
to belong to the supporting region.

Knowledge of Scene Layout L. The layout estimator mod-
ule provides knowledge about the scene layout L and affects
p(d /’.’ ;). In order to explicitly incorporate knowledge about

the scene layout, the term p(d;’ ;) is calculated as follows:

p(df1l;, L) oc Y 8(t5) (6)

ielL|

where t; is the distance from the 3D location of the image
patch j to the ith plane parameterized by its normal direc-
tion n and camera height 7 (see (7) in section of the layout
estimator module for details); and |L| denotes the number of
plane hypotheses. Notice that knowledge of the scene lay-
out L allows the algorithm to estimate the probability that
an image patch j is located at depth df from the camera.
Hence, effectively, the search space of object scale in 2D is
reduced.

To summarize, modified DEHV takes into account the
knowledge of supporting region S by deemphasizing votes
from supporting regions to the space V (O, x|D). Further-
more, the uncertainty of the corresponding depth d 11'7 of each
image patch j is reduced by the knowledge of surface lay-
out L. Hence, the noise in the voting space V (O, x|D) is re-
duced and the number of false detections decreases. Notice

Fig. 4 The notations used in the layout estimator module. The bold
fonts indicate parameters that are estimated by the layout estimator
module. The underline fonts indicate parameters that are estimated by
the object detector module. In this example, two planes are visualized.
The measurements are: x: object’s 2D image location and scale; d: ob-
ject-to-camera distance; ¢: observed object pose; ¢: the 3D object cen-
ter to supporting place distance; /: observed patch image location. The
unknowns are: f: camera focal length; n: the plane normal; : the cam-
era-to-plane distance

that the detection hypotheses {(O, x)} may also be further
pruned by checking if the object bounding box x is consis-
tent with the underlying layout information L (similarly to
Hoiem et al. 2006).

2.2.2 3D Layout Estimator Module

The goal of the 3D layout estimator is to estimate the 3D
layout L associated with a single image from candidate ob-
ject detections. Our layout estimator module is built upon
Bao et al. (2010). However, instead of using the probabil-
ity inference in Bao et al. (2010), we employ Hough voting
to efficiently estimate the 3D layout. As shown in Fig. 4,
L contains the camera focal length f and a set of supporting
planes {L;} each parameterized by camera-to-plane height n
and 3D orientation n. Notice that the orientation # is a nor-
malized vector such that |||, = ,/n% +n% +n§ =1, and
(n, n) specifies a unique plane in 3D such that any 3D point
g € R3 lying on the plane satisfies g7 n = 1. Moreover, the
closest distance ¢ from a 3D point g to a plane parameterized
by (n, ) can be calculated as follows,

t=|q"n—n| ™

The 3D point g corresponding to the 2D point / = (u, v)
with depth d is equivalent to the normalized ray from cam-
era center to the 2D point on the image plane times the
depth:

N U5 R
Ve

Following intuitions 1 and 2, we formulate the plane esti-
mation problem as a Hough-voting problem. A Hough vot-

®)
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ing space Q is constructed with axes associated with the
plane’s orientation n, the camera height n, and the focal
length f. Each candidate object detection (O, x;, @7, d;)
casts votes in Q for a set of camera focal length {f}
and supporting plane {n,n} following the distribution
p(n,n, fl10;,x;,¢?,d?). We use geometrical constraints
to help compute p(n, n, f|0;, x;, ¢?,d?). The geometrical
relationship relating object detections and the supporting
planes is derived in the same manner as Bao et al. (2010).
As illustrated in Fig. 4, let (u;, v;) be the center location
of object detection location x;. The zenith angle ¢;! is
the angle between the light ray (u;,v;, f) from the cam-
era to the object and the plane normal n1, n,, n3. The lay-
out { f, n, n} and its supporting object satisfies the following
equations,

uiny +viny + fnz = —cos(¢;)llu; v; fli2

V)2 + (12)2 + (n3)3 =1 )
n =d; *cos(¢;)

Given a candidate object detection (O, x;, ¢7, d?), we com-
pute p(n,n, f10;, x;, 7, d?) as the following:

p(n,n, f10;i,x;,¢7.d7)

{ 1 if (n,n, f) satisfies (9)

0 otherwise (10)

The final voting space Q(n,n, f) is defined as the
weighted sum over distribution of each candidate detection
as follow,

Q(n?nsf)zzp(n!n7f|0i7xiv f,d;’)V(Oi,xi) (11)

such that the contribution of each candidate detection is
weighed by the detection score V (O;, x;).

As aresult, high values in the layout voting space Q is ac-
cumulated by geometrically consistent detection candidates.
This model can easily incorporate scene layout with multi-
ple supporting planes by associating each plane to a peak
in the Hough voting space Q. However, in order to regu-
larize the co-occurrence of multiple supporting planes, we
assume all the supporting planes are parallel to each other
similarly to the assumption in Bao et al. (2010). This allow
us to compress the Hough voting space to a lower dimension
space Q(n, f) by summing over the axis of n in Q(n, n, f).
We first find the peak (n*, f*) in Q(n, f). Then, we se-
lect multiple peaks of {n} in Q(n*, n, f*). As shown in Bao
et al. (2010), it is necessary to have at least 3 non-collinear
object supported by parallel planes to have a unique peak
in Q(n, f) (see Appendix B for the proof). It is important

"Here we omit the superscript o to have a concise notation.
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Fig. 5 Tllustration of the concept of multiple segmentation hypotheses,
where different hypotheses are shown at different layers. Here we show
three segmentation hypotheses, where each color indicates a region
corresponding to a set of superpixels, and the image is partitioned into
9 superpixels separated by the dark boundaries (Color figure online)

to point out that the 3 non-collinear objects do not have to
be located on the same supporting plane. More specifically,
since we assume that multiple planes are parallel to each
other, we only need at least 3 objects to estimate the plane
orientation, and each plane height can be estimated from one
single object. Finally, the estimated layout L = ({n, n}, f)
is fed to the detector to further reduce the uncertainty of the
patches’ depth distribution p(d f 7j, L), as already described
in (6).

2.2.3 Supporting Region Segmenter Module

Following the observation that the supporting region is
likely to have consistent appearance in the surrounding of
the object and following intuition 3, our region segmenter
module is capable of segmenting out the object from its sup-
porting surface. We use a superpixel decomposition method
(Felzenszwalb and Huttenlocher 2004) to identify regions
with consistent appearance. Similarly to Hoiem et al. (2005),
multiple segmentation hypotheses H = {h ;} are used to mit-
igate the problem of segmentation errors. A segmentation
hypothesis /; is an ensemble of disjoint set of superpixels
which fully cover the image. Each set of superpixels is a
unique region r (Fig. 5).

Given aregion r € h; from the jth segmentation hypoth-
esis, we train a logistic regression classifier to predict the
probability P(y|r, {x, O}) which captures how likely the re-
gion r belongs to a supporting region (i.e. y = 1) or not. By
averaging out the contribution of each segmentation hypoth-
esis, we obtain the probability of a superpixel i belonging to
a supporting region as follows,
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P(yillx, 0}, 1) =Y P(yih;()l{x, 0}, 1) (12)
J

=Y " P(yilhj ). {x, 0Y) P(h;II) (13)
J

where [ is the image and h;(i) is the image region in-
cluding the ith superpixel in the jth segmentation hypoth-
esis ;. Notice that the output of the logistic regression
P(yilhj@),{x, O}) is weighed by P(h;(@)|I) which in-
dicates the probability that h;(i) is a region containing
superpixel i given the image evidence. Given the proba-
bility that each superpixel belongs to a supporting region
P(yil{x, O}, I), and the mapping between pixel index to su-
perpixel index, we obtain the probability (confidence) s that
each pixel belongs to a supporting region. Finally, we denote
by S the collection of probabilities {s1, s2, ...} for all pixels
in the image. This allows the algorithm to calculate the prob-
ability p(O ¢ bg|C;,1;,S) in (4) that an image patch does
not belong to the background.

2.3 Model Learning

In this section, we describe how the model parameters are
learned in the object detector and supporting region seg-
menter modules in detail.

2.3.1 Object Detector Module

Recall that the Hough voting space V (O, x| D) in (1) aggre-
gates votes from each unique combination of image patch
location /;, codeword label C;, and depth d}l.) . Our goal is
to learn the codebook mapping for a codeword C, the distri-
butions of object class p(O].) (voting weight) and location
p(x].) (voting direction). Notice that computation of p(d|.)
is already described in (6).

Similar to Sun et al. (2010b), we assume that for a num-
ber of training object instances, the 3D reconstruction D of
the object is available. This corresponds to having available
the distance (depth) of each object patch from its physical
location in 3D.

Here we define location x of an object as a bounding
box with center position ¢, height /, and aspect ratio a. We
sample each image patch centered at location / and select
the scale s = m(l,d) using the 1-to-1 mapping described
in (2). Then the appearance I(l,s) is extracted from the
patch (/, s). When the image patch comes from a foreground
object, we cache: (1) the information of the relative voting
direction b as qT_l; (2) the relative object-height/patch-scale

ratio w as %; (3) the object aspect ratio a.

Random Forest Codebook We use both the foreground
patches (positive examples) and background patches (nega-
tive examples) to train a random forest discriminative code-
book. Hence, the mapping C(I(l, s)) is a unique index of
the leaf node in the random forest.

Voting Weight p(O|.) For each codeword entry C;, we
use the training data to estimate p(O|O ¢ bg,C;) and
p(O ¢ bg|C;) by counting the frequency that patches of
O falls in the codebook entry C. Then, we can calculate
p(O|Cj,1;,S) using (4).

Voting Direction p(x]|0,C,s,l) can be evaluated given
the cached information {(by, wg, ax)} as follows:

px|0,C,s,l)
=p((g.h,a)|0,C,s,1)

x Z 8(gq—>br-s+1,h—wg-s,a—ag)
keg(0,0)

where g(0O, C) is a set of patches from O mapped to code-
book entry C. Notice that p(x|0O, C, s,I) is equivalent to
px]0,C,d?, 1) in (1), since s =m(d?, ).

2.3.2 Supporting Region Segmenter Module

Here, we describe how to learn the probability P (h;(i)[I)
and P(y;|h; (@), {x, O}) in (13).

We model the intuition 3 by introducing the region-based
statistics described below. Such statistics capture the joint
typical spatial arrangement of objects (whose location and
bounding box are given by the detector) and the object sup-
porting regions in the image. Using these statistics, each re-
gion can be eventually labeled as supporting regions or not.
Based on the candidate object detections {x, O}, our statis-
tics are:

— The median detection confidence of those candidate ob-
ject detections that sufficiently overlap with a candidate
supporting region.? Intuitively speaking, the higher the
statistic, the more likely the region belongs to the fore-
ground region and the less likely belongs to a supporting
region (Fig. 6(b)).

— The 95th percentile of the detection confidence of the can-
didate object detections supported by the image region.
Intuitively, the higher the statistic, the likelier the region
belongs to a supporting region (Fig. 6(c)).

Using the designed statistics for each region r, we train
a logistic regression classifier to estimate the probability
P(y|r,{x, O}). Finally, P(h;@i)[I) is trained similarly to
the segment homogeneity classifier described in Hoiem et al.
(2007).

2When the area of the intersection between the foreground region (fg)
and the object bounding box over the area of the object bounding box
is bigger than 0.5, the object is considered as sufficient overlap with
the foreground region.
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(a) Ori. Img.

Fig. 6 Illustration of the segmentation statistics. Panel (a) shows the
original image overlaid with ground truth supporting region (red) and
ground truth object bounding boxes (green). Panel (b) and (c) show

Algorithm 1 Context Feedback Loop

S := empty

L := empty

for iter < MaxIter do
{(0,x,d°, ¢°)} =OD(S, L)
L=LE({(0,x,d? ¢°)})
S=RS{(0,x,d°, ¢")})
iter = iter + 1

end for

2.4 Model Inference using Context Feedback Loop

Our inference algorithm (see Algorithm 1) starts by apply-
ing the object detector module assuming no prior knowledge
about the scene layout L and supporting regions S is avail-
able. Hence, p(d”|.) in (1) is an uniform distribution which
implies image patches can appear at any depth, and p(O|C)
in (1) is equal to p(O|O ¢ bg, Cj)p(O ¢ bg|C)).

The object detector returns the first set of candidate re-
sults {(O, x,d, ¢)} (Fig. 7(a)). Given the initial, possibly
noisy, detections and pose estimations, the layout estimator
generates an estimation of the possible layout parameters L
which can be further used to improve detection (Fig. 7(b)).
Similarly, the region segmenter takes the noisy detection re-
sults to estimate the likely location of the supporting region
which can be further used to improve detection (Fig. 7(c)).
In practice, the layout estimator and region segmenter act
simultaneously and contribute to obtain more accurate de-
tections which in turn yields more accurate layout and sup-
porting region estimates (Fig. 7(d)). The system gradually
converges into a steady state where the final object detec-
tion, pose estimation, layout estimation, and supporting re-
gion segmentation results are consistent with each other. Al-
though we do not have a theoretical proof of convergence,
experimental results suggest that such a point of conver-
gence exists in most cases.

@ Springer

(b) Avg. S1

(c) Avg. S2

the average statistics over multiple segmentation hypotheses for S1,
S2, respectively. Notice that white indicates higher value (Color figure
online)

2.5 Implementation details

For the object detector, we use the following binning in the
Hough voting space: (i) 60 scales (from the 0.05 of the orig-
inal scale multiplied by 1.05 to the original scale); (ii) 10
object aspect ratio (from 0.6113 to 2.1611); (iii) Each ob-
ject class is discretized into 8 object poses corresponding to
different azimuth angles; (iv) For each scale, the object hy-
pothesis is shifted in both horizontal and vertical directions
by 2 pixels.

For layout estimator, the binning in the Hough voting
process is: (i) plane normal has 20 bins for tilt direction from
15° to 75° and 5 bins for camera-rotation from —10° to 10°,
(i1) plane height has 20 bins from 30 cm to 80 cm for office
dataset and from 1.5 m to 2 m for street dataset. (iii) cam-
era focal length has 20 bins from 0.8 to 1.25 fraction of an
initial camera focal length guess.

3 Experiment

We evaluate quantitatively and qualitatively our system on
three datasets. The first dataset is an augmented table-top
object dataset (Sun et al. 2010b) with ground truth depth
and foreground/background segmentation. We conduct ex-
periments on object detection, plane layout estimation, and
supporting region segmentation. We also evaluate our sys-
tem on two publicly available datasets: a subset of label-me
dataset (Russell et al. 2008) (so as to compare our perfor-
mance with the state-of-the-art method (Hoiem et al. 2006))
and the office dataset (Sudderth et al. 2008). Typical results
on these 3 datasets are shown in Figs. 12, 13, 14.

3.1 Table-Top Object Dataset

We test our system on an augmented table-top object dataset
proposed in Sun et al. (2010b) which contains three com-
mon table-top object categories: computer mice, mugs, and
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(a) OD

(b) OD+LE

(c) OD+RS (d) Full sys.

Fig. 7 Interactions between different modules contribute to improve the detection performance. Panels show the results of the baseline detec-
tion (a), joint detection and 3D layout estimation (b), joint detection and supporting region segmentation (c), and our full system (d)

Loop Iterations | e, (radius) e, (%) e (%) el (o)  €ly, (%)
1 Pl First Loop 0.125 25.9 13.2 2.07 51.2
M€ ™ Final Loop 0.118 21.2 11.7 .79 56.9
First Loop 0.133 24.9 12.1 4.00 49.0

2 Plane -
Final Loop 0.121 29.9 1.1 3.50 51.0

Fig. 8 Estimation errors (refer to Sect. 3.1 for definition of errors) of
surface layout parameters (n, n, f), and supporting regions. Columns
3~5 show the errors of the estimated surface normal e,,, camera height
ey, and focal length e 7. The least two columns show the two types of

staplers, where each image is associated to depth range data
collected using a structure-light stereo camera. This allows
us to easily estimate the ground truth 3D layout and support-
ing plane segmentation. The images are captured in daily of-
fice place under generic lighting conditions. Please see the
last three rows in Fig. 12 for examples. We follow the train-
ing procedure described in Sun et al. (2010b) to train the
DEHYV detector using 200 images with their corresponding
3D information. The remaining 100 images (some with a
single plane (80 images) and some with 2 planes (20 im-
ages)) are used for testing. Notice that the original dataset
proposed in Sun et al. (2010b) contains 80 images. Each im-
age from either training or testing sets contains 3~8 object
instances in random poses and locations.? During the testing
stage, we only use 2D images and all the 3D information is
inferred by our algorithm. Figure 9 shows the overall Pre-
cision Recall curve (i.e., combining three classes (computer
mice, mugs, and staplers)). We use the same definition of
precision-recall as in Everingham et al. (2007). That is the

NumOfTruePositive .
W, the recall is defined

where a detection is considered to be true

precision is defined as

NumOfTruePositive

as NumOfTrueObject °

if
_ area(Bp N Bg;) -

a, = >0.5
area(Bp U Bg;)

3The training instances and testing instances are separated.

errors of the supporting region segmentation. All five types of errors
are further reduced as the number of iterations increases (the table
reports results for the 1st and 7th iteration)

where B, is the predicted bounding box and By, is the
ground truth bounding box.

Moreover, multiple detections of the same object in an
image are considered false detections. The precision recall
curve is calculated by varying the threshold to select the de-
tections.

To obtain the initial detection result (first iteration of the
loop), we apply the baseline detector (Sun et al. 2010b) with
no information provided by the region segmenter and the
layout estimator. Figure 8 further shows the accuracy in es-
timating the layout parameters (n, n, f) and segmenting the
supporting regions. Each of the errors are defined as follows:
en = arccos (Megifgr), €y = ln“fk—:tng’l, and ey = If“’fe%,
where subscript labels est and g indicate estimated and
ground truth values respectively. The last two columns re-
port two types of segmentation errors: esl';g and e%g are
the amount to which the segmenter mistakenly predicts a
foreground region as supporting region and the segmenter
misses the truth supporting region, respectively. In detail, let
Ip denotes the supporting region predicted by our model,
Isg denotes the ground-truth supporting regions, and I de-
notes the ground truth foreground objects. We define e/ 4 =

seg —
lZp N\ 1r| Ms _ p(Isr]

IFl seg =  |Isrl
number. The smaller esf;‘g, the lower the false alarm rate is
for confusing foreground pixels as background. The higher
eé‘gg , the larger the area our algorithm can classify as sup-
porting region.

Both Figs. 8 and 9(d) validate that the feedback loop is

effective in improving (i) object detection, (ii) scene lay-

, where | e | counts the pixel
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Fig. 9 Detection performance
using precision-recall

(a) Seg Only

(b) Layout Only

1 1
Init AP=0.41099 Init AP=0.41099
measurement. Panel (a) . 0.9 Init + Seg AP=0.47685 0.9 |?e|r1 AP=0.45719
compares baseline detection Iter2 AP=0.49567
3 0.8 0.8 Iter3 AP=0.50778
results (Sun et. al. 2010b) with o APe025088
our system using only 0.7 0.7 Iter5 AP=0.54245
. . . Iter6 AP=0.49534
supporting region segmentation. S 06 S 06 tor? AP=0.54781
Notice that joint object 3 s B0
detection and supporting region g g
segmentation lead to an o 04 o 04
one-time improvement only. 03 03
Panel (b) shows results 02 02
combining detector and layout
. . . 0.1 0.1
estimator for 7 iterations.
0 0 ‘ ‘ ‘ ‘
Panel (¢) shows the results when 0 02 04 06 08 0 02 04 06 08 1
all modules (the object detector, Recall Recall
layout estimator, region
segmenter) are used in the loop (c) Full System (d) Asymptotic Behavior
for 7 iterations. Notice the 1
. Init AP=0.41099 0.65
results in panels (a, b, ¢) are 09 Iter 1 AP=0.5011 0.6031
3 iter 2 AP=0.51551 . 0.6003
evalue.it(?d in the testset 08 tor 3 AP0 30014 06 — 0%
containing one single plane. Iter 4 AP=0.51036 N~ 05847
0.7 Iter 5 AP=0.51535 AP p
Panel (d) shows that the ’ Iter 6 AP=0.56363 0.5655
C Iter 7 AP=0.5655 0.5603
performances of our full system o 06 055 7.
for the single plane and two Zos 05312
planes cases. Notice that the g 04 05 05011
system appear to asymptotically ’ —— two planes
03
converge to a steady state on ne olan
both scenarios (with a single 02 045 one plane |
plane and with 2 planes) 0.1
0 0.41099 Iterations
0 03 02 06 08 7 =
Recall 123 456 7 8 9 101112131415 16 17

out orientation estimation, (iii) focal length estimation. The
improvement of surface height 1 estimation is less consis-
tent since the algorithm uses fewer objects to estimate the
height of the surface (compared to the orientation of the sur-
face). The improvement in segmenting the supporting region
is also less significant. We believe that if more object cate-
gories are used, larger evidence about the appearance prop-
erties of the supporting regions can be produced, which in
turn should produce more accurate segmentation results.

3.2 Label-Me Outdoor Dataset

We compare our system with another state-of-the-art method
(Hoiem et al. 2006) that uses geometrical contextual rea-
soning for improving object detection rates and estimating
scene geometrical properties such as the horizon line. The
experiment is conducted on ~100 images that include at
least 3 cars in any single image from Label-Me dataset pro-
vided by Hoiem et al. (2006).* The training images for our
detector are extracted from Pascal 2007 cars training set (Ev-
eringham et al. 2007). Figure 10(a) compares the detection

4As explained in Bao et al. (2010) and in Sect. 2.2.2, at least 3 objects
are necessary for estimating the layout.
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performance of our full model at different iterations with
Hoiem et al. (2006). Although both methods rely on differ-
ent baseline detectors, similar to Hoiem et al. (2008), our
method shows that geometric context provides high-level
cues to iteratively improve detection performance. Notice
that our algorithm: (i) does not require the estimation of
horizontal or vertical surfaces as it extracts spatial contex-
tual information from the object itself (enabling our algo-
rithm to work even if the ground plane is not visible at
all); (ii) it works even if objects are supported by multi-
ple planes located at different heights with respect to the
camera.

We further evaluate the object detection performance of
our model with supporting region information provided by
different methods (Fig. 10(b)). The detection performance
of our model with supporting region information provided
by our segmenter (AP = 27.6 %) is comparable to the per-
formance (AP = 28.8 %) of our model with the ideal sup-
porting region information. We generate the ideal support-
ing regions by using the ground truth bounding boxes to re-
move mistaken supporting regions predicted by Hoiem et al.
(2006). Our proposed segmenter is also flexible in that it can
easily incorporate ground plane segmentation results pro-
vided by Hoiem et al. (2006) as an additional cue. This leads
to the best detection performance AP = 28.4 %. We further
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BaselLineDetector AP=26.8%
0.9 Loop Iteration1 AP=30.6%
Loop Iteration5 AP=31.9%
0.8 — — Hoiem Baseline AP=16.6%
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Fig. 10 Detection performance on labelme (Russell et al. 2008)
dataset. Panel (a) shows the results after applying the full system from
iteration 1 to 5. This figure also shows the results of Hoiem et al. (2006)
and its baseline method (Dalal and Triggs 2005). Panel (b) shows aver-
age detection precision (at the final iteration) using (1) the baseline de-
tector (Sun et al. 2010b), (2) our supporting region segmenter module,
(3) supporting regions provided by Hoiem et al. (2005) as an additional
cue to our region segmenter module, (4) ideal supporting regions pro-
vided by Hoiem et al. (2005) where mistaken supporting regions are
removed by using ground truth object bounding boxes

Detection Average Precision

evaluate the performance of our 3D layout estimation algo-
rithm by comparing the estimated vanishing lines (i.e., cor-
responding to the most confident plane estimated by our full
algorithm) with the ground truth vanishing lines. At the first
iteration, the relative L; error is 6.6 %. And at the final
(5th) iteration, the relative L error is 4.2 % which is com-
parable to the 3.8 % error of Hoiem et al. (2006). Typical
examples are shown in the first three rows of Fig. 12. All
results validate that the feedback loop is effective in improv-
ing (i) object detection, (ii) scene layout orientation estima-
tion, (iii) focal length estimation, in an outdoor environment.
Moreover, our method is flexible enough to incorporate dif-
ferent cues such as the ground plane segmentation results
provided by Hoiem et al. (2000).

Sey = % > |%|, where 7—1\, and H; are the best estimated and
ground truth vanishing line.

Precision
o o o Isd o o
E w (o)} ~ (o] [t —_

o
w

o
[N}

BaseLineDetector AP=64.1%
Loop Iteration1 AP=72.0%
Loop Iteration6 AP=72.1%

o

0 02 04 06 08 1
Recall

Fig. 11 Detection performance using full system form iteration 1 to 6
on the office dataset (Sudderth et al. 2008). The baseline detector is
Sun et al. (2010b)

3.3 Office Dataset

We use the office dataset (Sudderth et al. 2008) for ad-
ditional evaluation. 150 images are randomly selected for
training and the remaining 54 images (which contain at least
3 objects of interest) are used for testing. Average overall de-
tection performances for computer mice, monitors, and key-
boards are shown in Fig. 11. Notice the improvement of al-
most 8 %. We validate that our method generalizes well to
another indoor environment dataset. Typical examples are
shown in Fig. 14.

4 Conclusion and Future Work

We have presented a framework for jointly detecting ob-
jects, estimating the scene layout and segmenting the sup-
porting surfaces holding these objects. Our approach is built
upon an iterative estimation procedure where the object de-
tector becomes more and more accurate as evidence about
the scene 3D layout and the object supporting regions be-
comes available and vice versa. Quantitative and qualita-
tive experimental results on both indoor (Sun et al. 2010b;
Sudderth et al. 2008) and outdoor (Hoiem et al. 2006)
datasets support our claims empirically.

As future work, we would like to develop an estimation
procedure which guarantees convergence and global opti-
mality. Moreover, since, in the current implementation, the
model parameters are all learned separately, we plan to de-
velop a learning algorithm which learns all the model pa-
rameters in a joint fashion. The limitation of at least three
objects per image can be overcome if a prior is placed on the
focal length and the support plane parameters. We plane to
explore how such prior knowledge can help improving the
overall object detection, layout estimation, and supporting
region segmentation accuracy.
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Fig. 12 Typical results of joint Original Det
object detection (green), layout I
estimation (blue), and original
false detections (red). The
supporting region is visualized
by showing the confidence that
a pixel belongs to a supporting
region (white indicate high
confidence). Results on labelme
(Hoiem et al. 2006), table-top
(Sun et al. 2010b) datasets are
shown in rows 1~3 and 4~6,
respectively. Notice that the
modules jointly improve the
original detection and enable
convincing layout estimation
and supporting region
segmentation (Color figure
online)
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Original Det.

HAMMERMILL

Fig. 13 Typical results of joint object detection (green), layout es-
timation (blue), and original false detections (red) on images with
2 planes in table-top dataset (Sun et al. 2010b). The supporting re-
gion is visualized by showing the confidence that a pixel belongs

Original Det.

Final Det.

Final Det.

to a supporting region (white indicate high confidence). Notice that
we assume multiple planes must be parallel to each other. Therefore,
multiple planes will share the same vanishing line (Color figure online)

Layout & Seg.

Fig. 14 Typical results of joint object detection (green), layout es-
timation (blue), and original false detections (red) on office dataset
(Sudderth et al. 2008). The supporting region is visualized by showing
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Appendix A: Derivation of Object Detect Score

In detail, we define V(O, x|D) as the sum of individual
probabilities over all observed images patches at location /;
and for all possible depth dJ’.’ eD,ie.,

V(0.xID)=) Y p(0.x.Cj.d].1))

i P
J djeD

the confidence that a pixel belongs to a supporting region (white indi-
cate high confidence) (Color figure online)

=33 p(xlo.c;.al.1;)p(0IC;.d”. 1))
J djeD

x p(Cjldf, 1;)p(df1l;)

where the summation over j aggregates the evidence from
individual patch location, and the summation over depth d ;’
marginalizes out the uncertainty of depth corresponding to
each image patch location. Since C; is calculated determin-
istically from /; and d f , and assuming O only depending on
Cj, we obtain:

V(0,x|D)

oy Ny p(x10,C;,d%,1;)p(OI1C)p(d?|l;)
J dfeD
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We further assign image patches with different depths to dif-
ferent index j. As a result, we can take only the summation
over patch index j and obtain (1).

Appendix B: Proof of Three Objects Requirement

Equation (14) admits one or at most two non-trivial solutions
of {f,n1,ny,n3} if at least three non-aligned observations
(ui, v;) (i.e. non-collinear in the image) are available. If the
observations are collinear, then (14) has infinite number of
solutions.

—cospi/ui +vi + f2

up v f T

u vy f " —cosgn/us+v5+ f

us vz Sy | =] —cosgsy/ul+ v} + 2
: n3 .

uy vy f :

—cos gy, /uk, + v + f2

(14)

Proof Suppose at least three objects are not collinear in a
image, then the rank of the left matrix in the left-hand side of
(14) is 3. Therefore (14) provides 3 independent constraints.
Recall the unknowns in (14) are n1, ny, n3, f. With these
constraints, each of n1, ny, n3 can be expressed as a func-
tion of f, i.e. n; = n;(f). Because ||n|| = 1, we obtain an
equation about f:

In the above equation, f appears in the order of f2 and f*.
Therefore, there are at most two real positive solutions of f.
Given f, {n1, ny,n3} can be computed as n; = n;(f).

On the other hand, if all objects are collinear in the image,
then infinite number of solutions of (14) exist. If all objects
are collinear, the rank of the left matrix in the left-hand side
of (14) is 2. Without loss of generality, assume (u1, v1) # 0.
In such a case, after using Gaussian elimination, (14) will be
in the following form:

a B f ¢

y € 0| [™ n

0 0 ofl™]=o0 5)
n3

If f,ﬁl,ﬁz,ﬁg is solution, then f,ﬁl +kmy,ny+kmy, n3+
kms is also a solution of (15), where (m,my, m3) is the
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non-trivial solution the following equation:

[a B f} Z; o

yeOm3

Hence, (14) admits infinite solutions. [l
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