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Abstract

We propose a new method for jointly detecting objects
and recovering the geometry of the scene (camera pose,
object and scene point 3D locations) from multiple semi-
calibrated images (camera internal parameters are known).
To achieve this task, our method models high level seman-
tics (i.e. object class labels and relevant characteristics
such as location and pose) and the interaction (correla-
tions) of objects and feature points within the same view
and across views. We validate our algorithm against state-
of-the-art baseline methods using two public datasets - Ford
Car dataset and Kinect Office dataset [1] - and show that
we: i) significantly improve the camera pose estimation re-
sults compared to point-based SFM algorithm; ii) achieve
better 2D and 3D object detection accuracy than using sin-
gle images separately. Our algorithm is critical in many ap-
plication scenarios including object manipulation and au-
tonomous navigation.

1. Introduction
Interpreting the geometrical and semantic content of a

scene is a key problem in robotics and computer vision.
Not only a visual system would need to have the capabil-
ity to recognize the important semantic phenomena in the
scene (e.g. objects), but also to localize such components in
the 3D physical space. This would be critical as the robotic
agent navigates through the environment (obstacle avoid-
ance, path planning, etc..) as well as interacts with it (object
grasping and manipulation). Most of the existing methods
have attempted to: 1) estimate the geometry alone (structure
from motion (SFM), e.g. [11, 20, 5, 25]) without being able
to recognize and identify the objects within the scene; 2)
just infer the semantics (e.g. [6, 15, 7, 18]) without having
the capability of determining the underlying geometry; 3)
recognize objects from 3D range data [8, 14, 22] by assum-
ing that an underlying 3D reconstruction of the environment
is available in the camera (robot) reference system. Recent
works propose to simultaneously estimate geometry and se-

(a) Input image pair

(b) Reconstructed Scene

Figure 1: We propose a new method for jointly detecting objects and
recovering the geometry of the scene (camera pose, object and scene point
3D locations) from two or multiple un-calibrated images of the scene. We
achieve this by leveraging across-view i) object location and pose consis-
tency, ii) feature correspondences and iii) interactions (correlations) be-
tween objects (see colored bounding boxes) and feature points (see red
crosses). (a) shows two images of the same scene. (b) shows our 3D re-
construction and object detection results within the cameras 3D reference
system.

mantics from a single image [9, 13, 26, 2, 24, 3, 4, 10] or
multiple images [1]. In particular, the novelty of [1] is to
use high level features such as objects and they geometri-
cal characteristics (pose and scale) as key building blocks
to establish geometrical constraints across different obser-
vations. Authors named this approach as Semantic Struc-
ture From Motion (SSFM). While promising, however, [1]
is not able to seamlessly combine rigid geometrical con-
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straints (e.g. those used in SFM methods which leverage
feature points lying on both objects and scene elements)
with relationships induced by the object semantics. In other
words, [1] handles objects and feature points as indepen-
dent entities. In this paper, we explicitly exploit the cor-
relation (interaction) between high-level elements (objects)
and low-level ones (image features) to extend [1] and co-
herently solve the SFM and the object detection problems
(Fig. 1). We propose to model this correlation by learning
the typical transformation that object appearance elements
(features) undergo as objects in the scene are observed from
different view points. We show that this transformation can
be learned in a statistical sense for each object class without
the need of explicitly determining the 3D shape of the ob-
jects in the scene. Quantitative and qualitative experimental
results on two data sets demonstrate that by modeling such
object-feature interactions our method obtains more accu-
rate reconstruction and recognition results than if objects
and features are assumed independent as in [1]. Our method
works under the condition that camera internal parameters
are known.

2. Problem Formulation
Rigid structure from motion (SFM) is defined as the

problem of recovering the camera parameters C and scene’s
3D structure Q from the observations in the input images.
The observations are the observed locations and features
of 2D image points q. Following [1], we extend the SFM
problem and explore a new problem called semantic struc-
ture from motion (SSFM). In SSFM the unknowns that we
aim to estimate are the 3D feature points Q, camera loca-
tions and poses C, and high level elements O (object in the
scene). The observations are the image features q and the
observations of the objects in the image. Observations of
the objects may be obtained using standard object detectors
and are denoted by o. The goal is to estimate the unknown
parameters (Q, O and C) given the observations (q and o).
We formulate this estimation problem as likelihood maxi-
mization using the graphical model in figure 2.
2.1. Notations

Cameras C. Let C denote the camera parameters. C =
{Ck} = {Kk, Rk, T k} where K is the internal parameter,
R rotation matrix, and T translation vector with respect to
a common world reference system. K is assumed to be
known, whereas {R, T} are unknown.

3D Points Q. Let Q = {Qs} denote a set of 3D points
Qs. Each 3D point Qs is specified by (Xs, Ys, Zs) describ-
ing the 3D point location in the world reference system. Q
is unknown.

Image Point Observations q. Denote by q = {qki }
the set of point observations (image features) for all the
cameras. Namely, qki is the ith point measurement in im-
age (camera) k. A point measurement is described by
qki = (xki , y

k
i , a

k
i , u

k
i ), where (xki , y

k
i ) is image location,

aki the image feature, and uki the index of corresponding
3D point of qki . Point observations are obtained by a fea-
ture detector such as [28, 12, 16, 21]. We also assume that
correspondences of features across views are estimated by
feature matching algorithm [28, 16]. This allows us to de-
termine the 3D points Q by triangulation and to establish
values for the index u.

3D Objects O. Let O = {Ot} denote a set of 3D ob-
jects Ot. Each 3D objects Ot is specified by a 3D location
(Xt, Yt, Zt), a pose Γt = (Θt,Φt), and a category label ct
(e.g, car, bottle, etc...). (Xt, Yt, Zt) is the center of the 3D
bounding cube tightly enclosing the object. The pose Γt is
identified as a point on the unit viewing sphere [2, 1]. A 3D
object is parametrized by Ot = (X,Y, Z,Γ, c)t. The set O
is unknown in our problem.

Image Objects Observations o. Denote by o = {okj }
the set of object observations for all the cameras. okj is the
jth observed object in image (camera) k. An object obser-
vations is described by the following measurement vector
okj = {x, y, w, h, γ, c, a, v, p}kj , where x, y are the object
location in the image, h,w the object scale (bounding box
height and width), γ = (θ, φ) the object pose, a the image
feature, and c the category label (e.g, car). These measure-
ments can be obtained by any object detectors (e.g. [6]) that
return the probability p that certain location (x, y) in an im-
age is occupied by an object with category c, scale h,w, and
pose ψ1. Each true detection okj is assumed to correspond
to certain physical 3D object Ot, and such correspondence
is modeled by vkj . Let vkj = t if okj corresponds to 3D ob-
ject Ot. Note that detection results are noisy, so o contains
many object detection false positives. A false positive is not
associated to any of the 3D objects and we model this by
setting vkj = 0.

Indices. k super-indexes which camera a variable be-
longs to (e.g. Ck). s sub-indexes which 3D point a variable
belongs to (e.g. Qs). t sub-indexes which 3D object a vari-
able belongs to (e.g. Ot). i sub-indexes which 2D point a
variable belongs to (e.g. qki ). j sub-indexes which 2D object
a variable belongs to (e.g. okj ).
2.2. Max-Likelihood Formulation

Following [1], we formulate the SSFM problem as a
max-likelihood estimation (MLE) problem:

{Q,O,C} = arg max
Q,O,C

Pr(q,o|Q,O,C) (1)

In [1], Pr(q,o|Q,O,C) is decomposed into object
terms and point terms separately by assuming that the ob-
jects and points are conditionally independent. One of the
key contributions of our work is that we claim points and
objects are correlated and this correlation should be explic-
itly accounted for. We propose a more general method of

1State of the art object detectors such as [6] can be modified so as to
enable pose classification [1].
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Figure 2: Factor Graph Representation.C,o,q are the camera parame-
ters and image observations respectively. Q (top) are 3D points. O (bot-
tom) are 3D objects. ΨQ (red) captures the camera-point relationship (con-
ventional SFM). ΨQ (red) and ΨO (blue) captures the camera-point rela-
tionship and camera-object relationship separately ([1]). In this work we
model the object-point relationship and formulate it as ΨOQ (green). The
number of points correlated with each object is not fixed. For instance,
object ONo is correlated with QNQ

,Qs+1, and Ot+1 is correlated with
Qs.

decomposing the likelihood term using a factor graph for-
mulation in Fig. 2:

Pr(q,o|Q,O,C) =
1

Z

∏
t

ΨO(Ot;o,C)
∏
s

ΨQ(Qs;q,C)∏
t

ΨOQ(Ot,Qt;o,q,C) (2)

where Z is a normalization constant, ΨO captures the
object likelihood, ΨQ captures the point likelihood, ΨOQ

captures the object-point correlation likelihood. We will
detail the computation of each likelihood terms in Sec.
2.3~2.5. Note that if the last correlation term is ignored (i.e.
Pr(q,o|Q,O,C) ∝

∏
t ΨO(Ot,o,C)

∏
s ΨQ(Qs,q,C)),

we will obtain exactly the same formulation in [1]. Further-
more, if the last two terms of Eq. 1 are ignored, Eq. 1 de-
generates into {Q,C} = arg maxQ,C

∏
s ΨQ(Qs,q,C),

which is equivalent to solving the conventional point-based
rigid SFM problem. This suggests that if no objects exists in
images, our model is still capable of solving the SFM prob-
lem in the same manner as conventional point-based SFM
does.

2.3. Object Likelihood ΨO

The factor function ΨO(Ot;o,C) evaluates the likeli-
hood (up to a normalization constant) of 3D objectOt given
the camera hypothesis C and image object detection obser-
vations o. We compute ΨO(Ot;o,C) by following two in-
tuitions: i) the projections onto different images of the same
3D object should have similar appearance, ii) the probabil-
ity of detecting an object in proximity to the projection of
a 3D object to the image plane for each camera should be
high. Thus, we decompose ΨO(Ot;o,C) as:

ΨO(Ot;o,C) = P dett · P appt (3)

where P dett captures the object detection probability of
the projection of Ot into each camera, and P appt captures
the similarity of the image appearance of the projections of
Ot across cameras. Denote by ot = {okj |vkj = t} the set of
2D projections of Ot in every images.

Computing P dett . We use object detectors to compute
P dett . Denote by pkj the object detection probability of okj .
Suppose okj is the 2D projection of Ot in image k. i.e. vkj =

t. We propose to compute P dett as P dett = (1−
∏
k(1−pkjk))

where vkjk = t. This expression makes the computation
of P dett less sensitive to configurations where objects are
occluded or partially occluded from some of the views.

Computing P appt . P appt is computed by checking the
similarity of projection appearances. If o1j1 and o2j2 are
true projections of the same 3D object Ot, they should
share similar image appearance, i.e. the appearance fea-
ture vectors a1j1 and a2j2 (Sec. 2.1) are close to each
other. We propose to approximate P appt by considering ap-
pearance similarity for each camera pairs (and by assum-
ing that these pairwise terms are independent): P appt =∏
k1 6=k2 N(ak1jk1

− ak2j
k2

), where N(·) is a Gaussian distri-
bution whose mean is zero and covariance is learned from
the training set by max-likelihood.

2.4. Point Likelihood ΨQ

The factor function ΨQ(Qs;q,C) evaluates the likeli-
hood (up to a normalization constant) of 3D point Qs given
the camera hypothesis C and image point detection and
matching q. We compute ΨQ(Qs;q,C) by following two
intuitions: i) the probability of detecting a feature point
in proximity of the projection of Qs into the image plane
should be high, ii) the projections of Qs into different im-
ages should have similar features (appearance). Thus, we
decompose ΨQ(Qs; q,C) as:

ΨQ(Qs;q,C) = P points · P feats (4)

where P points captures the location agreement between
the projection of Qs and its corresponding image point, and
P feats captures the feature (appearance) similarity of the
corresponding points of Qs across camera images. Since
each 3D point Qs is calculated by the triangulation of
matched 2D points, the correspondence of 2D point and
3D point is established and fixed after the 2D feature point
matching. Denote by qks the projection of Qs into image k,
and qkik the corresponding observation of Qs.

Computing P points . We assume that qks and qki over-
lap up to a zero-mean noise. Thus, we propose to compute
P points =

∏
kN(qkik − q

k
s ) where again N(·) is a Gaussian

distribution whose mean is zero and covariance is learned
from the training set by max-likelihood.

ComputingP feats . We assume those feature vectors are
equal up to a zero-mean noise: P feats =

∏
k1 6=k2 N(ak1ik1

−
ak2ik2

), where N(·) is a Gaussian distribution whose mean



is zero and covariance is learned from the training set by
max-likelihood.

2.5. Object-Point Correlation Likelihood ΨOQ

Before we introduce the object-point correlation likeli-
hood ΨO,Q, we first define the correlation between object
and point. If a 3D point Qs lies on the surface of a 3D
object Ot, the corresponding feature and object projections
in each camera are said to be correlated. Denote by Qt

the set of 3D points that lie on Ot. The factor function
ΨOQ(Ot,Qt;o,q,C) captures how well the correlation be-
tween object Ot and points Qt is supported by the image
observations (i.e. o,q) and camera parameters (i.e. C). We
will discuss the details of ΨO,Q in the Sec. 3.

2.6. Inference with Monte Carlo Markov Chain
The estimation of camera parameters, points, and ob-

jects is equivalent to maximizing Eq. 1. Due to the high
dimension of the parameter space, we sample C,Q,O
from Pr(q,o|Q,C,O) using Monte Carlo Markov Chain
(MCMC) similarly to [1]. The proposal distribution of this
MCMC process is Pr(q,o|Q,C,O). A key to MCMC is
the procedure for initializing the sampling process. Here
we adopt the same approach as detailed in [1]. For cam-
era pose, we have two sources of initializations: 1) feature
point based SFM result, 2) roughly estimation of camera
pose from object detection pose and scale in different im-
ages. With different camera pose initializations, we obtain
different 3D object initializations by projecting 2D object
detections into 3D according to their 2D scales and poses
[2]. For different initializations, MCMC provides different
samples. We combine all the samples to find the maximum
value of the probability. The single sample that maximizes
the likelihood Pr(q,o|Q,C,O) is taken as the solution of
the final estimation of C,O,Q.

3. Modeling the Object-Point Correlation ΨO,Q

3.1. Identifying Correlation From Images

The concept of correlation among features and ob-
ject observations is associated with the physical 3D phe-
nomenon of having features points to lie on 3D objects.
Since the inputs of our algorithm are only 2D images, we
identify the correlation of 3D points and 3D objects from
images. Denote by okt the projection ofOt in image k. Sup-
pose Qs lies on Ot. The corresponding 2D feature point
observation of Qs must fall into the 2D bounding box of
okt . Notice that, however, not all the 2D points within the
bounding box of okt are correlated withOt – e.g. the bound-
ing box of okt may include features from the background
which are not part of the object foreground Ot. Moreover,
features points that are visible in one view may not be vis-
ible in another view because of 3D object self-occlusions
(Fig. 3a).
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Figure 3: Fig. 3a: Given object category and poses, L predicts a pair of
decision regions (yellow polygons in top figure) that may contain consis-
tent feature correspondences. If a pair of points both fall into these regions
(e.g. q12 and q22), it is likely to be true match (so that L = true). Oth-
erwise, it (e.g. q11 ,q21) is likely to be a false match (so that L = false).
Fig. 3b: U predicts the matched point of q11 to be q̂2s . The yellow dashed
line indicates the distance d between q̂2s and q11’s matched point q1i2 . d

should be zeros ideally. We use d to evaluate the likelihood that whether
or not a pair of matched points (e.g. q11 and q21 ) is correct. Fig. 3c: If the
object detection hypothesis is wrong (right blue rectangle), the prediction
of U will be deviated from the matched point. Although the point match is
correct, the correlation likelihood will also drop due to the incorrect object
detection.

We introduce a function L = {true, false} to estimate
whether or not two points (in different images) are corre-
lated with an object. L returns "true" if a pair of matched
feature points q1i1 , q

2
i2

correspond to two observations of
the same 3D point Qs lying on the 3D physical object Ot
(points and objects are correlated). L returns "false" oth-
erwise. It is clear that this prediction can be made if the
3D shape of the object is available and the camera geome-
try is given (by back-projection). In practice, however, the
actual 3D shape is unknown (we only have an hypothesis of
the object category label) and recovering it goes beyond the
scope of this paper.

We propose to learn this mapping L implicitly from
a set of training data. Specifically, L is modeled as a
classifier which is learned to associate input data points
(i.e., the locations of the matched features in each im-
age pair) to a "true" or "false" label. This association
is learned for each (discretized) object pose and object
class label. This association can be made quasi indepen-



dent from the camera configurations by normalizing the
feature coordinates with respect to the detected object
bounding box. The classifier will give "true" labels if
matched features are geometrically consistent with the
object class and the object pose transformation; whereas
it will associate "false" labels to "inconsistent" config-
urations which typically stems from self-occlusions or
background regions. The classifier L can be expressed as

follows: Lγ1
t ,γ

2
t ,c

(
x1
i1
−x1

t

w1
t

,
y1i1
−y1t
h1
t

,
x2
i2
−x2

t

w2
t

,
y2i2
−y2t
h2
t

) =

{true, false} where the coordinates
x1
i1
−x1

t

w1
t

,
y1i1
−y1t
h1
t

,
x2
i2
−x2

t

w2
t

,
y2i2
−y2t
h2
t

are normalized with
respect to the detected object bounding box (whose size
scale are wt and ht) in each image, the variables associated
with the 2D object projection are sub-indexed by t, and
L’s sub-indexes γ1t ,γ2t ,c capture the dependency of L
on the object poses (γ1t ,γ2t ) and class labels (c). We
implement L using a non-linear SVM. The classifier
predicts a pair of decision regions (in the image plane)
that may contain consistent feature correspondences (i.e.
those labeled as "true"). As Fig. 3a shows, regions
associated to a "true" label are highlighted in yellow. If

Lγ1
t ,γ

2
t ,c

(
x1
i1
−x1

t

w1
t

,
y1i1
−y1t
h1
t

,
x2
i2
−x2

t

w2
t

,
y2i2
−y2t
h2
t

) = false, the
match between q1i1 and q2i2 will result in ΨO,Q = 0. To
simplify the notation, we use L(qk1ik1

, qk2ik2
) to denote the

function L.
Learning L. We learn from the training set the param-

eters of L (i.e the coefficient of the SVM classifier). In
our training set, images and corresponding depth maps are
available. From these we can easily obtain ground truth fea-
ture matches on 3D objects across view points. We learn L
for different pose pairs and for different object classes.

3.2. Evaluating Correlated Points

While L indicates if feature matches are geometrically
consistent with the object class and object pose transforma-
tion (via binary classification), it does not measure the de-
gree of this consistency. In order to do so, we introduce
a function U which is capable of predicting the location
of matched feature points (lying on the object Ot) across
views given the object 2D projections in two images, and
the 2D image location of one of the two matched points.
This prediction can be made deterministic given the object
3D shape and camera configurations. As discussed earlier,
however, we assume the object 3D shape is not available
and we rather aim at learning this prediction using a train-
ing set. Similarly to L, by normalizing the feature coordi-
nates with respect to the detected object bounding box, we
can make U function of the object class and pose transfor-
mation only and express U as:

Uγ1
t ,γ

2
t ,c

(
(x1i1 − x

1
t )

w1
t

,
(y1i1 − y

1
t )

h1t
) = (

x̂2i − x2t
w2
t

,
ŷ2i − y2t
h2t

)T

where γ1t , γ
2
t are 2D object poses, x1t ,y1t ,x2t ,y2t are 2D

object projections, w1
t ,h1t ,w2

t ,h2t are 2D object projection
scales, x1i1 ,y1i1 are the observed point in the 1st image,
and x̂2i ,ŷ2i are the predicted image point in the 2nd im-
age. In order to limit the number of parameters required
to learn U , we use low-order Taylor series to approxi-
mate U . This makes the learning tractable and the pre-
diction more robust to data noise. Assume the exact pre-
diction based on 3D information has Taylor series expan-
sion ξγ1,γ2,c (2 by ∞ matrix) so that Uγ1,γ2,c(x, y) =
ξψ1,ψ2,c · (1, x, y, xy, x2, y2...)T . We use the quadratic
terms to approximate U , i.e. Uγ1,γ2,c(x, y) ≈ αγ1,γ2,c ·
(1, x, y, xy, x2, y2)T , where the matrix α is the first several
columns of ξ. To simplify the notation, we use U(qk1ik1

) to
denote the function U that predicts the location of q̂k2s (i.e.
the matched point of qk1ik1

in image k2).
Learning U . We perform linear regression to learn the

parameters of U (i.e. α) for different object pose pairs and
categories.

Using U . U predicts the matched point. We use the
distance between this prediction and image observation to
evaluate their consistency (as a part of computing ΨO,Q).
Define dk1,k2ik1

,ik2
as the distance between the observation qk2ik2

(matched point of qk1ik1
by point feature) and the prediction

U(qk1ik1
).

3.3. Computing ΨO,Q with L and U

We compute ΨO,Q under two assumptions: i) given the
cameras and 3D objects, 3D points correlated to the same
objects are independent to each other, ii) joint correlation
likelihood term can be decomposed into pair-wise terms.
Hence, ΨOQ(Ot,Qt;o,q,C) is decomposed:

ΨOQ(Ot,Qt;o,q,C)

= ΠQs∈Qt
ΨO,Q(qs,ot;Ot, Qs,C)

=
∏

Qs∈Qt

∏
u
k1
j1

=u
k2
j2

=s

ΨO,Q(qk1j1 , q
k2
j2
, o1t , o

2
t ;C

k1 , Ck2)(5)

where again qs is the projection of Qs on different im-
ages, and uk1j1 = uk2j2 = s indicates qk1j1 , q

k2
j2

both correspond
to Qs. Assuming that dk1,k2ik1

,ik2
satisfies a 2D zero-mean

Gaussian distribution, the object-point correlation likeli-
hood can be computed as :

ΨO,Q(qk1j1 , q
k2
j2
, o1t , o

2
t ;C

k1 , Ck2)

=

{
0

N(dk1,k2ik1
,ik2

)

if L(qk1ik1
, qk2ik2

) = false

o.w.
(6)

where N(·) is a Gaussian density function whose mean
is zero and covariance matrix is learned from the training
set in a max-likelihood manner.
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cal. cam. 46.4%.

Figure 4: Object detection precision-recall. “cal”. stands
for calibrated; “uncal.” stands for uncalibrated; “corr.”
stands for object-point correlation. LSVM is our baseline
object detection methods [6].

4. Evaluation
We evaluated our method on two data sets: Ford Car

(Sec. 4.1) and Kinect Office (Sec. 4.2). We benchmark
our method with the state-of-the-art baseline detector La-
tent SVM [6] and point-based SFM approach Bundler [25].
When we evaluate the 2D or 3D object detection perfor-
mance of our framework, we test it with two configurations:
with or without known camera pose (external parameters).
We show if the camera pose is given, our method will detect
objects more accurately than if camera pose is unknown. In
such case, camera pose is estimated by our algorithm.

We also test our method with and without the object-
point correlation, i.e. enabling or disabling the ΨOQ term
when we compute the joint likelihood in Eq. 1. If we dis-
able the ΨOQ term our algorithm generates results similar
to [1]. The typical running time for one image pair with
Matlab single-thread implementation is ~10 minutes.

2D Object Detection. Since our algorithm jointly for-
mulates object detections in multiple images, we can: i) re-
cover missed positives by using the object detections from
other images, ii) remove the false positives by checking
the consistency of object detection’s pose and scale across
multiple images. We evaluate the object detection perfor-
mance and show precision-recall (PR) in Fig. 4 and Tab.
1. We compare our algorithm with a baseline LSVM [6].
Our detection performance is computed by projecting the
estimated 3D object bounding cube into each image and
measuring the overlap ratio (>50%) between such projec-
tion and ground truth bounding box. Thus, PR obtained by
LSVM is computed for all single images for fair compar-
ison. Fig. 5 shows the examples of the detection result,
which visualizes the benefit of using object-point correla-
tions as opposed to the case when objects and points are
independent in [1]. More anecdotal results are shown in
Fig. 7c,7d.

Category Car Monitor Keyboard Mouse Bottle Mug

LSVM[6] 0.544 0.900 0.177 0.101 0.361 0.476

Ours Uncali. Cam. 0.622 0.903 0.201 0.096 0.376 0.508

Ours Cali. Cam. 0.628 0.903 0.220 0.102 0.385 0.521

Table 1: 2D object detection average-precision.

(a) Car dataset

(b) Office dataset

Figure 5: Comparison among LSVM, [1], and this paper. The first col-
umn shows the detection results by LSVM. The second column shows the
detection results by [1] where no object/point correlation is used. Notice
that some of the bounding boxes do not fit the objects well (cyan). The
third column shows the results by using SSFM with object/point correla-
tion (this paper). The detected bounding boxes are more precise than [1] .
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Figure 6: 3D Object Detection Precision v.s. False Positives per Image.

3D Object Detection. Compared to methods that only
use a single image for scene layout estimation [2], our al-
gorithm achieves better performances in localizing objects
in 3D. This is because we can better handle the object scale
variation by estimating the object location and size from
multiple images. We manually label the 3D bounding boxes
of cars on the LiDAR 3D point cloud to obtain the ground
truth car 3D locations. We consider a 3D detection to be
true positive if the distance between the center of its bound-
ing cube and center of the cube of a ground truth 3D object
is smaller than a threshold d (see Fig. 6). Due to the metric-
reconstruction ambiguity, we use calibrated cameras in this
experiment to enforce that the 3D objects coordinates are
defined up a similarity transformation. The 3D object local-
ization for one camera is obtained by using its 2D bounding
box scale and location [13]. Results are shown in figure 6.

Camera Pose Estimation. We show that the ability of
our method to model object and point correlations leads to



Ours with / without corr. SFM
Car ēT 15.3◦/19.9◦ 26.5◦

Car ēR < 0.1◦/< 0.1◦ < 0.1◦

Office ēT 4.4◦/4.7◦ 8.5◦

Office ēR 3.7◦/4.1◦ 9.5◦

Table 2: Camera Pose Estimation. We report SFM result with the imple-
mentation provided by [25]. The numbers shown are the average value for
all our testing image pairs.

more accurate camera pose estimation results. We compare
our method with the state-of-the-art point-based SFM ap-
proach Bundler [25]. Bundler employs the SIFT feature,
five-points algorithm [17], and Bundle Adjustment [27] to
estimate the camera pose. In certain configurations (e.g.
wide baseline) RANSAC or Bundle Adjustment fail to re-
turn results. In such cases we take the camera pose esti-
mation of five-points algorithm as the results for compari-
son. We follow the evaluation criteria in [17]. Ground truth
depth and camera parameters are known for both data sets
(see Sec. 4.1 and 4.2). When comparing the camera pose
estimation, we always assume the first camera to be at the
canonical position. Denote Rgt and Tgt as the ground truth
camera rotation and translation, and Rest and Test the es-
timated camera rotation and translation. The error mea-
surement of rotation eR is the minimal rotating angle of
RgtR

−1
est. The error measurement of translation eT is eval-

uated by the angle between the estimated baseline and the

ground truth baseline, and eT =
TT
gtR

−T
gt R−1

estTest

|Tgt|·|Test| . For a fair
comparison, the error results are computed on the second
camera. Results are shown in Tab. 2.
4.1. Ford Car dataset

The Ford Campus Vision dataset [19] consists of images
of cars aligned with 3D scans obtained using a LiDAR sys-
tem. Ground truth camera parameters are also available.
Our training / testing set contains 150 / 200 images of 4 /
5 different scenarios. We randomly select 350 image pairs
out of the testing images with the rule that every pair of im-
ages must capture the same scene. The training set for the
car detector is the 3D object dataset [23]. This training set
consists of 8 poses. Some typical experimental results are
shown as Fig. 7a,7b.
4.2. Kinect Office dataset

We use Microsoft’s Kinect to collect images and corre-
sponding 3D range data of several static indoor office envi-
ronments. The ground truth camera parameters are obtained
by aligning range data across different views. We manually
identify the locations of ground truth 3D object bounding
cubes similarly to the way we process Ford dataset. The ob-
jects in this dataset are monitors, keyboards, and mice. The
testing and training sets contain 5 different office desktop
scenarios respectively and each scenario has ~50 images.
From each scenario, we randomly select 100 image pairs

for testing or training. Some typical experimental results
are shown as Fig. 7c,7d.

5. Conclusion
We have proposed a new approach for jointly detecting

objects and recovering the geometry of the scene from two
or multiple un-calibrated images of the scene. Compared to
previous contributions where high level features (e.g. ob-
jects) and low level features (e.g. points) are processed in-
dependently, our method explicitly models the correlation
between objects and points across views. Quantitative and
qualitative experimental results have shown that this addi-
tional piece of information is critical for improving both de-
tection and reconstruction accuracy.
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