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Abstract

Structure from motion (SFM) aims at jointly recovering
the structure of a scene as a collection of 3D points and es-
timating the camera poses from a number of input images.
In this paper we generalize this concept: not only do we
want to recover 3D points, but also recognize and estimate
the location of high level semantic scene components such
as regions and objects in 3D. As a key ingredient for this
joint inference problem, we seek to model various types of
interactions between scene components. Such interactions
help regularize our solution and obtain more accurate re-
sults than solving these problems in isolation. Experiments
on public datasets demonstrate that: 1) our framework es-
timates camera poses more robustly than SFM algorithms
that use points only; 2) our framework is capable of accu-
rately estimating pose and location of objects, regions, and
points in the 3D scene; 3) our framework recognizes objects
and regions more accurately than state-of-the-art single im-
age recognition methods.

1. Introduction
One core problem in computer vision is to recover the

structure of a scene and estimate the pose and location of
the observer from images. Typical algorithms that address
this problem are called structure from motion (SFM). Most
SFM algorithms [29, 28] represent the structure of a scene
as a set of 3D points. However, in many applications such as
robotic manipulation and autonomous navigation, a point-
based representation is not sufficient and both structure and
semantic information are required. Given a scene as in Fig.
1, one wishes to answer questions such as: is there a cup,
a table, or a bottle? Where are they in 3D? What are their
poses? Unfortunately, most SFM algorithms cannot provide
an answer to these questions.

In this paper, we propose a novel framework to jointly
recover the structure of the scene and estimate the pose of
cameras from a few input images (Fig. 1). By “recovering
the structure of the scene”, we mean recognizing and esti-
mating the location of points, as well as location and pose
of objects (e.g. bottles, cups, and monitors), and regions
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Figure 1: Our goal is to recognize semantic elements (e.g. cups,
bottles, desk, wall, etc), localize them in 3D, and estimate cam-
era pose from a number of semi-calibrated images. We propose
to achieve this goal by modeling interactions among 3D points,
regions, and objects.

(e.g. table, wall, and road) in the scene. There are two main
contributions in our framework.

First, we propose to represent a scene as a set of points,
objects and regions, whereas SFM algorithms usually repre-
sent the scene just as a set of points. Points, regions, and ob-
jects have different and complementary properties (See Tab.
1). For instance, points do not carry semantic information,
but can be robustly matched across views (e.g. by [22]).
However, unless local affine information is available [23], a
large number of point correspondences are required to ro-
bustly estimate the camera pose. Regions (e.g. a portion of
road) carry weak semantic information, and can be used to
impose stronger geometrical constraints for estimating cam-
era poses, but are harder to match across views than points.
Objects carry rich semantic information, and can be used to
impose even stronger geometrical constraints for estimating
camera poses (if object’s pose and scale are estimated), but
are even more difficult to match across views than regions
(due to self occlusions, etc). By jointly modeling points, re-
gions, and objects, we leverage all these properties and seek
to take advantage of the best of each of them.

Second, we propose to take advantage of interactions
among points, objects, and regions to help regularize the es-
timation of the unknown parameters. An interaction mod-

1



Degree of
semantics

Matching
robustness

Geometrical
richness

Points Low High Low

Regions Medium Medium Medium

Objects High Low High

Table 1: Properties of points, regions, and objects. Degree of seman-
tics: degree of semantic information that a component carries. Matching
robustness: degree of robustness in matching the same component across
views. Geometrical richness: the number of geometrical constraints that a
component matched across views can impose for estimating camera poses.

els the relationship between pairs of scene components in
terms of location, pose, and semantics. We refer to points,
regions, and objects as scene components. Fig. 5 and Sec. 5
discuss in details the types of interactions we model in this
work. Experimental results demonstrate that modeling the
interactions among scene components is critical for robustly
detecting and localizing them in 3D.

Our framework shows advantages in three aspects: 1) the
estimation of the camera poses is more accurate than SFM
algorithms that only use points; 2) it is capable of estimat-
ing the objects, regions, and points in a 3D scene whereas
most SFM algorithms only estimate points; 3) the recogni-
tion and localization of objects and regions is more accurate
than recognition methods that work on a single image. The
reason for an increase in region classification accuracy is
two-fold. First, our framework associates the observations
of the same physical region from different views, which en-
ables us to integrate appearance information across views.
Second, our framework estimates the 3D geometry (loca-
tion and orientation) of a region, and therefore it can lever-
age both appearance and geometry information to assign a
semantic label to it (e.g. a table is usually a “horizontal”
surface with “wooden” texture).

We designed and executed different experiments to test
our theoretical claims in three publicly available datasets.
Our framework consistently shows better performance than
alternative state-of-the-art algorithms.

2. Related Works
There are several recent works addressing the problem

of joint geometry estimation and semantic understanding.
Among these works (e.g. [12, 15, 11, 25, 10, 20, 6, 13]),
most assume that only a single image is available, whereas
a handful of them model this problem with multiple images.
Ladicky et al. [18] show promising results on joint recon-
struction and segmentation from stereo pairs, but it works
under the assumption of calibrated cameras with small base-
lines. Cornelis et al. [7] also assume a small-baseline
calibrated stereo system, and it makes assumptions on the
camera trajectories. Bao and Savarese [3] have recently in-
troduced a formulation to integrate object recognition and
SFM. The key idea of [3] is to use object recognition to

guide the estimation of camera poses and simultaneously
use the estimated scene geometry to help object recogni-
tion. However, [3] has a few limitations: 1) it focuses on
modeling “structured” objects (e.g. cars, cups, and bottles),
and it ignores “amorphous” scene components (e.g. road,
sky, and table surfaces which can be hardly identified by
standard object detectors such as [8, 21]). 2) it assumes
that 3D points and 3D objects are independent given camera
poses. A recent extension of [3] is presented in [2] wherein
the idea of capturing the relationship between points and
objects is explored. Compared to [3] and [2], we present a
novel framework that coherently integrates regions and their
interactions with objects and points. Finally, the idea of us-
ing scene component interactions to help estimate the scene
layout is also proposed in several other works, but most of
them only use limited types of interactions. For example,
[27] uses point-region interaction, [19] uses point-object
interaction, and [12, 15, 4] use object-region interaction.
Our framework incorporates all types of interactions (point-
region, point-object, object-region) and jointly use them to
improve the scene layout estimation accuracy.

3. Framework Overview
In this section, we first introduce the unknowns and mea-

surements in our framework. We next introduce our pro-
posed framework and cast our problem as an energy maxi-
mization problem. We conclude this section with the infer-
ence algorithm for solving the maximization problem.
3.1. Measurements and Unknowns

We summarize the key notation in Tab. 2.
Images. Our inputs are a set of images I =

{I1 · · · Ik · · · INc}, where Ik is the kth input image
Cameras. A camera is described by its internal param-

eter (known), rotation matrix (unknown), and translation
vector (unknown) w.r.t world reference system. Let Ck be
the kth camera that captures image Ik.

Points (Fig. 2a). The point measurements are detected
interest points (e.g. by detectors such as [22, 30]). Denote
by qki the ith interest point in image Ik. Let Qs be the sth

3D point within the scene. The correspondence between
Qs and point measurements is denoted by us, where us =
{i1, i2, · · · } if Qs corresponds to q1

i1 , q
2
i2 , · · · respectively.

Qs and us are unknown.
Objects (Fig. 2b). The object measurements are de-

tected 2D objects (e.g. by detectors such as [8, 21]). De-
note by okj the jth detected object in image Ik. Let Ot be
the tth 3D object within the scene. The correspondence be-
tween Ot and object measurements is denoted by vt, where
vt = {j1, j2, · · · } if Ot corresponds to o1

j1 , o
2
j2 , · · · respec-

tively. Ot and vt are unknown.
Regions (Fig. 2c). The region measurements are seg-

mented regions (Sec. 4.3.1). (e.g. by segmentation al-
gorithms such as [26, 33]). We match segmented regions
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(a) A point measurement qki is described
by its location (x, y). A 3D point (un-
known) Qs is described by its 3D loca-
tion (X,Y, Z)s in the world reference
system.
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(b) An object measurement okj is described by its lo-
cation (x, y), bounding box scale h,w, pose θ, φ,
and category label c. A 3D object (unknown) Ot is
described by 3D centroid (X,Y, Z)t, normal direc-
tion nt, pose (Θt,Φt), and category label ct (e.g,
cup or bottle).
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(c) A region measurement bkl is described by its
boundary Mk

l (red boundary in image plane) and
appearance descriptor akl (e.g. color histogram and
texture). A 3D region (unknown)Br is described by
3D centroid (X,Y, Z)r , normal direction nr , area
sr , and category label cr (e.g, sky, road, and wall).

Figure 2: Parametrization for the measurements and unknowns for points (a), objects (b), and regions (c).

across views based on their appearance and epipolar con-
straints. If a region is matched across views, we further
estimate its location and orientation in 3D and assign it a
semantic label (Sec. 4.3.1). Denote by bkl the lth region in
image Ik. Let Br be the rth 3D region within the scene.
We assume that 3D regions are planar. The correspondence
between Br and regions measurements is denoted by gr,
where gr = {l1, l2, · · · } if Br corresponds to 2D regions
b1l1 , b

2
l2 , · · · respectively. Br and gr are unknown.

Objects v.s. Regions. Two properties differentiate ob-
jects from regions. The first property is 3D volume. An ob-
ject occupies a certain 3D volume and can be bounded by a
3D cube (Fig. 2b); conversely a region is a planar portion of
surface that does not have 3D volume. The second property
is whether or not the 3D location is predictable from one
single image. The 3D location of an object can be (roughly)
predicted from one detected 2D object in an image, if prior
knowledge about the typical 3D object size is available [4].
The 3D location of a region cannot be predicted from only
one image, since a region (e.g. a piece of sky) does not
have “typical” size. Examples of objects include cars, bot-
tles, persons. Examples of regions include the surface of a
road or the sky.
3.2. Energy Maximization Framework

Given a set of input images, we seek to: i) recognize
objects and classify regions; ii) estimate 3D locations and
poses of points, regions, and objects; iii) estimate camera
extrinsic parameters. Our framework follows two intuitions.

Intuition #1. The image projection of estimated 3D ob-
jects, regions, and points should be consistent with their im-
age measurements (Fig. 4). Such consistency is measured
w.r.t. location, scale, and pose.

Intuition #2. The interactions among estimated scene
components should be consistent with the interactions
learnt from the training set (Fig. 5).
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Figure 3: Factor node
graph. The camera node
Ck = {Ck, Ik} is par-
tially observed because
the rotation and transla-
tion of Ck are unknown
and Ik are input images.

Following these intuitions, we capture the relationship
between measurements and unknowns by the factor graph
in Fig. 3. The nodes ΨCO

t , ΨCQ
s , ΨCB

r are constructed fol-
lowing the intuition #1, and they evaluate how likely each
single object, point, or region is consistent with 2D image
measurements (Sec. 4). The nodes ΨOB

t,r , ΨOQ
t,s , ΨBQ

r,s are
constructed following the intuition #2, and they evaluate
how likely the interaction among scene components (ob-
jects, points, or regions) are consistent with the learnt ones
(Sec. 5). We formulate this estimation problem as the one
of maximizing the energy:

{Q,O,B,C} = arg max
Q,O,B,C

Ψ(Q,O,B,C; I)

= arg max
Q,O,B,C

∏
s

ΨCQ
s

∏
t

ΨCO
t

∏
r

ΨCB
r

∏
t,s

ΨOQ
t,s

∏
t,r

ΨOB
t,r

∏
r,s

ΨBQ
r,s

(1)The definitions of Q,O,B,C are in Tab. 2.
3.3. Solving the Estimation Problem

We use simulated annealing [16] to search for the so-
lution for Eq. 1. Algorithm 1 summarizes the simu-
lated annealing procedure for sampling the parameter space.
Among all the samples in the parameter space, we identify
the maximum. The parameters associated with the maxi-
mum sample are our final solution for Eq. 1, which corre-
spond to the estimated cameras, points, objects, and regions.

4. Scene Components and Energy
One of our objectives is to estimate the scene compo-

nents (3D points, 3D objects, and 3D regions) as well as
their correspondences from the image measurements. In
Sec. 3.1, we have discussed how to acquire these measure-
ments from images. In this section, we explain how to esti-
mate scene components based on these measurements.
4.1. Estimating 3D Objects

It has been shown by [15, 4] that it is possible to roughly
estimate the 3D location of an object given its detection
in the image, the camera focal length and prior knowledge
about the object’s physical scale. We obtain the initial set of
3D objects Ot based on detected object measurements with
high detection scores (Fig. 4b). The correspondences {vt}
are given by the projection of {Ot} in images. Based on the
initial set of 3D objects, we search for the best configuration
of objects by O = arg maxO={Ot}ΠtΨ

CO
t (Ot,C; I) given



Camera Point Object Region

Measurements - qki (Fig.2a) okj (Fig.2b) bkl (Fig.2c)

Set Notation - q : {qki } o : {okj } b : {bkl }

3D Unknowns Ck Qs (Fig.2a) Ot (Fig.2b) Br (Fig.2c)

Set Notation C : {Ck} Q : {Qs} O : {Ot} B : {Br}

Correspondences - us vt gr

Pair Notation Ck : {Ck, Ik} Qs : {Qs, us} Ot : {Ot, vt} Br : {Br, gr}
Set Notation C : {Ck} Q : {Qs} O : {Ot} B : {Br}

Table 2: Key notations. Sub-indices s, t, r indicate 3D points,
3D objects, and 3D regions respectively (e.g. (X,Y, Z)s is the
3D location for a 3D point Qs, and (X,Y, Z)t is the 3D cen-
troid for a 3D object Ot). The sub-indices i, j, l indicate 2D
measurements of points, objects, and regions respectively (e.g.
(x, y)i is the image location of a 2D point qi, and (x, y)l is the
image location of the centroid of a 2D region bl). The super-
index (usually k) denotes which camera / image a variable is
related to (e.g, qki is the ith 2D point in the kth image). Bold
and blackboard bold letters are used to denote set of variables.

camera hypothesis C. The object energy is computed as
ΨCO
t = Pr(o, vt|Ot,C), which is the conditional probabil-

ity of observing the measurements of Ot. Please refer to [3]
for more details about Pr(o, vt|Ot,C) and the optimization
process.
4.2. Estimating 3D Points

In order to obtain 3D points Q, we first establish the
correspondences of detected interest points q across views.
As in most SFM algorithms, a correspondence us implies
the existence of a 3D point Qs. A correspondence u is
likely to be true only if: 1) the points linked by u have
similar feature descriptors, 2) the location of the 2D points
linked by u are compatible with the cameras C (e.g. epipo-
lar line constraints). us can be established by any feature
matching algorithm (e.g. [22, 30]). The corresponding
Qs is estimated by triangulation (Fig. 4a). Given Qs and
us, we compute ΨCQ

s = Pr(q, us|Qs,C), which is the
conditional probability of observing the measurements of
Qs. We search for the best configuration of points by solv-
ing Q = arg maxQ={Qs}ΠsΨ

CQ
s (Qs,C; I) given camera

hypothesis C. Please refer to [3] for more details about
Pr(q, us|Qs,C) and the optimization process.
4.3. Estimating 3D Regions

In order to obtain 3D regions, similarly to points, we
first establish the correspondences of region measurements
across views. A correspondence implies the existence of a
3D region Br. Sec. 4.3.1 explains how to obtain an ini-

Algorithm 1 Sampling parameters to search for the solution for Eq. 1.
Propose initial guesses of camera poses [1].

FOR C ∈ the set of initial guesses

C0 = C;

FOR n = 1 : M (M is predefined)

Cn = Cn−1 + C′ where C′ is 0-mean Gaussian r.v.

O′n ⇐ arg maxO={Ot} ΠtΨ
CO
t (Ot,Cn; I); (Sec. 4.1)

Q′n ⇐ arg maxQ={Qs} ΠsΨCQ
s (Qs,Cn; I); (Sec. 4.2)

B′n ⇐ arg maxB={Br} ΠrΨCB
t (Br,Cn; I); (Sec. 4.3)

{On,Qn,Bn} ⇐ arg max
∏

t,s ΨOQ
t,s

∏
t,r ΨOB

t,r

∏
r,s ΨBQ

r,s by

gradient descent starting from {O′n,Q
′
n,B
′
n} (Sec. 5)

α =
Ψ(On,Qn,Bn;Cn,I)

Ψ(On−1,Qn−1,Bn−1;Cn−1,I);

IF α < % where % ∼ U(0, 1) (uniform random variable)

{On,Qn,Bn} = {On−1,Qn−1,Bn−1};

END

END

END

tial set {Br} of 3D regions given the proposed correspon-
dences. Sec. 4.3.2 explains how to compute the energy for
3D regions using the initial set. We select B as the solution
of B = arg maxB={Br}ΠrΨ

CB
t (Br,C; I).

4.3.1 Initializing 3D Regions Given 2D Regions
To initialize 3D regions, we first identify across-view cor-
respondences among 2D regions. The 2D regions can be
obtained from each image independently [26] or coher-
ently [33]. We used [26] in our experiment. We use
epipolar constraints and appearance matching (using color
histograms and texture features) to find a set of potential
matches. As visualized in Fig. 4c, given a set of matched
2D regions {bklk} and camera hypothesis C, we initialize
Br = (X,Y, Z, n, s, c)r as follows.
- Region Centroid (X,Y, Z)r. The region centroid is ob-
tained by triangulating the centroids of {bklk}.
- Region Normal nr. Using the appearance and location
of the region bklk , methods such as [32, 20, 14] can be em-
ployed to estimate the normal nklk of bklk from the camera
Ck. For instance, [32] allows to estimate the region nor-
mal from the camera view point using properties of the
rank of texture matrices. [14] classifies regions into a few
discretized normal orientation categories (flat, front, side,
etc. . . ). [20] uses vanishing lines to estimate the region’s
normal w.r.t the camera. Given nklk and Ck, we can esti-
mate the normal nkr of bklk in the world system. We obtain
the normal nr of Br as nr = 1

Nc
Σkn

k
r where NC is the

number of images.
- Region Area sr. Given (X,Y, Z)r and Ck, we can com-
pute the distance dkr between Br and Ck. Given nr and Ck,
we obtain the angle αkr between nr and the camera Ck line
of sight (Fig. 2c). Each region bklk has an image area sklk .

sr = 1
NC

∑
k

dkrs
k

lk

cos(αk
r )

where NC is the number of images.
- Region Class cr. The class of Br is estimated based on
the appearance properties of its measurements and its geo-
metrical properties. Given aklk (the appearance of bklk ), we
use methods such as [17, 31, 5] to estimate the confidence
fapp(cr = c; aklk) that Br is of class c. The 3D geome-
try of Br can be used as a cue for region classification.
For example, most walls are vertical and the most desks
are horizontal. Given the estimated geometry {nr, sr}, we
learn a KNN classifier to estimate the confidence fgeo(cr =
c;nr, sr) that Br is of class c. We compute the probability
Pr(cr = c) that Br is of class c as the weighted average
of fgeo and fapp. Notice that estimating the class and ge-
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(a) Estimating 3D Point from Measurements.
Q1 andQ2 are candidate 3D points given mea-
surements q11 and q21 . Q1 is a good candidate
because its projection is consistent with the lo-
cation of q11 and q21 .
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(b) Estimating 3D Object from Measurements.
O1 and O2 are candidate 3D objects given
measurements o11 and o21. O1 is a good can-
didate because its projection is consistent with
the pose, location, and scale of o11 and o21.
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(c) Estimating 3D Region from Measurements.
B1 and B2 are candidate 3D regions given
measurements b11 and b21. B1 is a good can-
didate because its projection is consistent with
the pose, location, and scale of b11 and b21.

Figure 4: Estimating scene components from measurements. Notice that we do not estimate the object 3D model. 3D car in (b) is only for visualization.

ometry of 3D regions based on 2D measurements is usually
a challenging problem. However, object-region and point-
region interactions help us estimate 3D regions more accu-
rately (Sec. 5).

4.3.2 Energy of 3D Regions
The energy ΨCB

r measures how likely Br = {Br, gr} is
consistent with the measurements. ΨCB

r can be decom-
posed as a product of two energy terms: Ψ̄CB

r and Ψ̃CB
r .

Ψ̄CB
r captures how likely corresponding across-view mea-

surements of Br have similar appearance. Ψ̃CB
r captures

how likely the location and scale of the projection of Br is
consistent with its corresponding measurements.

Energy Ψ̄CB
r . The degree of appearance variability of a

region as function of the view point depends on the region
class. For example, the appearance of a portion of road will
not change much as function of view point transformations.
Thus,

Ψ̄CB
r ∝

∑
c

∏
k

N(ak
lk
− ār; 0,Σc) Pr(cr = c) (2)

where aklk is the appearance of bklk , ār = 1
Nc

∑
k a

k
lk is the

mean of appearances, N(•; a,Σ) is a Gaussian distribution
whose mean is a and covariance is Σ, Pr(cr = c) is the
probability thatBr is of class c. We learn Σc from our train-
ing set using a max-likelihood estimator.

Energy Ψ̃CB
r . Given Ck and Br, let bkr be the image

projection of Br. We model the energy Ψ̃CB
r by evaluating

if bkr and the measurement of Br have: 1) similar image ar-
eas, 2) similar normal vectors computed within the camera
reference system. Thus,

Ψ̃
CB
r ∝

∑
c

∏
k

N(log
skr
sk
lk

; 0, σsc)N(n
k

lk
;n

k
r , σnc) Pr(cr = c) (3)

where sklk (skr ) are image area of bklk (bkr ), nklk is the region
normal vector of bklk (estimated by methods such as [32, 14,
20]), and nkr is the normal vector of Br w.r.t. Ck. We chose
to use log difference in Eq. 3 since it best fits real data
distribution.

Overall Region Energy. Combining Eq. 2 and 3, we
compute ΨCB

r as:
Ψ

CB
r = Ψ̄

CB
r Ψ̃

CB
r =

∑
c

∏
k

N(a
k

lk
− ār; 0,Σ

c
)

N(log
skr
sk
lk

; 0, σsc)N(n
k

lk
;n

k
r , σnc) Pr(cr = c)

5. Interactions Among Scene Components
The concept of interactions among scene components

(objects, points, and regions) originates from the obser-
vation that scene components are related following cer-
tain geometrical or physical rules in 3D. For example, a
3D point may lie on a 3D object (Fig. 5b), and a 3D
object may lie on a 3D region (Fig. 5a). Image cues
can be used to validate the existence of such interactions
(Fig. 5c and Fig 5d). A pair of scene components that
are hypothesized to be interacting can be associated to an
interaction energy (i.e. ΨOQ

t,s ,Ψ
OB
t,r ,Ψ

BQ
r,s ). The interac-

tion energy is a function of the scene components’ 3D lo-
cations, poses, and semantic labels1. One step in Algo-
rithm 1 is to search for the best configuration of O,Q,B
so as to maximize interaction energy (i.e. {O,Q,B} =

arg max
∏
t,s ΨOQ

t,s

∏
t,r ΨOB

t,r

∏
r,s ΨBQ

r,s ). This step re-
fines the 3D location and pose for all scene components,
and is achieved by a gradient descent algorithm. The ini-
tial values O′,Q′,B′ for this gradient descent algorithm are
provided by the individual estimation of each scene compo-
nent, as discussed in Sec. 4.1, 4.2, and 4.3.
5.1. Object-point Interaction

A point Qs and an object Ot interact if Qs lies on the
surface of Ot. This also implies that matched points should
be consistent with matched objects across views (Fig. 5c).
If this consistency criteria is verified, the energy ΨOQ

t,s will
have a large value. This type of interaction was explored in
[2] and we refer to that paper for more details.
5.2. Object-region Interaction

An objectOt and a regionBr interact if: i)Ot physically
sits on the surface defined by Br; ii) Ot sits in the up-right
pose (Fig. 5a). In other words, Br is the supporting region
for Ot. As shown in works such as [15, 4], the supporting
region (surface) can be used to add constraints on object
detection task. In turn, detected objects help the estimation
of the geometry of supporting regions. The energy ΨOB

t,r

evaluates the interaction between Br and Ot. Thus, ΨOB
t,r

has large value if the bottom face of Ot touches the surface
of Br (location consistency) and the pose of Ot is up-right
(pose consistency) as shown in Fig. 5a.

1If two scene components do not interact, their interaction energy is 1.
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(a) Object-region interaction. The esti-
mated object (cup) should lie on the re-
gion (desk) and be in its up-right pose.

Detected region and 
points in the image

(b) Point-region interaction. The
estimated 3D points (red crosses)
should lie on the estimated 3D re-
gion (a portion of desk).

Image 1 Image 2

Case 1

Case 2

Case 3

(c) Object-point interaction.
Matched points (crosses) should
be consistent with the measure-
ment of the same instance (cars).

Image 2Image 1

Case 1
 

Case 2

(d) Point-region interaction. Matched
regions (a portion of desk) should be
consistent with measurement of the
same points (red crosses) across views.

Figure 5: Interactions among objects, points, and regions. (a,b): types of interactions in 3D. (c,d): types of interactions across views.

In order to reduce the size of an otherwise combinatorial
problem, we construct a set of candidate object-region inter-
actions. Each element (e.g. {Ot, Br}) in this set is selected
following two criteria: i) the bottom side of the bounding
box of okj (the image measurement of Ot) lies within bkl
(the image measurement of Br), ii) the region class of Br
and object class of Ot are compatible. This compatibility
is expressed by an indicator function IOBt,r (ct, cr) = {0, 1},
which returns 1 (compatible) if an object of class ct and a
region of class cr may interact, and returns 0 (incompatible)
otherwise. For instance, IOBt,r (ct, cr) = 0 if ct = ’car’ and
cr = ’tree’, because a car cannot ’sit’ on a tree. IOBt,r (ct, cr)
is learnt to be 1 if in the training set an object of class ct
interacts with a region of class cr, and it is learnt to be 0
if no object of class ct interacts with regions of class cr. If
both criteria are met, then we say that a region Br and an
object Ot do interact and we evaluate their corresponding
interaction energy.

Location Consistency. If Ot lies on Br, their locations
in the 3D space will be close to each other (Fig. 5a). De-
note by dt,r the point-to-plane distance from the bottom of
the bounding cube of Ot to the surface of Br. Assuming
a Gaussian measurement noise, dt,r follows a zero-mean
Gaussian distribution controlled by a variance σOB . In gen-
eral, σOB is a function of object category ct and region class
cr. dt,r can be used to evaluate Ψ̄OB

t,r :

Ψ̄OB
t,r ∝

∑
c

[IOB
t,r N(dt,r; 0, σOB

d (ct, cr)) + (1− IOB
t,r )] Pr(cr = c)

(4)

where Pr(cr = c) is the confidence that Br is of class c
(Sec. 4.3.1).

Pose Consistency. If Ot lies on Br, the pose of Ot and
Br should be consistent (Fig. 5a): nr (the normal of Br)
should be equal to nt (the normal ofOt). The angle between
nr and nt can also be used to evaluate Ψ̃OB

t,r :

Ψ̃OB
t,r ∝

∑
c

[IOB
t,r N(acos(n′rnt); 0, σOB

n (ct, cr))+(1−IOB
t,r )] Pr(cr = c)

(5)
where σOBn (ct, cr) is the angle variance for object category
ct and region category cr.
Interaction Energy. Given Eq. 4 and 5, ΨOB

t,r is computed
as:

ΨOB
t,r = Ψ̄OB

t,r Ψ̃OB
t,r =

∑
c

[IOB
t,r N(dt,r; 0, σOB

d (ct, cr))

N(acos(n′rnt); 0, σOB
n (ct, cr)) + (1− IOB

t,r )] Pr(cr = c)(6)

5.3. Point-region Interactions
A pointQs and a regionBr interact ifQs lies on the sur-

face of Br. This implies that: i) the image measurements
of Qs and Br should be consistent (Fig. 5b); ii) the 3D lo-
cations of Qs and Br should be close to each other (Fig.
5d). As shown in works such as [27, 9], point-region inter-
actions help improve the across-view matching accuracy of
both points and regions, and help the estimation of 3D loca-
tions and poses of both points and regions. The energy ΨQB

s,r

evaluates the interaction between Qs and Br. Thus, ΨQB
s,r

has large value if Qs is close to Br in 3D (wrong match of
points or regions will cause the estimated 3D point Qs and
region Br to be far apart).

Similarly to object-region interaction, we construct a set
of candidate point-region interactions. A pair {Qs, Br}will
be selected as an element in this set if qki (image measure-
ment of Qs) lies within bkl (image measurement of Br).
Denote by ds,r the point-to-plane distance between Qs to
Br. Assuming a Gaussian measurement noise, ds,r obeys
a zero mean Gaussian distribution controlled by a variance
σQB(cr), which is a function of region class. Thus, we have

ΨQB
s,r =

∑
c

N(ds,r; 0, σQB(cr)) Pr(cr = c) (7)

6. Evaluation
We evaluate the performance of the proposed framework

with the static-scene datasets of [3]. These include two out-
door datasets (car and person) and one indoor dataset (of-
fice). Such datasets contain pairs of images with various
baselines of the same scene for a number of scenarios (Fig.
7). We use a training set to learn the variances in Eq. 2 ~
Eq. 7 by maximum likelihood estimation. We use the same
set of pairs of images as [3].

[28] [3] This paper

Car 26.5◦ / < 1◦ 19.9◦ / < 1◦ 12.1◦ / < 1◦

Person 27.1◦ / 21.1◦ 17.6◦ / 3.1◦ 11.4◦ / 3.0◦

Office 8.5◦ / 9.5◦ 4.7◦ / 3.7◦ 4.2◦ / 3.5◦

Table 3: The error for camera pose estimation. We follow the evalua-
tion criteria in [24]. The two numbers in each cell are translation error
eT / rotation errors eR. Let Rgt and Tgt be the ground truth camera
rotation and translation, and let Rest and Test be the estimated cam-
era rotation and translation. The rotation error eR is the minimal ro-
tation angle (in degree) of RgtR

−1
est. The translation error eT is the

angle between the estimated baseline and the ground truth baseline, i.e.

eT = acos(
TT
gtR
−T
gt R−1

estTest

|Tgt|·|Test|
). The reported errors are computed on the

second camera, given that the first camera is at the canonical position.
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(c) Office. Ours w/ [31].
Figure 6: Confusion table for region classification by our framework. “w/” =
“with”. Our framework can use the appearance-based classification confidence
(i.e. fapp in Sec. 4.3.1) produced by either [17] or [31].

6.1. Quantitative Performance
Camera pose. We evaluate the ability of our framework

to estimate the camera poses from input images (the internal
parameters are known). The results are reported in Tab. 3.
As our framework jointly uses points, objects and regions to
estimate the camera poses, it shows superior performance
over our baseline algorithms [28] (which only uses points)
and [3] (which only uses points and objects).

Region recognition (classification). For car / person /
office set, we train region classifier on car [3] / Camvid [6]
/ office [3] dataset. Fig. 6 shows the confusion table for the
three datasets. Tab. 4 shows the average accuracy for region
classification tasks.

3D region orientation. Tab.5 shows the average error in
estimating region orientations. The baseline algorithms are
Zhang et al. [32] and Hoiem et al. [14]. [32] estimates the
region orientation by texture. Notice that [32] tends to fail
if a region has little or irregular texture. [14] estimates the
region orientation by its appearance and location in the im-
age. Since our framework estimates the region orientation
by object-region and point-region interactions in addition to
the appearance of a region, it shows better performance in
estimating region orientations.

3D region localization. Tab. 6 shows the average error
for 3D region localization tasks. Notice the contribution
of the interaction in improving the accuracy in localizing
regions in 3D.

2D object detection. Tab. 7 shows the average precision
for object detection. The baseline algorithms are Felzen-
szwalb et al. [8] and Bao and Savarese [3]. Since our frame-
work detects objects from multiple images and leverages the
interaction between scene components, it enables better ob-
ject detection performance than [8] (which detect objects

Percentage % Car Person Office

[17] / [31] 88.9 / 78.2 82.9 / 74.6 50.8 / 54.7

Ours with [17]/[31] 90.2 / 80.0 84.4 / 75.4 51.2 / 59.0

Table 4: Average accuracy for region classification tasks. The numbers
are percentage of total pixels correctly labeled / total pixels in the recon-
structed regions. We report the classification results using all the 2D re-
gions that our framework is capable to match and reconstruct in 3D. In car
/ person / office dataset, our framework is able to match and reconstruct the
regions that account for 14.4% / 9.6% / 11.3% of total area of all input im-
ages. Our framework uses the appearance-based classification confidence
(i.e. fapp in Sec. 4.3.1) produced by either [17] or [31].

Zhang et al.[32] Hoiem et al.[14] This Paper

Car 69.2◦ 27.0◦ 26.1◦

Office 45.2◦ 40.5◦ 37.9◦

Table 5: Average error in estimating region normals. Let ngt be the
ground truth normal of a region from range data. If the estimated region
normal is nest, the error is acos(|n′gtnest|). Since the person dataset
does not have range data, we do not use it for this evaluation.

with / without interaction median(ed) var(ed)

Car 0.281 / 0.175 0.54 / 0.44

Office 0.033 / -0.011 0.182 / 0.189

Table 6: Average error in estimating region 3D locations. The two num-
bers in each cell are our results estimated with / without interactions. For a
detected region, let dest be its distance to camera, and let dgt be its ground
truth distance from the range data. We define the error as ed = log dest

dgt
that should be 0 if there is no error. Since the person dataset does not have
range data, we cannot evaluate on it.

from each single image separately) and [3] (which does not
consider the interactions).

3D object detection. Tab. 8 shows the average precision
for object detection in 3D space. Ground truth 3D objects
are manually labeled from range data. If the distance be-
tween the centroid of a detected 3D object and the centroid
of a ground truth object is less than δ (values in the caption
of Tab. 8), the detected 3D object is counted as true. Since
every detected 3D object can be associated to a confidence
value, we can generate precision-recall curves and compute
the average precision. Due to the metric reconstruction am-
biguity, we use ground truth camera poses in this experi-
ment. Our baselines are Hoiem et al. [15] and Bao and
Savarese [3]. [15] uses the 2D bounding box to estimate the
location of an object in 3D. [3] estimates 3D object loca-
tions without modeling interactions. Our framework shows
much better performance over [15] and [3]. This demon-
strates that the importance of modeling interaction to solve
the camera and structure estimation problems.

7. Conclusion
We have proposed a novel framework for jointly esti-

mating camera poses and detecting objects, points, and re-

[8] [3] This Paper

Car 54.5% 61.3% 62.8%
Person 70.1% 75.1% 76.8%
Office 42.9% 45.0% 45.7%

Table 7: 2D object detection average precision. We follow the criteria as
in the PASCAL VOC challenge. In the office dataset, we compute the over-
all average precision for 5 categories: monitors, mice, keyboards, bottles,
and cups.

Estimation by single
image. [15]

Without
interactions [3]

With interactions.
Our full model.

Car 21.4% 32.7% 43.1%
Office 15.5% 20.2% 21.6%

Table 8: Average precision for 3D object detection. We set δ = 2.5/0.1

meter for car / office dataset.
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Figure 7: Each panel shows anecdotal results by our framework. Left: Input image pair and baseline object detection by [8]. Middle: Segmented regions
by [26] (delimited by red boundary), region classes, and improved object detection (green and blue bounding boxes). Notice that many false alarms are
removed and missed positive are recovered (blue bounding box). Right: Reconstructed 3D scene with objects and regions along with the estimation of the
location and pose of cameras. Estimated planes appear perpendicularly w.r.t others because we use [14] to initialize 3D plane orientations.

gions from two or multiple semi-calibrated images. We
have demonstrated that by modeling the interaction among
points, regions, and objects, we obtain more accurate results
than if these scene elements are estimated in isolation.
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