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Abstract

We propose two novel Branch-and-Bound
(BB) methods to efficiently solve exact MAP-
MRF inference on problems with a large
number of states (per variable) H. By or-
ganizing the data in a suitable structure, the
time complexity of our best method for eval-
uating the bound at each branch is reduced
from O(H2) to O(H). This permits searching
for the MAP solution in O(BH +Q) instead
of O(BH2) (without using the data struc-
ture), where B is the number of branches
and Q is the one-time cost to build the data
structure which is proportional to H2. Our
analysis on synthetic data shows that, given a
limited time budget, our method solves prob-
lems that are characterized by a much larger
number of states when compared to state-
of-the-art exact inference algorithms (e.g.,
Marinescu and Dechter (2007); Sontag et al.
(2008)) and other baseline BB methods. We
further show that our method is well suited
for computer vision and computational biol-
ogy problems where the state space (per vari-
able) is large. In particular, our approach
is an order of magnitude faster on average
than Sontag et al.’s Cluster Pursuit (CP) on
human pose estimation problems. Moreover,
given a time budget of up to 20 minutes, our
method consistently solves more protein de-
sign problems than CP does. Finally, we suc-
cessfully explore different branching strate-
gies and ways to utilize domain knowledge of
the problem to significantly reduce the em-
pirical inference time.

1 Introduction
Markov Random Fields (MRFs) [33, 14] provide a
principled framework for modeling problems in com-
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puter vision, computational biology, and machine
learning where interactions between discrete random
variables are involved. However, solving the Maximum
a Posteriori (MAP) inference problem in general MRFs
is known to be NP-hard [26]. Researchers have shown
that MAP inference can be approximated by a Linear
Programming Relaxation (LPR) problem [27, 17, 32]
(see [35] for a review), and such LPR can be solved
more efficiently using its dual form [15, 35, 9, 16] (see
[29] for a review). Our method leverages the general
dual LPR form introduced by Sontag et al. [29] (See
Eq. 4), where the dual objective is viewed as a func-
tional of dual potentials.

When MRFs are characterized only by unary and pair-
wise potentials, the MAP inference problem can be
approximated by an edge-consistent LPR (see Sec. 3).
Unfortunately, it has been shown that edge-consistent
LPR cannot exactly solve the MAP inference problem
in many real-world problems [21, 15, 38, 30, 16, 36].
Instead, researchers have proposed the following two
deterministic approaches to solve the MAP inference
problem exactly:

1. Cluster Pursuit (CP) [30]: The upper bound of
the edge-consistent LPR can be tightened by adding
clusters of variables to form a cluster-based LPR.
Cluster Pursuit methods aim to find a set of clusters
to tighten the bound incrementally to achieve exact
MAP inference.

2. Branch-and-Bound (BB) [19]: Given the upper
and lower bounds from the edge-consistent LPR, BB
methods systematically search for the exact solution
by iteratively applying the branching and bounding
strategies (Sec. 4.1).

Both approaches are applied to further tighten the up-
per bound of the edge-consistent LPR, which is ob-
tained by solving for the optimal dual potentials (See
Eq. 4). Hence, the total time to solve the MAP infer-
ence problems for both approaches is the sum of the
initial time to solve the edge-consistent LPR (TInit)
and the time to tighten the upper bound (TTighten).
We discuss details of the computational time for each
of the methods below.

Cluster Pursuit. As shown by Sontag et al. [30],
the time complexity of TTighten for the CP method
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is O(PHq), where q is the maximum cluster size and
P is the number of Message Passing (MP) iterations
accumulated while pursuing clusters. Theoretically,
as clusters across all sizes are explored (i.e., q = N),
finding an exact solution is guaranteed. However, such
exploration is intractable. In practice, CP methods ex-
plore clusters with small size (e.g., q = 3 or 4) only. By
exploring small clusters only, researchers [30, 36, 16]
have shown that exact solutions can be found (albeit
without guarantee) in many practical cases. However,
CP methods are still prohibitively slow when the num-
ber of states H is large, since the time complexity is
proportional to O(Hq).

Naive Branch-and-Bound Method. A naive BB
approach (see Sec. 4.1 for an overview of BB) can
be designed by using the dual LPR (in Eq. 4) to
obtain bounds at each branch, assuming the dual
potentials are fixed (once the initial edge-consistent
LPR is solved). The time complexity for evaluating
the bound is O(H2). Hence, the time complexity of
TTighten becomes O(BH2), where B is the number of
BB branches. Notice that the naive BB is also slow
for problems with a large H due to the quadratic de-
pendency on H.

To summarize, one can attempt to use naive BB or
CP to solve MAP inference exactly. However, it is
challenging to find the exact solution efficiently, espe-
cially when the number of states is large. This condi-
tion is common in computer vision problems (e.g., hu-
man pose estimation) and computational biology (e.g.,
protein design). As a result, approximate inference
algorithms or simplified representations (e.g., MRFs
with only tree structure) are often used to obtain in-
ferior but efficient solutions (see Sec. 2). In this pa-
per, we propose an efficient BB algorithm that can ex-
actly solve MAP-MRF inference problems with a large
number of states more efficiently than state-of-the-art
methods [30, 20] and other baseline BB methods as
shown in Sec. 5.

Proposed Branch-and-Bound Methods. In
Sec. 4, we propose two methods to speed-up the naive
BB method. The first is an improved naive branch-
and-bound method (see Sec. 4.2), which further up-
dates the dual potentials at each branch to tighten
the upper bound. Hence, the time complexity of
TTighten becomes O(B̂H2), where B̂ is the number of
BB branches and is guaranteed to be smaller than B
for the naive BB. Therefore, the improved naive BB
is always faster than the naive BB (i.e., O(B̂H2) <
O(BH2)). Second, instead of tightening the bound at
each branch, we fix the dual potentials and propose
an efficient branch-and-bound method, which utilizes
a novel way to calculate the bound for each branch in
time linear to the number of statesH (see Sec. 4.3). As

a result, the time complexity of TTighten isO(BH+H2)
(H2 refers to the one-time cost to build the data
structure) instead of O(BH2) for the naive BB. Since
H+B ≪ BH when H or B is large, our efficient BB is
much faster than the naive BB. Most importantly, we
empirically show that when H is large, the proposed
efficient BB is much faster than the improved naive BB
(i.e., O(BH) ≪ O(B̂H2)). This implies B ≪ B̂H (see
Sec. 5.1). Similarly, we empirically show that, when H
is large, the proposed efficient BB is also much faster
than CP [30] (i.e., O(BH) ≪ O(PHq)). This implies
B ≪ PH(q−1) (see Sec. 5).

We first discuss the related work in Sec. 2, and intro-
duce the MAP-MRF inference problem and the edge-
consistent LPR (which provides the valid upper bound
used in our BB methods) in Sec. 3. Our novel contri-
bution, the efficient BB and the improved naive BB
algorithms are introduced in Sec. 4. The performance
evaluation of our algorithm is presented in Sec. 5.

2 Related Work

Branch-and-bound is a systematic search algorithm
that has been widely used to solve combinatorial prob-
lems like integer programming. However, there is
no standard bounding and branching strategy that
works well for all problems, since the algorithm’s ef-
ficiency heavily depends on the tightness of the pro-
posed bound and the effectiveness of the branching
strategy for the specific problem. For example, Hong
and Lozano-Perez [11] propose a BB algorithm to solve
the protein side-chain problem using a tree-reweighted
max product [32] (TRMP) algorithm to calculate the
bounds. In particular, when TRMP can only produce
a weak bound, several ad-hoc techniques for reducing
the size of the protein side-chain problem are required.
This makes their proposed BB method hard to apply
to other inference problems. BB is also widely used
to solve Constrained Optimization Problems (COPs)
(equivalent to a MAP inference problem on MRFs)
following various bounding and branching strategies
[6, 20]. In particular, [20] obtains tight bounds by
instantiating all the states of one variable at a time.
Hence, the method is slow when the number of states
is large. On the contrary, in this paper, we demon-
strate that looser bounds (which can be obtained very
efficiently) can be used to improve the inference speed
for classes of problems where the number of states is
large. Our work provides a novel method for trading
tightness of the bound for efficiency.

A few methods have been proposed to speed-up the
CP method. Batra et al. [2] propose a fast heuris-
tic search algorithm to prune out less useful clusters
which reduces the computational time for exploring
the clusters. However, the time complexity to pass
messages from clusters is still O(Hq), where q is the
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maximum cluster size. Sontag et al. [28] propose to
add clusters in a coarse partition which decreases the
computational time for calculating the corresponding
messages to O(Zq), where Z is the number of parti-
tions per variable. However, the CP method becomes
more likely to fail to find exact solutions. For instance,
[28] can solve fewer protein design problems than [30].

Other than the BB and CP methods, other exact in-
ference algorithms, such as junction tree [5] and condi-
tioning techniques [22], have been proposed. However,
they are typically suitable for graphs with small in-
duced width and few states. A class of approximate
inference algorithms scarifies optimality for achieving
computational tractability. For example, loopy be-
lief propagation (BP) [22], generalized BP [40], and
stochastic local search [12, 13] are used for general
MRFs, whereas graph-cut is used for special types of
MRFs that typically occur in computer vision [4].

3 The MAP problem and its LP
Relaxation

Before discussing our proposed BB methods, we first
introduce the preliminaries, following [29]. For sim-
plicity, we consider pairwise MRFs (specified by a
graph G = (V,E) with vertices V and edges E)
where each edge is associated with a potential func-
tion θij(xi, xj). The goal of MAP inference is to find
an assignment xMAP ∈ XV (XV denotes the joint state
space

∏
i∈V Xi, where Xi is the domain for the i-th

variable; i.e., xi ∈ Xi) that maximizes

θ(x) =
∑
ij∈E

θij(xi, xj). (1)

Edge-consistent LPR. Since the problem is in gen-
eral NP-hard, researchers have proposed to approxi-
mate it as a linear programming relaxation problem
through pairwise relaxation. For each edge and as-
signment to the variables on the edge, a marginal
µij(xi, xj) ≥ 0 is introduced and

∑
xi,xj

µij(xi, xj) = 1

is enforced. The edge consistent LPR is given by

max
x

θ(x) ≤ max
µ∈ML

{
∑
ij∈E

∑
xi,xj

θij(xi, xj)µij(xi, xj)}, (2)

whereML is the local marginal polytope enforcing that
edge marginals are consistent with each other, i.e.,∑

xi

µij(xi, xj) =
∑
xk

µjk(xj , xk), ∀xj . (3)

The inequality holds since any discrete assignment (in-
cluding MAP solution) should satisfy the constraints.

3.1 Dual LPRs.

Many LPR problems have been proposed and demon-
strated to be efficiently solvable in its dual form. Son-
tag and Jaakkola [29] propose a common framework

wherein several dual LPRs can be viewed as minimiz-
ing the following functional of dual potentials

J(f) =
∑
i∈V

max
xi

fi(xi) +
∑
ij∈E

max
xi,xj

fij(xi, xj). (4)

Here, fi(xi) are single node potentials, and fij(xi, xj)
are pairwise potentials; these dual potentials satisfy

F (θ) =

{
f :

∀x,
∑

i fi(xi) +
∑

ij∈E fij(xi, xj)

≥
∑

ij∈E θij(xi, xj)

}
. (5)

It has also been shown in [29] that without any other
constraints on F (θ), the optimum of this LPR problem
would give the MAP value, i.e.

θ(xMAP ) = min
f∈F (θ)

J(f). (6)

The upper and lower bounds of the MAP-MRF infer-
ence problem can be obtained from LPR as follows:

Proposition 1. J(f) is an upper bound of θ(xMAP )
for any f ∈ F (θ) (used as the UB(XV ) in Algorithm
1).

The proposition can be easily proved in two steps.
First, J(f) ≥ minf∈F (θ) J(f) is true for any f ∈
F (θ). Then, from Eq. 6, we deduce that J(f) ≥
minf∈F (θ) J(f) = θ(xMAP ) for any f ∈ F (θ).

Proposition 2. θ(x∗(f)) is a lower bound of θ(xMAP )
for any f ∈ F (θ) (used as the LB(x∗(f)) in Algorithm
1), where x∗(f) = argmaxx

∑
i fi(xi) is an assignment

that maximizes the sum of the unary dual potentials.

It is directly evident from the definition of θ(xMAP ).

Thus far we have ignored the dependency of the state
space XV in θ(x) and J(f) for conciseness. As men-
tioned in Sec. 4.1, a valid upper bound (to guaran-
tee the convergence of the BB algorithm) must satisfy
J(f) =LB(x) when the state space XV is a singleton
(i.e., a set with exactly one element). It can be shown
that many dual LPRs [27, 9] satisfy such requirement.
In the following section, we proceed with the dual LPR
proposed by Globerson and Jaakkola [9].

3.2 MPLP
The dual LPR proposed by Globerson and Jaakkola [9]
can be viewed as minf∈FMPLP (θ) J(f), where the con-
straint set FMPLP (θ) is given byf :

fi(xi) =
∑

j∈N(i) maxxj βji(xj , xi)
fij(xi, xj) = 0
βji(xj , xi) + βij(xi, xj) = θij(xi, xj)

 (7)

where each edge potential θij(xi, xj) is divided into
βji(xj , xi) and βij(xi, xj).

For convenience, we follow Eq. 4 and 7 and transform
the dual LPR J(f) to

J(β) = J(f(β)) =
∑
i

max
xi

∑
j∈N(i)

max
xj

βji(xj , xi), (8)
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where the dual potentials βji(xj , xi) satisfy

B(θ) = {β : βji(xj , xi) + βij(xi, xj) = θij(xi, xj)} (9)

Proposition 3 J(β) = LB(x),∀β ∈ B(θ) when the
state space XV is a singleton.

The proposition is true since

J(β) =
∑

i

∑
j∈N(i) βji(xj , xi) =∑

ij∈E (βji(xj , xi) + βij(xi, xj)) = θ(x) = LB(x).

The upper bound can be efficiently tightened by find-
ing the best dual potentials β using the message pass-
ing algorithm introduced in [9].

3.3 Time Complexity and Bound Tightness

Time Complexity. From Eq. 8, it is clear that it
takes O(H2) operations to calculate the bound, where
H is the number of states per variables. Note that the
bound calculation becomes very slow when H is large.
In Sec. 4, we describe how to utilize a data structure
to speed-up the bound calculation to O(H).

Bound Tightness. The tightness of the bounds can
be controlled by selecting the dual potentials β (or
f in general). As mentioned in Sec. 4.1, the bound
tightness will effect the number of branches evaluated
in the BB algorithm. Hence, the tighter the bound, the
smaller the number of branches evaluated. In Sec. 5,
we explore the trade off between the bound tightness
and the efficiency of the BB search.

4 Branch-and-Bound Revisited
In this section, we first briefly introduce the basics of
the BB technique. Then, we propose two novel BB
methods. Among them, one is particularly efficient.
The efficiency is achieved by leveraging a data struc-
ture to reduce the time complexity (see Sec. 4.3) and
exploring different branching strategies (see Sec. 4.4).

4.1 Branch-and-Bound Basics

Suppose we want to maximize a function g over the
state space X , where X is usually discrete. A branch-
and-bound algorithm has two main steps:

Branching: The space X is recursively split into two
smaller disjoint partition X 1 and X 2 guided by some
rules (see Sec. 4.4) such that X = X 1 ∪ X 2 and X 1 ∩
X 2 = ∅. This yields a tree structure where each node
corresponds to a subspace that contains the space of
all its descendant nodes.

Bounding: Consider two (disjoint) subspaces X 1 and
X 2 ⊂ X . Suppose that a lower bound LB(X 1) of
maxx∈X 1 g(x) is known, an upper bound UB(X 2) of
maxx∈X 2 g(x) is known, and that LB(X 1) > UB(X 2).
Then, there always exists at least one element in the
subspace X 1 that is better (i.e., bigger) than all el-
ements of X 2. So, when searching for the global

(9)

) when the

The upper bound can be efficiently tightened by find-
using the message pass-

From Eq. 8, it is clear that it
) operations to calculate the bound, where

is the number of states per variables. Note that the
is large.

In Sec. 4, we describe how to utilize a data structure

The tightness of the bounds can
(or

in general). As mentioned in Sec. 4.1, the bound
tightness will effect the number of branches evaluated

Algorithm 1: Branch and Bound algorithm

1 Preprocessing: i) obtain β by applying message
passing algorithm [9]; ii) build RMQ data structure
(see Sec. 4.3);

2 Set XV as initial state space (or search space) and set
priority queue Q to empty;

3 Solve: x∗ = argmaxx∈XV

∑
i∈V

fi(xi;XV ); GLB =
LB(x∗); Insert (XV , UB(XV ),x

∗) into Q;
4 while true do

5 (X , UB(X ),x∗) = pop(Q); if
|UB(X )−GLB| ≤ ε then

6 Return x∗;
7 else

8 (X 1,X 2) = split(X ,x∗) (Branching

Strategy in Sec. 4.4);
9 x∗

1
= argmax

x∈X 1

∑
i∈V

fi(xi;X
1);

10 x∗
2
= argmax

x∈X 2

∑
i∈V

fi(xi;X
2);

11 GLB = max(LB(x∗
1
),LB(x∗

2
),GLB) (Get

global LB);
12 If UB(X 1)≥ GLB, insert (X 1, UB(X 1),x∗

1
)

into Q (Efficient UB in Sec. 4.3);
13 If UB(X 2)≥ GLB, insert (X 2, UB(X 2),x∗

2
)

into Q;
14 end

15 end

maximizer, one can safely discard such elements of
X 2 from the search, and prune the subtree corre-
sponding to X 2. This implies that the search will
terminate when a partition X ∗ is found such that
|LB(X ∗) − UB(X ∗)| = 0 (zero gap) and UB(X ∗) is
the global upper bound among remaining disjoint state
spaces (i.e., UB(X ∗) > UB(X̂ ), ∀{X̂ |X̂ ∩ X ∗ = ∅}).
Under this condition, every other disjoint partition X̂
will be pruned out, since LB(X ∗) > UB(X̂ ).

Valid Bound. In order to guarantee the convergence
of the algorithm, UB(X ∗) = LB(X ∗) must be satisfied
when the state space X ∗ is a singleton.

Many BB algorithms [6, 20, 11] have been proposed to
solve combinatorial optimization problems. Most of
them explore different methods to obtain upper/lower
bounds and different strategies to split (i.e., branching
strategies) the state space X to improve the empirical
running time. As observed in Sec. 3.3, the naive BB
algorithm using the bound from dual LPR will be slow
when H is large. In the next section, we present two
new BB methods to speed-up the naive BB method.

4.2 Improved Naive Branch-and-Bound

Recall that the dual objective is a functional of dual
potentials (in Eq. 8), and the dual potentials are fixed
in the naive BB method. The naive BB method can
be improved by further updating the dual potentials
at each branch to tighten the upper bound. In this
case, the time spent at each branch becomes the sum
of the time to evaluate the upper bound (O(H2)) and
the time Tf to update the dual potentials. It is easy to
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10 5 

10 

A = [10      8       -1      5] 

Max-tree:  

RMQ(A,0,3) =  10 

RMQ(A,0,2) = max(                       ,           ) 10 -1 

RMQ(A,2,3) =  5 

RMQ(A,1,2) = max(           ,           ) -1 8 

Queries: 

Figure 1: Illustration of a typical data structure for RMQ.
During preprocessing, a tree structure where each node
stores the max value of its children nodes is built (Left-
Panel). Given the tree structure, any range queries can be
answered in constant time as instantiated in the examples
(Right-Panel).

show that when the dual potentials are updated using
message passing [9], then Tf ≤ O(H2) and that the

time complexity of TTighten becomes O(B̂H2), where

B̂ is the number of BB branches. Notice that the num-
ber of branches B and B̂ for the naive and the im-
proved BB, respectively, are different quantities. The
number of branches B is larger than B̂ since the bound
at each branch for the naive BB is not tightened by up-
dating better dual potentials. Hence, the improved
naive BB is always faster than the naive BB (i.e.,

O(B̂H2) < O(BH2)). Please see [31] for implemen-
tation details.

4.3 Efficient Branch-and-Bound

Instead of tightening the bound at each branch, we
propose to speed-up the bound computation as follows.
Assuming dual potentials in Eq. 8 are fixed, we intro-
duce a new method (in Algorithm 1) to significantly
reduce the time complexity to O(H) for calculating a
bound for the edge-consistent LPR. This is based on a
query mechanism called Range Maximum Query and
its related data structure.

Range Maximum Query (RMQ). We define the
RMQ as follows. Given an array A[1 . . .H], we seek
to answer queries of the form RMQmax(A, i, j), where
RMQmax(A, i, j) = maxi≤h≤j A[h]. It is clear that,
with O(H2) preprocessing time, one can answer such
queries in constant time. Interestingly, [10, 25, 3] pro-
pose efficient algorithms such that linear preprocessing
time can yield solutions for answering queries in con-
stant time. The data structure for RMQ (requiring
linear memory storage) is visualized in Fig. 1.

First, we show that calculating maxxj∈Xj βji(xj , xi)
(in Eq. 8) can be cast as a RMQ problem by treat-
ing A[h] = βji(xj = h, xi),∀h ∈ 1 . . . H for a specific
xi. Hence, maxxj∈Xj βji(xj , xi) for a specific xi can
be queried in O(1) time. Since there is H number of
states for xi, the total time for calculating the upper
bound UB(XV ) = J(β;XV ) in Eq. 8 becomes O(H).
The cost of this gain is that the RMQ data structures
for all dual potentials (one RMQ per state of xi) are
built in O(H2) time (using O(H2) memory storage)
at the beginning of our BB algorithm. Hence, the

(a) Main-Band (b) Stripes (c) Tree Model (d) Full Model
Inferred State

Variables

Tree Edges

Non-Tree Edges

Figure 2: Panel (a,b) show the adjacency matrices repre-
senting the pairwise interactions in two types of MRFs: a)
the main-band (Kb), and b) stripes (Ks) sparsity patterns
respectively, where the blue dots denote that interactions
between two variables are modeled. Panel (c,d) show the
graphical representation of MRFs for six body parts. Here,
circles denote variables, and blue and red edges denote the
interactions between pairs of variables in the tree and full
model respectively. The MAP assignments are shown in
green arrows, where each arrow indicates the location and
orientation of the body part. Notice the full model pro-
duces the correct pose (d), whereas the tree model pro-
duces the wrong right-lower-arm (c).

).

Algorithm 2: Branching (X 1
,X

2) =split(X ,x
∗)

1 Input: X = 〈X1 × · · · × Xn〉; x
∗ = (x∗

1, . . . , x
∗
n);

2 Select Xs∗ where s∗ = argmaxs∈V δs(x
∗) (Select

which variable to split using NLPDG);

3 Suppose Xs∗ = [xi . . . xk] (States are in a fixed

order);

4 Set X 1
s∗ = [xi . . . xb0.5(i+k)c];

5 X 2
s∗ = [xb0.5(i+k)c+1 . . . xk] (Split in half);

6 Set X 1 = 〈X1 × · · · × X 1
s∗ · · · × Xn〉;

7 X 2 = 〈X1 × · · · × X 2
s∗ · · · × Xn〉;

8 Output: X 1 and X 2;

time complexity of TTighten is O(H2 + BH) instead
of O(BH2) for the naive BB, where B is the number
of BB iterations related to the tightness of the initial
bound.

4.4 Branching Strategy

The number of branches that a BB algorithm evaluates
is also closely related to the branching strategy. Here,
we describe different strategies we used for variable
selection and variable state ordering (Algorithm 2).

Guided Variable Selection (GVS). Inspired by
Batra et al. [2], we propose a novel scoring func-
tion that we call Node-wise Local Primal Dual Gap
(NLPDG) as a cue to select which variable to split.
Notice that the dual objective is already the sum
of the node-wise local dual objective fi(x

∗
i ), where

x∗
i = argmaxxi∈Xi fi(xi) (in Eq. 8). We define

the node-wise local primal objective as f̌i(x
∗) =∑

j∈N(i) βji(x
∗
j , x

∗
i ) (where x∗ = {x∗

i }i∈V ), and the

NLPDG is defined as δi(x
∗) = fi(x

∗
i ) − f̌i(x

∗). More
precisely, we show the following properties of NLPDG:

Proposition 4 δi(x
∗) is always non-negative.

Proof. Since fi(x
∗
i ) =

∑
j∈N(i) maxxj∈Xj βji(xj , x

∗
i ) ≥∑

j∈N(i) βji(x
∗
j , x

∗
i ) = f̌i(x

∗), the proposition holds.
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Figure 3: Comparison between variants of our
efficient method (blue, red, and cyan curves)
and the improved naive BB (green), MPLP-CP
[30] (yellow), and COP [20] (black) on the main-
band (Kb), stripes (Ks), and dense (Kd) prob-
lems. For each problem, the maximum numbers
of states (y-axis) solved for problems with dif-
ferent values ofN (numbers of variable) (x-axis)
in the unit of 1K are plotted.

Proposition 5
∑

i∈V δi(x
∗) = 0 implies the upper

bound (J(β)) equals the lower bound (θ(x∗)), which
is required to terminate the BB search.

Proof. Since
∑

i∈V fi(x
∗
i ) =

∑
i∈V maxxi∈Xi fi(xi) =

J(β) and
∑

i∈V f̌i(x
∗) = θ(x∗), the proposition holds.

These properties suggest that by splitting the variable
with the largest NLPDG, we can reduce the primal
dual gap quickly. Another heuristic for variable selec-
tion is to split the variable with the largest number
of states (later referred to as NoGVS). This baseline
method is an efficient way to select a variable, but it
may be ineffective if one needs to reduce the number
of branches that are evaluated.

Variable State Ordering (VSO). Dynamic variable
state ordering (i.e., ordering the branching variable’s
states in each branch) might provide a way to arrange
less probable states into one branch and more probable
states into the other branch. However, since RMQ can
only efficiently query over a consecutive range of states
following a fixed order, one must fix the variable state
order throughout BB search. Interestingly, when some
knowledge about the problem domain is available, it
is possible to order the states (before BB search) so
as to achieve a significant speed-up (later referred to
as VSO). For instance, for the human pose estimation
problem (see Sec. 5.2), each state corresponds to a part
location in the 2D image. It is possible to order the
states such that states corresponding to close-by part
locations are also close-by in the ordered list of states.
Notice that CP methods cannot exploit domain knowl-
edge to improve the run time performance. When no
domain knowledge is available, we simply order the
states using the local (unary) potentials (before BB
search) so that states with high local potentials are on
one side and vice versa (later referred to as NoVSO).

Finally, note that all variants of our BB method split
the search space in half and use a best-first (largest
upper bound) search strategy on a OR search tree.

5 Experiments

We first compare different variants of our efficient BB
method (see Table 1) with the improved naive BB
approach, Sontag et al.’s method [30] (later referred
to as MPLP-CP), and a state-of-the-art COP solver
[20] (later referred to as COP) on synthetic problems
with different number of states H and variables N (see

Table 1: List of different variants of our efficient BB.
Experiments Method Init. MP GVS VSO

Synthetic & Our+GVS Y Y N
protein dsgn Our+NoGVS Y N N
problems Our+NoMP N Y N
Human NoGVS NoVSO N N N
pose NoGVS VSO N N Y
estimation GVS NoVSO N Y N
problem GVS VSO N Y Y

Sec. 5.1). Our analysis clearly shows that our BB
methods outperform other methods by solving for a
larger number of states H for almost all values of N
(number of variables) given a 20 minute time budget.
Furthermore, we compare our method with MPLP-CP
(the best competing method identified in Sec. 5.1) on
two real-world problems in computer vision (human
pose estimation in Sec. 5.2) and computational biol-
ogy (protein design in Sec. 5.3), where the number of
states is typically large.

We use the MPLP implementation provided by Son-
tag et al. [30] to obtain the dual potentials β before
further tightening the bound using CP or BB meth-
ods in almost all experiments. This way, the relative
performance differences can be directly attributed to
the specific method used to further tighten the upper
bound (e.g., cluster pursuit or branch-and bound). In
the human pose estimation experiment, since the prob-
lem can be solved most of the time by solving the
edge-consistent LPR, we simply select β as 0.5×θ and
tighten the bound using our efficient BB algorithm.
We evaluate this variant of our BB method (referred
to as “Our+No MP” in Fig. 3) on the synthetic data
as well. See our technical report [31] for more details
on the experimental setup. All experiments are per-
formed on a 64-bit 8-Core Intel Xeon 2.40GHz CPU
with 48GB RAM; the codes are implemented in sin-
gle thread C++, and the timing reported is CPU-time
(via the C++ clock() function) including the actual
run time of the algorithms (TTighten) and the initializa-
tion times (TInit) (i.e., the time needed to update dual
potentials and building a data structure for RMQs).

5.1 Problems with Synthetic Data

We synthesize pairwise MRFs with three types of spar-
sity structures: (i) a sparsity structure with a single
main band Kb (Fig. 2(a)), (ii) a sparsity structure
with many stripes Ks (Fig. 2(b)), and (iii) a dense,
fully connected model Kd. The first structure simu-
lates problems where local interactions dominate long
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Table 2: Time break-down and number of branches for our methods (first 4 rows) and MPLP-CP (last row). For each
measurement, we show averages over the whole Buffy dataset (left entry) and averages over the set of hard problems (right
entry). Prep. denotes the preprocessing time to build RMQs, and BB denotes time to run the BB search algorithm.

All/ Hard Prob. Avg. Prep. (sec) Avg. BB (sec) Avg. Total (sec) Avg. #branches

NoGVS NoVSO 0.6586/ 0.5971 3.5677/ 5.0529 4.2263/ 5.65 61207/ 44531
NoGVS VSO 0.6359/ 0.5457 0.5363/ 0.9714 1.1722/ 1.5171 9388/ 14230
GVS NoVSO 0.467/ 0.4771 2.5526/ 1.1486 3.0196/ 1.6257 11493/ 5223
GVS VSO 0.4749/ 0.4571 2.3556/ 0.7986 2.8305/ 1.2557 10151/ 4217
MPLP-CP N.A. N.A. 11.507/ 769.041 N.A.

range interactions (e.g., chain-model, protein design,
etc.). The second structure simulates the problems in
which both local and long range interactions are im-
portant but the interactions are clustered together.

For all experiments, we synthesize problems with dif-
ferent number of variables N and number of states H.
Unary and pairwise potentials are sampled from stan-
dard normal distribution (i.e., θi(xi) ∼ N (0, 1) and
θij(xi, xj) ∼ N (0, 1)). Given a fixed time budget T
(20 min), we explore the maximum value of H (num-
ber of states per variable) the algorithms can solve for
different values of N (number of variables). The first
two types of problems are 50% sparse (i.e., 50% of the
entries in the adjacency matrix of the pairwise MRFs
are zeros.). Fig. 3 shows that, for almost all values
of N (x-axis), most variants of our method (except
“Our+No MP”) can solve problems with more states
(y-axis) than the improved naive BB, MPLP-CP [30],
and the COP solver [20] can. In some cases, our best
BB method can solve problems with a few thousands
more states than the best competing algorithm [30].
We found that our BB method (“Our+GVS”) using
NLPDG achieves the best performance. Notice that,
given the time budget, none of the methods can solve
problems with a large number of states when the num-
ber of variables N becomes very large. This is because
the problem size (state space |XV |) increases exponen-
tially with the number of variables (i.e., HN ).

5.2 Human Pose Estimation (HPE)

The HPE problem consists of estimating the location
and orientation of human body parts, such as head,
torso, upper-arm, lower-arm, etc., from a single image
(green arrows in Fig. 2(c,d)). Solving this problem is
critical in many computer vision tasks such as human
activity understanding [37, 39] and tracking [1].

The HPE problem can be modeled as a MRF where
each body part is a variable, each unique location and
orientation of a body part is a unique state, and each
edge between a pair of variables captures the interac-
tions between a pair of body parts (Fig. 2(c,d)). Most
state-of-the-art approaches [23, 24, 7, 8] follow the ki-
netic structure of the human body (e.g., lower-arms
are connected to upper-arms, and upper-arms are con-
nected to torso, etc.) to construct MRFs with a tree
structure such that efficient and exact MAP inference
can be achieved by applying dynamic programming
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Figure 4: Run time compari-
son on the human pose estima-
tion problem between MPLP-
CP and our BB method with-
out using variable selection
but using domain knowledge
for variable state ordering.
Each red point represents the
MPLP-CP time (y-axis) and
our BB time (x-axis) for a spe-
cific problem instance. Note
that points above the blue line
indicate that our BB method
is faster than MPLP-CP.

techniques. More sophisticated approaches construct
MRFs with non-tree-structures [18, 41, 34]. However,
due to the large number of states per part (∼ 1K),
these approaches rely on approximate MAP inference
algorithms to obtain inferior but efficient solutions.

In this experiment, we model the HPE problem using
a fully connected pairwise MRF (later referred to as
the full model) capturing the complete set of pairwise
interactions between pairs of six human body parts
(please see [31] for details). We compare our BB meth-
ods with MPLP-CP (the best competing method iden-
tified in Sec. 5.1) on the Buffy dataset [8] (one of the
standard upper-body pose estimation datasets). This
dataset contains 748 images, where each part contains
498 states in average ranging from 105 to 750 states.
Moreover, we compare the pose estimation accuracy of
our full model with a state-of-the-art tree model: the
Cascaded Pictorial Structure (CPS) model [24].

Time Efficiency Analysis. The left entries of the
first four rows in Table 2 show the average time
break-down and number of branches for four vari-
ants of our BB methods. These correspond to us-
ing NLPDG to guide the variable selection (GVS)
or not (NoGVS), and to using domain knowledge for
variable state ordering (VSO) or not (NoVSO) (see
Sec. 4.4 for different branching strategies). The av-
erage total time of these BB methods are compared
with MPLP-CP method. Our method without us-
ing NLPDG to guide the variable selection but us-
ing the domain knowledge for variable state ordering
(“NoGVS VSO”) achieves the smallest average total
time, which is about 10 times faster than MPLP-
CP on the whole Buffy dataset. In particular, our
best method takes 14.6 minutes to process the whole
video sequence (i.e., 748 frames), whereas the CP
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Table 3: Human Pose Estimation performance comparison
at PCP0.5, where different columns show the performance
for different parts (U-arm and L-arm stand for upper-arm
and lower-arm). The first two rows show the perfor-
mance of our fully connected pairwise model when differ-
ent levels of noise are added. The last row shows the
performance of the tree model (CPS) [24].

Method torso head U-arm L-arm total

Our+0 σ 98.40 80.88 91.44 73.39 84.83
Our+0.5 σ 98.40 76.74 92.11 71.99 83.89
CPS [24] 98.40 76.20 90.24 63.63 80.39

method takes 2.4 hours.

Fig. 4 shows the scatter plots comparing the run time
of each problem instance (each image/frame), where
each point represents the run time (sec) in log scale
for both our method (“NoGVS VSO”) (x-axis) and
the MPLP-CP method (y-axis). The scatter plot
shows that there are several problems (later referred
to as hard problems) that are harder than other prob-
lems for the MPLP-CP method since they require the
MPLP-CP method to add clusters of 3 variables to
find exact solutions. We report the same average time
break-down and number of branches on the right en-
tries for those hard problems in Table 2. In this case,
our method using NLPDG to guide the variable selec-
tion and the domain knowledge for variable state or-
dering (“GVS VSO”) achieves the smallest average to-
tal time, which is about 600 times faster than MPLP-
CP. Table 2 suggests that using domain knowledge for
variable state ordering (“VSO”) consistently reduces
the total run time and the number of branches (i.e.,
“VSO” is more efficient than “NoVSO”). However,
using NLPDG to guide the variable selection tends to
reduce the number of splits but may slightly increase
the total run time, since additional operations are in-
troduced in each BB iteration to calculate NLPDG.

HPE Performance Analysis. We further compare
the HPE performances of the tree model (CPS) [24]
with our fully connected model measured in the per-
centage of correct parts (PCP) [8] (see [31] for de-
tails). Notice that the potentials from the tree model
(CPS) are reused in our full model. Hence, the perfor-
mance improvement only comes from the additional
potentials added in our fully connected model. For
example, the tree model (CPS) [24] obtains 63.63
PCP for lower-arm, which means that 63.63% of the
time, the lower-arm locations in the whole dataset
are predicted correctly. Table 3 shows different per-
formances when noise with different standard devia-
tions are added to the synthesized pairwise potential as
θηi,j(xi, xj) = θi,j(xi, xj) + η, where η ∼ N (0, σ2), and
σ denotes the standard deviation. By adding Gaus-
sian noise with different values of standard deviation,
we can simulate classifiers with lower degree of accu-
racy. When no noise is added, we observe an average
4.44% improvement over six body parts and a signif-
icant 9.76% improvement for the lower-arm. When
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Figure 5: Comparison
between our method
(“Our+GVS”) (red) and
MPLP-CP (blue) on
protein design problems.
Number of problems
solved (y-axis) given
different time budgets
(x-axis) up to 20 minutes
are plotted.

Gaussian noise with 0.5 σ (i.e., 50% of the range of
the original potentials since 0 ≤ θ ≤ 1) is added, the
full model (second row) can still achieve 3.5% improve-
ment over the CPS tree model (last row). The results
suggest that even when pairwise potential classifiers
with low accuracy are used, the fully connected model
can still outperform the state-of-the-art tree model.

5.3 Protein Design

The protein design problem consists of finding a se-
quence of amino-acids that are as stable as possible
for a given 3D shape of the protein. This is done by
finding a set of amino-acids and rotamer configura-
tions that minimizes an approximate energy. Yanover
et al. [38] introduce a dataset and model this problem
as a MAP-MRF inference problem. Due to the large
combinations of rotamers and amino-acids at each lo-
cation, the state-space is large (up to 180 states per
variable for most cases). Thus, these problems require
a large amount of time to solve (e.g., several minutes or
even days) [30]. Since time efficiency is an important
factor in many applications, we show that our method
can be used to solve a number of problems faster than
CP method within a limited amount of time. We show
in Fig. 5 that given a 20 minute maximum time bud-
get T (the same budget as used in the synthetic data
experiment), our best BB method (“Our+GVS”) in
synthetic data experiment i) consistently solves more
problems than MPLP-CP for all T , and ii) is consis-
tently faster than MPLP-CP when solving the same
number of problems (5.8 times faster in average).

6 Conclusion
We propose an efficient BB method to solve the MAP-
MRF inference problem by leveraging a data struc-
ture to reduce the time complexity. We also propose
a novel branching strategy that reduces the number
of branches evaluated. Our method is faster than the
proposed improved naive BB algorithm and state-of-
the-art methods [30, 20] on synthesized data and two
problems in computer vision and computational biol-
ogy where the number of states is large. Further, we
show that when domain knowledge is available, a sig-
nificant speed-up can be achieved.
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