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Abstract. Conventional rigid structure from motion (SFM) addresses
the problem of recovering the camera parameters (motion) and the 3D
locations (structure) of scene points, given observed 2D image feature
points. In this chapter, we propose a new formulation called Seman-
tic Structure From Motion (SSFM). In addition to the geometrical con-
straints provided by SFM, SSFM takes advantage of both semantic and
geometrical properties associated with objects in a scene. These proper-
ties allow to jointly estimate the structure of the scene, the camera pa-
rameters as well as the 3D locations, poses, and categories of objects in
a scene. We cast this problem as a max-likelihood problem where geome-
try (cameras, points, objects) and semantic information (object classes)
are simultaneously estimated. The key intuition is that, in addition to
image features, the measurements of objects across views provide addi-
tional geometrical constraints that relate cameras and scene parameters.
These constraints make the geometry estimation process more robust
and, in turn, make object detection more accurate. Our framework has
the unique ability to: i) estimate camera poses only from object detec-
tions, ii) enhance camera pose estimation, compared to feature-point-
based SFM algorithms, iii) improve object detections given multiple un-
calibrated images, compared to independently detecting objects in single
images. Extensive quantitative results on three datasets — LiDAR cars,
street-view pedestrians, and Kinect office desktop — verify our theoretical
claims.

1 Introduction

Joint object recognition and 3D reconstruction of complex scenes from images
is one of the critical capabilities of an intelligent visual system. Consider the
photographs in Figure 1(a). These show the same environment observed from a
handful of viewpoints. Even if this is the first time you (the observer) have seen
this environment, it is not difficult to infer: i) the spatial structure of the scene
and the way objects are organized in the physical space; ii) the semantic content
of the scene and its individual components. State-of-the-art methods for object
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Fig. 1: Main objective of SSFM. (a) Input photos showing the same environment
observed from a handful of viewpoints. (b) Traditional object recognition algo-
rithms identify objects in 2D without reasoning about the 3D geometry. (¢) SEM
returns 3D scene reconstruction (3D point clouds) with no semantic information
attached to it. (d) SSFM aims to jointly recognize objects and reconstruct the
underlying 3D geometry of the scene (cameras, points and objects).

recognition [9,21,10,20] typically describe the scene with a list of class labels (e.g.
a chair, a desk, etc...) along with their 2D location and scale, but are unable
to account for the 3D spatial structure of the scene and object configurations
(Figure 1(b)). On the other hand, reconstruction methods (e.g. those based on
SFM) [26,8,31,24,32] produce metric recovery of object and scene 3D structure
(3D point clouds) but are mostly unable to infer the semantic content of its
components (Figure 1(c)).

In this chapter we seek to fill this representation gap and propose a new
framework for jointly recognizing objects as well as discovering their spatial or-
ganization in 3D (Figure 1(d)). The key concept we explore in this work is that
measurements across viewpoints must be semantically and geometrically consis-
tent. By measurements, we refer to the set of objects that can be detected in
the image (e.g. a chair or monitor in Figure 1), their x,y location in the image,
their scale (approximated by a bounding box) and their pose. Given a set of
measurements from one view point, we expect to see a set of corresponding mea-
surements (up to occlusions) from different view points which must be consistent
with the fact that the view point has changed. For instance, the chair in Figure
1(a) appears in two views and its location, scale and pose variation across the
two views must be consistent with the view point transformation. In this work
we exploit this property and introduce a novel joint probability model where
object detection and 3D structure estimation are solved in a coherent fashion.

Our proposed method has the merit of enhancing both 3D reconstruction and
visual recognition capabilities in two ways: i) Enhancing 3D reconstruction: Our
framework can help overcome a crucial limitation of scene/object modeling meth-
ods. State-of-the-art SFM techniques mostly fail when dealing with challenging
camera configurations (e.g. when the views are too few and the view baseline
is too large). This failure occurs as it is very hard to establish correct feature
correspondences for widely separated views. For instance, the 3D reconstruction
in Figure 1(c) was obtained using a state-of-the-art SFM algorithm [13] using 43
densely-sampled pictures of an office. The same algorithm would not work if we
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just used the two images in Figure 1(a) for the reasons mentioned above. By rea-
soning at the semantic level, and by establishing object correspondences across
views, our framework creates the conditions for overcoming this limitation. We
show that our framework has the ability to estimate camera poses from object
detections only. Moreover, our framework can still exploit traditional SEM con-
straints based on feature correspondences to make the 3D reconstruction process
robust. We show that our method can significantly outperform across-view fea-
ture matching SFM algorithms such as [31,23] (Table 1). ii) Enhancing visual
recognition: Traditional recognition methods are typically prone to produce false
alarms when appearance cues are not discriminative enough and no contextual
information about the scene is available. For instance, the cabinet in Figure 1(a)
can be easily confused with a monitor as they both share similar appearance
characteristics. By reasoning at the geometrical level, our framework is able to
identify those hypotheses that are not consistent with the underlying geometry
and reduce their confidence score accordingly. Our model leads to promising
experimental results showing improvements in object detection rates compared
with the state-of-the-art methods such as [9] (Figure 7 and Table 2). Also, we
show that we can automatically establish object correspondence across views.

2 Related Works

Recently, a number of approaches have explored the idea of combining seman-
tic cues with geometrical constraints for scene understanding. Notable examples
are [14,30,22,33,17]. These focus on single images and, unlike our work, they
do not attempt to enforce consistency across views. Moreover, they make re-
strictive assumptions on the camera and scene configuration. Other methods
have been proposed to recognize objects with multi-view geometry [19,16], but
they assume that the underlying scene geometry is available. A large number
of works have proposed solutions for interpreting complex scenes from 3D data
[11,18,28,27] or a combination of 3D data and imagery [3|. However, in most of
these methods 3D information is either provided by external devices (e.g. 3D
scanning systems such as LiDAR) or using traditional SFM techniques. In either
case, unlike our framework, the recognition and reconstruction steps are sepa-
rated and independent. [5] attempts joint estimation using a “cognitive loop” but
requires a dedicated stereo-camera architecture and makes assumptions about
camera motion. Having our preliminary result published as [1]|, we are the first
to make these two steps coherent within a setting that requires only images with
uncalibrated cameras (up to internal parameters) and arbitrary scene-camera
configurations.

3 The Semantic Structure from Motion Model

Conventional rigid structure from motion (SFM) addresses the problem of re-
covering camera parameters C and the 3D locations of scene points Q, given
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observed 2D image feature points. In this chapter, we propose a new formu-
lation where, in addition to the geometrical constraints provided by SFM, we
take advantage of both the semantic and geometrical properties associated with
objects in the scene in order to recover C and Q as well as the 3D locations,
poses, and category memberships of objects O in the scene. We call this se-
mantic structure from motion (SSFM). The key intuition is that, in addition
to image features, the measurements of objects across views provides additional
geometrical constraints that relate camera and scene parameters. We formulate
SSEFM as a maximum likelihood estimation (MLE) problem whose goal is to find
the best configuration of cameras, 3D points and 3D objects that are compatible
with the measurements provided by a set of images.

3.1 Problem Formulation

In this section we define the SSFM problem and formulate it as an MLE problem.
We first define the main variables involved in SSFM, and then discuss the MLE
formulation.

Cameras. Let C denote the camera parameters. C = {C*} = {K* RF T*}
where K is the camera matrix capturing the internal parameters, R rotation
matrix, and T translation vector with respect to a common world reference
system. K is assumed to be known, whereas {R, T} are unknown. Throughout
this chapter, the camera is indexed by k as a superscript.
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Fig.2: 3D object’s location and pose parametrization. (a) Assume an object
is enclosed by the tightest bounding cube. The object 3D location X,Y, Z is
the centroid of the bounding cube (red circle). The object’s pose is defined by
the bounding cube’s three perpendicular surface’s norms that are n, ¢, t and
parametrized by the angles ©,® in a given world reference system (b). r is the
ray connecting O and the camera center. Let zenith angle ¢ be the angle between
r and n, and azimuth angle 6 be the angle between ¢ and rg , where rg is the
projection of r onto the plane perpendicular to n. Notice that we assume there
is no in-plane rotation of the camera. We parametrize an object measurement in
the image by the location x, y of tightest bounding box enclosing the object, the
width w and height h of the bounding box (object 2D scale), the object pose 0,
¢, and class c.
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3D Points Q and Measurements q,u. Let Q = {Q;} denote a set of
3D points Qs. Each 3D point @ is specified by (X, Ys, Zs) describing the 3D
point location in the world reference system. Q is an unknown in our problem.
Denote by q = {¢¥} the set of point measurements (image features) for all the
cameras. Namely, qf is the 7*" point measurement in image (camera) k. A point
measurement is described by the measurement vector ¢* = {z,y, a}f, where x,y
describe the point image location, and a is a local descriptor that captures the
local neighborhood appearance of the point in image k. These measurements may
be obtained using feature detectors and descriptors such as [23,35]. Since each
image measurement {qf} is assumed to correspond to a certain physical 3D point
Qs, we model such correspondence by introducing an indicator variable uf, where
u¥ = s if {gF} corresponds to Q. A similar notation was also introduced in [7]. A
set of indicator variables u = {u¥} allows us to establish feature correspondences
across views and to relate feature matches with 3D point candidates (Section
3.3). Unlike [7], we assume the feature correspondences can be measured by
feature matching algorithms such as [23]. Throughout this chapter, @ and ¢ are
indexed by s and i respectively and they appear as subscripts.

3D Objects O and Measurements o. Let O = {O,} denote a set of 3D
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Fig. 3: Multi-pose and multi-scale object detection illustration. The “probability maps”
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are obtained by applying car detector with different scales and poses on the left image.
The color from red to deep blue indicates the detector response from high to low. We
used LSVM [9] (Section 5.1) to obtain these probability maps. In this example, = has
dimensions L, X Ly x 15. If the scale=3 (small), pose=4, and category=car, I will
return the index m = 14 (the red circle). Thus, =(z,y, 14) will return the confidence
of detecting a car at small scale and pose=4 at location z,y in the image (the orange
rectangle).

objects O;. As Figure 2 illustrates, the t** 3D objects Oy is specified by a 3D
location (X, Y:, Z:), a pose (O, P;), and a category label ¢; (e.g, car, person,
etc...). Thus, a 3D object is parametrized by O; = (X,Y, Z, 0, P, ¢);. The set O is

an unknown in our problem. Denote by o = {0?} the set of object measurements

for all the cameras. Thus, of is the j* measurement of an object in image
(camera) k. An object measurement is described by the following measurement
vector 0;? = {z,y,w,h,0,0, c}gC (Figure 2). As discussed in Section 3.2, these
measurements may be obtained using any state-of-the art object detector that

can return the probability that certain location x,y in an image is occupied by
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an object with category ¢, scale h,w, and pose 0, ¢ (e.g. [29]) 1. Similar to the
3D point case, since each object measurement {o?} from image k is assumed to
correspond to some physical 3D object O;, such correspondence may be modeled
by introducing an indicator variable v‘f, where v;? =t if oé? corresponds to 3D
object O;. However, for the object case, the correspondences are automatically
obtained by projecting 3D object into the images (Section 3.2). Thus, from this
point on, we assume 3D object observations are given by o. We denote 3D object
and 2D object using the subscript index ¢ and j respectively.

MLE formulation. Our goal is to estimate a configuration of Q, O and
C that is consistent with the feature point measurements q,u and the object
measurements o. We formulate this estimation as the one of finding Q,O,C
such that the joint likelihood is maximized:

{Q,0,C} = arg o, Pr(q,u,0[Q, 0, C)
= arg max Pr(q,u/Q, C)Pr(0|0,C) (1)

where the last expression is obtained by assuming that, given C, Q and O,
the measurements associated with 3D objects and 3D points are conditionally
independent. In the next two sections we show how to estimate the two likelihood
terms Pr(q,u|Q, C) (Equation 4 or 5) and Pr(o|O, C) (Equation 3).

3.2 Object Likelihood Pr(o|O, C)

Pr(o|O, C) measures the likelihood of object measurements o given the cam-
era and object configurations O, C. This term can be estimated by computing
the agreement between predicted measurements and actual measurements. Pre-
dicted measurements are obtained by introducing a mapping wf = w*(0;) =
wk((X, Y, Z,0,®,c);) that relates the parameters describing the 3D object O,
to the image of camera C*. Thus, wf is a parameter vector that contains the
predicted location, pose, scale and category of O, in C*. Next, we present expres-
sions for predicting the measurements and relating them to actual measurements
and for obtaining an estimate of the likelihood term.

Computing Predicted Measurements. The transformation wf = w*(0y)
can be computed once cameras C are known. Specifically, let us denote by
XF, Yk, ZF the 3D location of O in the reference system of C* and by OF, &F
its 3D pose (these can be obtained from X;,Y;, Z;, ©;, ®; in the world reference
system by means of a (known) rigid transformation). Predicted location (xf,y¥)
and pose (¢F, 0F) of Oy in camera C* can be computed by using the camera pro-
jection matrix [15] as [zf,yF, 1) = K*[XF, Y}, ZF) /ZF and [¢F,0F] = [®F, OF].
Predicting 2D object scales in the image requires a more complex geometrical
derivation that goes beyond the scope of this chapter. We introduce an approx-

! State of the art object detectors such as [9] can be modified so as to enable pose
classification, as discussed in Section5.1.
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imated simplified mapping defined as follows:
wzltC = fr 'W(@fvdszhct)/ztk (2)
hf = fr- H(@fv@fvct)/ztk

where wF, h¥ denote the predicted object 2D scale (similar to Figure 2), f is
the focal length of the k' camera. W(OF, &%, c;) and H(OF, ®F, c;) are learned
(scalar) mapping that describe the typical relationship between physical object
bounding cube and object image bounding box. The equations above allow us
to fully estimate the object prediction vector wf = {x,y,w, h, ¢, 0, c}¥ for object
O, in camera CF.

Learning Object Size Mapping. W(0F, ®F ¢;) and H(OF ®F ;) are
(scalar) mapping functions of the object pose OF ®F and category c;. They can
be learned by using ground truth 3D object bounding cubes and corresponding
observations using ML regressor. The mappings W and H relate the physical
object bounding cube with the #*" object bounding box size (parametrized by
wy and k) in the image. In the validation set, we have 3D objects {o;} =
{wt,ht,Zt,Qt,¢t7ct} with ground truth scale wt,ht, depth Zt, pose Qt,@,
and category ¢;. We formulate the scale likelihood as Pr(W (6, D¢, ci)|wy) o
exp(=(f - W(Or, @y, 1)/ Zi — @1)*/0,,) and Pr(H(Oy, 1, c;))[hi) o exp(—(f -

(@t, @t, ct)/Zt ht) /on). Therefore, with the validation set, W and H can be
learned as the mean value:

W(O,9,c) = N* th:c,ét:@,@:qs Nwt z;/f
H(©,®,c) = N* Yer—e.B,—0.5—a Mt Zt] [

where IV} is number of objects that have the pose as @, @ and category c.

Measurements as Probability Maps. Pr(o|O, C) can be now estimated
by computing the agreement between predicted measurements and actual mea-
surements. Such agreement is readily available using the set of probability values
returned by object detectors such as [9] applied to images (Figure 3). The output
of this detection process for the image of C* is a tensor Z* of M probability
maps wherein each map captures the likelihood that an object of category c
with scale w, h and pose 6, ¢ presents at location x,y in the image. Thus, we can
interpret =% as one L, x L, x M tensor, where L, and L, are the image width
and height and M adds up to the number of object categories, scales and poses.
Let us denote by II : {w,h,¢,0,c} — m € 1... M the indexing function that
allows retrieval from =% the detection probability at any location z,y given a set
of values for scale, pose and category. Figure 3 shows an example of a set of 15
probability maps for only one object category (i.e., the car category), three scales
and five poses associated with a given image. Notice that since measurements
can be extracted directly from 5* once the mapping 3D-object-image w is com-
puted (Figure 4), the 2D objects of the k*" image are automatically associated
with the 3D objects. As a result, across-view one-to-one object correspondences
are also established.
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Fig. 4: Mapping 3D objects to measurements. In this example, the measurements
of O (green) correspond to high value location in the probability maps, while the
2D measurements of Oz (red) correspond to low value location in the probability
maps. Therefore, Pr(o|O1, C) is much higher than Pr(o|Oz, C).

Estimating the likelihood term. The key idea is that the set =% of proba-
bility maps along with 7 can be used to estimate Pr(o]O, C) given the predicted
measurements. To illustrate this, let us start by considering an estimation of
the likelihood term Pr(o|O;, C*) for O; observed from camera C*. Using wf,
we can predict the object’s scale {w, h}F, pose {¢,0}F and category cF. This
allows us to retrieve from =* the probability of detecting an object at the pre-
dicted location {z,y}¥ by using the indexing function 7F, and in turn estimate
Pr(0|Oy, C*) = E*(aF yF m(wk, hF ¢F 0F, cF)). Assuming that objects are inde-
pendent from each other and camera configurations are independent, the joint
likelihood of objects and cameras can be approximated as:

Pr(0|O, C) x ﬂPr(o|Ot, C) x 1_1(1 - H(l — Pr(0]Oy, C*))) (3)
t t k

where N; is the number of objects and Nj is the number of cameras. N; is
in general unknown, but it can be estimated using detection probability maps
(Section4.1). Notice that this term does not penalize objects that are observed
only by a portion of images while they are truncated or occluded in other images.
Pr(0|O¢, C) is only partially affected by an occluded or truncated object O; in
the k' image even if the object leads to a low value for Pr(o|O;, CF).

3.3 Points Likelihood Pr(q, u|Q, C)

Pr(q,u|Q, C) measures the likelihood of the 3D points and cameras given the
measurements of 3D points and their correspondences across views. This like-
lihood term can be estimated by computing the agreement between predicted
measurements and actual measurements. Similar to the 3D object case, pre-
dicted measurements are obtained by introducing a mapping from 3D points to
the images.

Predicted Measurements. Predicted measurements can be easily obtained
once the cameras C are known. We indicate by ¢* the predicted measurement (a
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pixel location in the image) of the s point Q, in camera C*. ¢* can be obtained
by using the projection matrix of camera C*. Since we know which point is being
projected, we have a prediction for the indicator variable u as well.

Point Measurements. Point measurements are denoted by ¢~ = {z,y,a}¥,
where x,y describe the point location in image k of measurement 4, and a is a
local descriptor that captures the local appearance of the point in a neighborhood
of image k. We obtain location measurements {x,y}ic using a DOG detector
equipped with a SIFT descriptor for estimating a¥ [23]. Measurements for feature
correspondences (matches) across images are obtained by matching the point
features.

Estimating the likelihood term. Pr(q, u|Q, C) can be estimated by com-
puting the agreement between predicted measurements and the actual measure-
ments (Figure 5). Let us start by considering the likelihood term Pr(q|Qs, C*)
for one point Q, and for camera C*. As introduced in [7], one possible strategy
for computing such agreement assumes that the location of measurements and
predictions are equal up to a noise n - that is, qf = ¢* 4+ n, where s = uf If we
assume zero mean Gaussian noise, we can estimate Pr(¢¥|Q,, C*) oc exp(—(gF —
qq’j?)2 /oq), leading to the following expression for the likelihood:

Nq Ng

Pr(q,u|Q,C) = [T [T exp(~(aF = }1)* /o) (4)
i k

where Nj, is the number of cameras, Ng is the number of points, and o, is the
variance of 2D point projection measurement error. This is obtained by assuming
independence among points and among cameras.

Fig. 5: Estimating the likelihood term for points. ¢i and ¢ are point measure-
ments. 1 and Q3 are candidate 3D points corresponding to ¢i and ¢?. In this
case, the likelihood of @)1 is higher than ()5, because the projections of Q1 are
closer to the measurements.
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We also propose an alternative estimator for Pr(q, u|Q, C). While this esti-
mator leads to a coarser approximation for the likelihood, it makes the inference
process more efficient and produces more stable results. This estimator exploits
the epipolar constraints relating camera pairs. Given a pair of cameras C' and
C*, we can estimate the fundamental matrix Fj ;. Suppose ¢F, q;» are from C*
and C! respectively, and the matching algorithm predicts that qf and qg- are in
correspondence. Fjj can predict the epipolar line {fk (or ff’l) of ¢¥ (or qé) in
image C! (or C%). If we model the distance? dé’f
mean Gaussian with variance o, Pr(qF, qé—\Qs, Cy,Ck) x exp(—déf’]z/au). Notice
that this expression does not account for appearance similarity between matched
features — that is the similarity between the descriptors a¥ and aé. We model ap-

k 1
a(a; 7aj)

between fé’k and q;» as zero-

pearance similarity as exp(———_2—) where a(, -) captures the distance between
two feature vectors and o, the variance of the appearance similarity. Overall,
we obtain the following expression for the likelihood term:

Ne N,
PI‘(q, u|Qa C) X H H Pr(qzka Qj|Qa7 Cl7 Ck)
k#Litj
N N l,k k 1
o ala;, a’
o T T exp(~ 225 exp( - 21902%2)) 6
k£l i] Tu Oa

Equation 5 is obtained by assuming that feature locations and appearance are
independent. During the learning stage, we learn the variance o, and o, using
an ML estimator on a validation set. Notice that Pr(q,u|Q, C) is no longer a
function of Q. Hence, during every iterations in Algorithm. 1, we can avoid
estimating 3D points, which is usually an expensive process (e.g. see the bundle
adjustment algorithm|34]). This significantly reduces the complexity for solving
the MLE problem.

4 Max-Likelihood Estimation with Sampling

Our goal is to estimate camera parameters, points, and objects so as to max-
imize Equation 1. Due to the high dimensionality of the parameter space, we
propose to sample C,Q, O from Pr(q, u,0|Q, C, O) similar to [7]. This allows
us to approximate the distribution of Pr(q,u,0|Q, C,O) and find the C,Q, O
that maximize the likelihood. In Section 4.1 we discuss the initialization of the
sampling process, and in Section 4.2 we describe a modified formulation of the
Markov Chain Monte Carlo (MCMC) sampling algorithm for solving the MLE
problem.

2 To account for outliers, we set a threshold on di’f Namely, if d_élf is the measurement,

we set dé’f = min(cfé‘,’;, I'). We learn the outlier threshold I" using a validation set.
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4.1 Parameter Initialization

Appropriate initialization of cameras, objects, and points is a critical step in
the sampling method. We initialize camera configurations (i.e. estimate camera
configurations that are geometrically compatible with the observations) using
feature point matches and object detections.

Camera Initialization by Feature Points. We follow [24] to initialize
(estimate) C from image measurements q. Due to the metric reconstruction
ambiguity, we scale the estimated camera translation with several random values
to obtain several camera pose initializations.

Camera Initialization by Objects. We use a standard object detector [9]
to detect 2D objects and estimate object pose and scale (Section 5.1). Next, we
use these object detections to form possible object correspondences and use these
to estimate several possible initial camera configurations. Assume the k** camera
has a set of object detections of = {0F}, where of is the ! detected 2D object in
the k' camera. of captures the 2D object location =¥, y¥ and bounding box scale
wk ¥ (ie. of = {aF yF wF h¥}). If the object detector has the ability to classify
object pose, of also captures the pose ¢F 0F (i.e. of = {aF yk, wF h¥, ¢F 0F}).
Depending on whether the pose ¢F, 6F and the pre-learned object scale W, H (so
as to allow us to use Equation 2 to compute the object depth) are used or not,
there are three ways to initialize the camera extrinsic parameters R*, T* (the
intrinsic parameter K* is known): 1) initialize cameras by only using object scale
W, H; 2) initialize cameras by only using object pose ¢, 6; 3) initialize cameras
by using scale W, H and pose ¢, 6. In our experiments, case 1 applies on the
pedestrian dataset, as the pose cannot be robustly estimated for pedestrians;
case 2 does not apply on any of our experiments; case 3 applies on the Ford
car dataset and the office dataset. The propositions in Section 8 give necessary
conditions for estimating the camera parameters. These propositions establish
the least number of objects that are necessary to be observed for each of the
initialization cases above. These propositions also give conditions for estimating
camera parameters given a number of object detections. Based on a list of pos-
sible object correspondences across images, these propositions can be used for
generating hypotheses for camera and object configurations for initializing the
sampling algorithm.

Points and Objects Initialization. Camera configurations obtained by
using points and objects form the initialization set. For each of these initial
configurations, object detections are used to initialize objects in 3D using the
mapping in Equation 2. If certain initialized 3D objects are too near to others
(location and pose-wise), they are merged to a single one. We use the distance be-
tween different initializations to remove overlapping 3D initializations. Suppose
that, after the initializations, the objects are {O:} = {X;,Y:, Z¢, @1, Oy, ct, pt}
where Xy, Y;, Z; is the object coordinates in the world coordinate system, @;, @,
is the object pose in the world coordinate system, c¢; is the object category,
and p; is the 2D detection probability of the 2D object that initializes O;. We
perform a greedy search to remove the overlapping object: O; will be removed
from the 3D object set if there is another object O, with ¢; = ¢; and ps > p;
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so that ||[Xt,Y;5,Zt] — [Xs,}/S,ZS,]H < txyz and ||[¢t79t] — [¢3795]H < tgo-
The threshold txyz and tge are learned from a validation set where the ground
truth object 3D location and pose are available. Similar to objects, for each
camera configuration, feature points q are used to initialize 3D points Q by
triangulation[15]. Correspondences between q and Q are established after the
initialization. We use index r to indicate one out of R possible initializations for
objects, cameras and points (C,, O,, Q).

4.2 Sample and Maximize the Likelihood

We sample C,0,Q from the underlying Pr(q,u,0|Q, C,O) using a modified
Metropolis algorithm [12] (Algorithm 1). Since the goal of the sampling is to
identify a maximum, the samples should occur as near to max Pr(q, u,0|Q, C, O)
as possible, so as to increase the efficiency of the sampling algorithm. Thus, we
only randomly sample C, while the best configuration of O and Q given the
proposed C are estimated during each sampling step. In step 3, the estimation
of O’ is obtained by greedy search within a neighborhood of the objects proposed
during the previous sampling step (Section 4.3). Since the object detection scale
and pose are highly quantized, the greedy search yields efficient and robust
results in practice. In step 4, the estimation of Q is based on the minimization
of the projection error (Section 4.4).

By Algorithm 1, we can generate the sample {C, O, Q}, from the 7" initial-
ization. From all of the samples, we estimate the maximum of Pr(q, u,0|Q, C, O)
as follows. We concatenate {C, O, Q}, from different initializations into one sam-
ple point set {C, O, Q}. Next, the frequency of the samples will provide an ap-
proximation of the distribution of Pr(q, u, 0|Q, C, O). To identify the maximum,
the MeanShift algorithm [4] is employed to cluster the samples. The center of
the cluster with the highest sample number is regarded as the approximation of
the maximum of Pr(q,u,0|Q, C, O) and thus taken as the solution of the final
estimation of C, O, Q.

Algorithm 1 can be applied using either Equation 4 or 5. If Equation 5 is used,
the estimation is greatly simplified as Q no longer appears in the optimization
process. Hence step 4 is no longer required. Our experiments use the latter
implementation.

4.3 Proposing New Objects

The goal of step 3 of Algorithm 1 is to propose and select the best O’ given
newly proposed cameras C’. Let us denote by O (C) the estimation of the
configuration of the objects (cameras) at MCMC sampling iteration ¢, and by
O’ (C’) the configuration of objects (cameras) at the next sampling iteration.
Proposing O’: Since the objects are assumed to be independent to each
other, we focus on the single object O;. We propose a set of object candi-
dates (locations, poses, scales) for O}, and we denote such set of candidates
by Wer (Oy). Wer(Oy) is obtained by sampling in the neighborhood in the pa-
rameter space of O;. Without loss of generality, assume that the k** image has
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Algorithm 1 MCMC sampling from r** initialization.

1: Start with rth proposed initialization C,., O, Q,. Set counter v = 0.
2: Propose new camera parameter C’ with Gaussian probability whose mean is
the previous sample and the co-variance matrix is uncorrelated.
3: Propose new O’ within the neighborhood of previous object’s estimation to
maximize Pr(o]O’, C’).
4: Propose new Q' with C’ to minimize the point projection error.
Pr(q,u,0/C’,0’,Q")

Pr(q,u,0|C,0,Q)
6: If @« > p where g is a uniform random variable o ~ U(0, 1), then accept
(C,0,Q) = (C',0,Q). Record (C, 0, Q) as a sample in {C,0,Q},.
7: v = v+ 1. Goto 2 if v is smaller than the predefined max sample number;
otherwise return {C, O, Q}, and end.

5: Compute the acceptance ratio o =

Optimized -
Object Loc, & Pose | ! Z/(1-A)

Object Loc. & Pose
in Previous Estimation

T 7))
Camera 1

Dominating
Camera

Camera 2
Auxiliary Camera

Fig. 6: Proposing object candidates given newly proposed cameras. The red circle
is the result of the estimation from step i. The green line collects the proposed
3D locations of the object centroid (i.e. a proposed line of sight). The estimation
of the object in step 7 + 1 is obtained as function of the image measurements,
and shown as red star.
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the largest single-image detection likelihood for Oy given C, i.e. Pr(o|O;, C*) =
maxy—1...n, Pr(o|O;, C") . We define C* as the “dominating camera” of O; (Fig-

ure 6). of is the projection of O; onto the k" image. As a result of previous

optimization, of is corresponding to the local maximum of 2D object detec-
tion probability. To increase the computing efficiency, we enforce that the pro-
posed candidate of O; Will generate a projection o'F in image k that belongs
to a neighborhood of of. More specifically, we enforce |0’} — of| < Ao where
Ao = {Ax, Ay, Ah, Aw, Af, A¢}. We also enforce that the proposed object
depth to be within a finite range ZF/(1 + A) < Z'F < ZF/(1 — A)). Such
proposals for O} form the set W/ (Oy). In Figure 6, the green line corresponds
to the “location” component of ¥/ (Oy).

Selecting O’: Again, let us focus on the single object O;. The new O is
selected as the element in Wer (O;) that maximizes the object measurement like-
lihood:

O, = arg O;enll/ca:}((o,,) Pr(o|0O;, C") (6)

As a reminder, the computation of Pr(o|O;, C’) is explained in Section 3.2.
Given the limited number of proposals within We/(0}), an exhaustive search is
feasible and it is computationally cheap to select O; using Equation 6. Finally,
by selecting new estimations for every objects, the new estimation for objects is
obtained as O’ = {O}}.

4.4 Proposing 3D Points

The goal of step 4 of Algorithm 1 is to propose and select the best Q' given
newly proposed cameras C’. If Equation 4 is used, the goal of proposing the new
Q' is to maximize the points likelihood:

Ng Ny

Q' = arg H}Q@XH Hexp(*(qf - qs;;)2/‘7q)
ik

Nq Ny

_argmlnzz —q k (7)

Notice that solving Equation 7 is equivalent to the objective function of bun-
dle adjustment [34]. Therefore, bundle adjustment can be applied given camera
parameters to propose the new Q' in Algorithm 1 step 4.

If Equation 5 is used, the 3D point likelihood Pr(q,u|Q, C) is approximated
using the epipolar geometry. Note Q does not appear in Equation 5 and thus has
no effect on the optimization process. The approximation gives the significant
advantage of accelerating the sampling process Algorithm 1, since the optimiza-
tion (bundle adjustment) of Q is avoided. As a result, Q is not estimated during
the sampling process but is instead estimated by triangulation after the best
camera configuration C is found.
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5 Evaluation

1 1 -
Precision Precision Precision
0.8 0.8 0.8
0.6 0.6 0.6
SSFM Cali. Cam. SSFM Cali. Cam.
0.4 AP=62.1% 0.4 SSFM Cali. Cam. 0.4 AP=52.1% .
= SSFM uncali. cam. AP=75.1% = SSFM uncali. cam.
AP=61.3% —— SSFM Uncali. Cam. AP=51.6%
021 — vatent svm 0.2 AP=74.2% 0.2 — Latent SVM
=54.59 _ AP=49.0%
0 0 1% 0
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
(a) Car (b) Pedestrian (c) Office

Fig. 7: Detection PR results by SSFM with calibrated cameras (green), SSFM
with uncalibrated cameras (blue) and LSVM [9] (red). Figure 7c shows aver-
age results for mouse, keyboard and monitor categories. SSFM is applied on
image pairs randomly selected from the testing set (unless otherwise stated).
Calibration is obtained from ground truth.

In this section we qualitatively demonstrate the ability of the SSFM model to
jointly estimate the camera pose and improve the accuracy in detecting objects.
We test SSFM on three datasets: the publicly available Ford Campus Vision
and LiDAR Dataset[25], a novel Kinect office dataset®, and a novel street-view
pedestrian stereo-camera dataset. Anecdotal examples are shown in Figure 9.
Although SSFM does not use any information from 3D points, the calibrated
3D points from LiDAR and Kinect allows us to easily obtain the ground truth
information. The typical running time for one image pair with our Matlab single-
thread implementation is ~20 minutes. Benchmark comparisons with the state-
of-the-art baseline detector Latent SVM [9] and point-based SFM approach
Bundler [31] demonstrate that our method achieves significant improvement
on object detection and camera pose estimation results.

To evaluate the object detection performance, we plot precision-recall (PR)
curves and compare the average-precision (AP) value with baseline detector
LSVM [9]. Object detection for SSFM is obtained by projecting the estimated 3D
object bounding cube into each image. Given ground truth bounding boxes, we
measure the object detection performance following the protocol of the PASCAL
VOC Challenge*. LSVM baseline detector is applied to each image used by
SSFM. Thus PR values are computed for each image for fair comparison.

To evaluate the camera pose estimate, we compare the camera pose esti-
mation of SSFM with the state-of-the-art point-based structure-from-motion
approach Bundler [31]. Bundler first employs the SIFT feature, five-points algo-
rithm [24] and RANSAC to compute the fundamental matrix, and then applies

3 available at http://www.eecs.umich.edu/vision/projects/ssfm/index.html

4 http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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Bundle Adjustment [34]. In certain configurations (e.g. wide baseline) RANSAC
or Bundle Adjustment fail to return results. In such cases we take the camera
pose estimation of five-points algorithm as the results for comparison. We follow
the evaluation criteria in [24]. When comparing the camera pose estimation, we
always assume the first camera to be at the canonical position. Denote Ry and
Ty as the ground truth camera rotation and translation, and Ry and Teg the
estimated camera rotation and translation. The error measurement of rotation
er is the minimal rotating angle of R, R_,;. The error measurement of transla-
tion er is evaluated by the angle between the estimated baseline and the ground
TLR, TR, Teat
[Tgt|[Test|
are computed on the second camera.
We also analyze the performance of SSFM as a function of the number of
cameras (views). A testing set is called N-view set if it contains M groups of N
images. The testing sets with smaller number of views are first generated (i.e.
2-view set is the very first). If one N-view set is used, the N 4 1-view testing set
is generated by adding one additional random view to each of the M groups of

N images.

truth baseline, and er = . For a fair comparison, the error results

5.1 Implementation Details

SSFM requires an object detector that is capable of determining the object pose.
We use the state-of-the-art object detector [9] and treat object poses as extra-
classes for each object category.

5.2 Ford Campus Vision Dataset[25]

The Ford Campus Vision dataset consists of images of cars aligned with 3D
scans obtained using a LiDAR system. Ground truth camera parameters are
also available. Our training / testing set contains 150 / 200 images of 4 / 5
different scenes. We randomly select 350 image pairs out of the testing images
with the rule that every pair of images must capture the same scene. The training
set for the car detector is the 3D object dataset [29]. This training set consists
of 8 poses.

Camera Pose Estimation: SSFM obtains smaller translation estimation
error than Bundler and comparable rotation estimation error (Table 1).

Object Detection: The PR by SSFM and the baseline detector are plotted
in Figure 7a. Since ground truth annotation for small objects is difficult to obtain
accurately, in this dataset we only test scales whose bounding box areas are larger
than 0.6% of the image area. SSFM improves the detection precision and recall.

Camera Baseline Width v.s. Pose Estimation: We analyze the effect
of baseline width on the camera pose estimation. Since the rotation estimations
of both Bundler and SSFM contain little error, we only show the translation es-
timation error v.s. camera baseline width (Figure 8a). This experiment confirms
the intuition that a wider baseline impacts more dramatically the performance
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’ Dataset |er Bundler/SSFM[ég Bundler /SSFM]

Ford Campus Car 26.5/19.9° <1°/<1°
Street Pedestrian| 27.1°/17.6° 21.1°/3.1°
Office Desktop 8.5°/4.7° 9.6°/4.2°

Table 1: Evaluation of camera pose estimation for two camera case. e represents
the mean of the camera translation estimation error, and ér the mean of the
camera rotation estimation error.

’ Camera # \ 2 \ 3 \ 4 ‘

Det. AP (Cali. Cam.) [62.1%(63.6%|64.2%

Det. AP (Uncali. Cam.)[61.3%[61.7%|62.6%

er 19.9°116.2°|13.9°

Table 2: Camera pose estimation errors and object detection AP v.s. numbers
of cameras on the Ford-car dataset. The baseline detector AP is 54.5%.

of methods based on low level feature matching than does on methods such as
SSFM where higher level semantics are used.

Comparison for Different Number of Cameras: Table 2 shows the
camera pose estimation error and the object detection AP as a function of the
number of views (cameras) used to run SSFM. As more cameras are available,
SSEFM tends to achieve better object detection result and camera translation
estimation.

3D Object Localization Performance: Due to the metric-reconstruction
ambiguity, we use calibrated cameras in this experiment to enforce that the
coordinates of 3D objects have a physical meaning. We manually label the 3D
bounding boxes of cars on the LiDAR 3D point cloud to obtain the ground truth
car 3D locations. We consider a 3D detection to be true positive if the distance
between its centroid and ground truth 3D object centroid is smaller than a
threshold ? (see figure captions). The 3D object localization for one camera
(single view) is obtained by using its 2D bounding box scale and location [2].
SSEFM performance increases as the number of views grows (Figure 8b).

Object-based Structure from Motion: We disable the feature point de-
tection and matching, thus no 2D points are used (i.e. just maximize Pr(o|C, O)).
For the two-view case, the detection AP increases from the baseline 54.5% to
55.2%, while the error of camera pose estimation is er = 81.2° and ep = 21.2°.
Notice that random estimation of the parameters would yield ey = 90° and
er = 90°. To the best of our knowledge, this is the first time SFM has been
tested based only on high-level cues (objects) rather than low-level / middle-
level cues (e.g. points, lines, or areas). Notice that the
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Fig. 8: System analysis of SSFM on Ford Car Dataset (a)(b) and Kinect Office
Dataset (c)(d). For the car dataset, the typical object-to-camera distance is 10
~ 30 meters. For the office dataset, the typical object-to-camera distance is 1 ~
2 meters.

5.3 Kinect Office Desktop Dataset

We use Microsoft’s Kinect to collect images and corresponding 3D range data of
several static indoor office environments. The ground truth camera parameters
are obtained by aligning range data across different views. We manually identify
the locations of ground truth 3D object bounding cubes similarly to the way
we process Ford dataset. The objects in this dataset are monitors, keyboards,
and mice. The testing and training sets contain 5 different office desktop scenes
respectively and each scenario has 50 images. From each scenario, we randomly
select 100 image pairs for testing or training. SSFM performance is evaluated
using the ground truth information and compared against baseline algorithms.
We show these results as Figure 7c, Table 1, Figure 8c, and Figure 8d. SSFM
estimates camera poses more accurately than point-based SFM, and detects
objects more accurately than single-image detection method.

5.4 Stereo Street-view Pedestrian Dataset

We collected this dataset by simultaneously capturing pairs of images of street-
view pedestrians. The two cameras are pre-calibrated so that the ground-truth
camera poses are measured and known. The object category in this dataset is
pedestrian. The training set of object detector is INRIA pedestrian dataset [6]
with no pose label. The two cameras are parallel and their relative distance is
4m. The typical object-to-camera distance is 5 ~ 10m. The training set contains
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200 image pairs in 5 different scenes. The testing set contains 200 image pairs
in 6 other scenes. SSFM attains smaller camera pose estimation error compared
to Bundler (Table 1) and better detection rates than LSVM (Figure 7b). Notice
in this dataset the baseline width of the two cameras is fixed thus we cannot
analyze the camera pose estimation error v.s. camera baseline width and cannot
carry out experiments with multiple cameras.

6 Conclusion

This chapter presents a new paradigm called the semantic structure from mo-
tion for jointly estimating 3D objects, 3D points and camera poses from multiple
images. We demonstrated that semantic structure from motion is capable of es-
timating camera poses more accurately than point-based structure-from-motion
methods, and recognizing objects in 2D / 3D more accurately than methods
based on a single image. We see this work as a promising step toward the goal of
coherently interpreting the geometrical and semantic content of complex scenes.
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8 Appendix

Proposition 1. Assume that at least 3 objects can be detected in the k' image.
Assume that the detector returns object image coordinates z¥ yF(t = 1,2,3),
scales wF, h¥, and category c;. Assume that the mappings Wy and H; are avail-
able for each detected object. Then extrinsic camera parameters R* . T* can be
calculated.

Proof. We demonstrate proposition 1 for 3 objects but the proof can be extended
if more than 3 objects are available. Let O1, O3, O3 be the observed objects and
O, 0%, Ok are their locations, poses, scales in the k" camera reference system.
We define the world reference system based on the first camera: location of Of is
the origin; the vector from O3 to Of is the X-axis; and the locations of O, 0}, O3
(3 points) characterize the X-Y plane. The object coordinate in camera reference
system is [ X[, YE ZF] = ZF(K®) Y2y, i, 1), where ZF can be computed from
wk, h¥ with the mappings W and H. Therefore, we have the camera translation
as TF = [XF, Y, ZF). Since [z, y,1) = KF(RF[X,, Yy, Z4) +Tx) /) ZF (t = 1,2, 3)
and the degree of freedom of RF is 3, the camera rotation matrix R* can be
solved accordingly.
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Fig. 9: Anecdotal examples. Column 1: Baseline object detection in the 15t image;
Column 2,3: the final joint object detections projected in the 15 and 2" image;
Column 4: the top view of the scene. Colors in the last three columns show the
object correspondences established by SSFM.
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Proposition 2. Assume that at least 2 objects can be detected in all the images.
Assume that from image k the detector returns object image coordinates ¥, yF,
pose 0F ¥, and category c;. The camera extrinsic parameters R¥ T can be
calculated up to a scale ambiguity (metric reconstruction).

Proof. We demonstrate proposition 2 for 2 objects but the proof can be ex-
tended if more than 2 objects are available. Let O1, O be the observed objects,
and let OF, O be their locations, poses, scales in the k*" camera reference sys-
tem. We define the world reference system based on the first camera: the lo-
cation Of is the origin; and the normals (q,t,n) of the bounding cube of O}
(Figure 2) are the X,Y,Z axes. To address the ambiguity of the metric con-
struction, we assume the distance between O; and Os is unit length. By using
the observed pose of OF and Of, the rotation of the k' camera R* can be
computed, and its translation T% is unknown up to 1 degree of freedom which
is the distance of C* to O;. Since we assume the distance between O;, O is
unit length, the 3D location of Oy (in the world system) becomes a function of
T*, denote which by Xo(T*),Y5(T*), Zo(T*). Given all the cameras C* - -- CVx,
we have equations [Xo(T1), Yo(T1), Zo(TV)] = [X2(T?), Yo (T?), Zo(T?)] = -+ =
[Xo(TN®), Yo (TN, Zy(TN*)]. These equations provide 3 x (Nj — 1) constraints.
Since the degree of freedom of T* is 1, the number of unknowns are Nj,. Therefore
{T*} can be jointly solved if more than two cameras are available. Notice that
the {R¥ T*} are estimated by assuming O;, Oy has the unit length. However,
the real distance of O1, O5 is unknown and therefore the estimation of cameras
is up to a metric reconstruction.

Proposition 3. Assume that at least 1 object can be detected in all the images.
Assume on image k the detector returns object image coordinates x¥,yF, pose
OF  oF, scales wk, h¥, and category c;. Assume that the mapping Wy and H; are
available for each detected object. Then the camera extrinsic parameters RF, T*
can be calculated.

Proof. We demonstrate proposition 3 for 1 object but the proof can be extended
if more than 1 object is available. Let O; be the observed object and OF be its
location, pose, and scale in the k" camera reference system. We define the world
reference system based on the first camera: the location of Of is the origin and
the normals (q,t,n) of the 3D cube of O; (Figure 2) are the X,Y,Z axes. Hence,
O1, 1 (in the world system) is the same as the observed ©1, ®#1 . Object camera
coordinate is [X¥ V¥ ZF] = ZF(K*)~1[z1,y1,1)’. Therefore, the translation of
the k' camera is T% = [ X}, Y}, ZF]. Finally, R¥ can be computed by 6%, ¢¥ and
O1,P1.

References

1. S. Y. Bao and S. Savarese. Semantic structure from motion. In Proceedings of
the IEEE International Conference on Computer Vision and Pattern Recognition,
2011.



22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

Sid Yingze Bao, Silvio Savarese

S. Y. Bao, M. Sun, and S. Savarese. Toward coherent object detection and scene
layout understanding. In Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition, 2010.

G. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Segmentation and recognition
using structure from motion point clouds. In In Proc. 10th ECCYV, 2008.

Y. Cheng. Mean shift, mode seeking, and clustering. PAMI, 1995.

N. Cornelis, B. Leibe, K. Cornelis, and L. Gool. 3d urban scene modeling integrat-
ing recognition and reconstruction. IJCV, 78(2-3):121-141, 2008.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In Proceedings of the IEEE International Conference on Computer Vision and
Pattern Recognition, 2005.

F. Dellaert, S. Seitz, S. Thrun, and C. Thorpe. Feature correspondence: A markov
chain monte carlo approach. In NIPS, 2000.

A. R. Dick, P. H. S. Torr, and R. Cipolla. Modelling and interpretation of archi-
tecture from several images. IJCV, 60(2):111-134, 2004.

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection
with discriminatively trained part based models. TPAMI, 2009.

R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised
scale-invariant learning. In CVPR, volume 2, pages 264-271, 2003.

A. Frome, D. Huber, R. Kolluri, T. Biilow, and J. Malik. Recognizing objects in
range data using regional point descriptors. In Furopean Conference on Computer
Vision, pages 224-237, 2004.

W. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo in
practice. Chapman and Hall, 1996.

M. Golparvar-Fard, F. Pena-Mora, and S. Savarese. D4ar- a 4-dimensional aug-
mented reality model for automating construction progress data collection, process-
ing and communication. In TCON Special Issue: Next Generation Construction
IT, 2009.

S. Gould, R. Fulton, and D. Koller. Decomposing a scene into geometric and
semantically consistent regions. In ICCV, 2009.

R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

S. Helmer, D. Meger, M. Muja, J. Little, and D. Lowe. Multiple viewpoint recog-
nition and localization. In ACCV, 2011.

D. Hoiem, A. Efros, and M. Hebert. Putting objects in perspective. International
Journal of Computer Vision, 80(1), 2008.

D. Huber. Automatic 3d modeling using range images obtained from unknown
viewpoints. In Int. Conf. on 3-D Digital Imaging and Modeling, 2001.

S. M. Khan and M. Shah. A multi-view approach to tracking people in dense
crowded scenes using a planar homography constraint. In ECCV, 2006.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition, 2006.

B. Leibe, A. Leonardis, and B. Schiele. Combined object categorization and seg-
mentation with an implicit shape model. In ECCV 2004 workshop on statistical
learning in computer vision, 2004.

L.-J. Li, R. Socher, and L. Fei-Fei. Towards total scene understanding:classification,
annotation and segmentation in an automatic framework. In CVPR, 20009.

D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
D. Nister. An efficient solution to the five-point relative pose problem. TPAMI,
2004.

G. Pandey, J. R. McBride, and R. M. Eustice. Ford campus vision and lidar data
set. International Journal of Robotics Research, 2011.



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Semantic Structure from Motion 23

M. Pollefeys and L. V. Gool. From images to 3d models. Commun. ACM, 45(7):50—
55, 2002.

M. Reynolds, J. Dobos, L. Peel, T. Weyrich, and G. J. Brostow. Capturing time-of-
flight data with confidence. In Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition, 2011.

R. Rusu, Z. Marton, N. Blodow, M. Dolha, and M. Beetz. Towards 3d point cloud
based object maps for household environments. Robotics and Autonomous Systems,
56(11), 2008.

S. Savarese and L. Fei-Fei. 3d generic object categorization, localization and pose
estimation. In ICCV, 2007.

A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3d scene structure from a
single still image. PAMI, 31(5):824-840, 2009.

N. Snavely, S. M. Seitz, and R. S. Szeliski. Modeling the world from internet photo
collections. IJCV, (2), 2008.

S. Soatto and P. Perona. Reducing "structure from motion”: a general framework
for dynamic vision. part 1: modeling. International Journal of Computer Vision,
20, 1998.

E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. Depth from familiar ob-
jects: A hierarchical model for 3d scenes. In Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition, 2006.

B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbob. Bundle adjustment: a
modern synthesis. In Vision Algorithms: Theory and Practice, 1999.

T. Tuytelaars and L. Van Gool. Wide baseline stereo matching based on local,
affinely invariant regions. In British Machine Vision Conference, 2000.



