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Abstract

Conventional rigid structure from motion (SFM) ad-
dresses the problem of recovering the camera parameters
(motion) and the 3D locations (structure) of scene points,
given observed 2D image feature points. In this paper, we
propose a new formulation called Semantic Structure From
Motion (SSFM). In addition to the geometrical constraints
provided by SFM, SSFM takes advantage of both seman-
tic and geometrical properties associated with objects in
the scene (Fig. 1). These properties allow us to recover
not only the structure and motion but also the 3D loca-
tions, poses, and categories of objects in the scene. We
cast this problem as a max-likelihood problem where ge-
ometry (cameras, points, objects) and semantic information
(object classes) are simultaneously estimated. The key intu-
ition is that, in addition to image features, the measurements
of objects across views provide additional geometrical con-
straints that relate cameras and scene parameters. These
constraints make the geometry estimation process more ro-
bust and, in turn, make object detection more accurate.
Our framework has the unique ability to: i) estimate cam-
era poses only from object detections, ii) enhance camera
pose estimation, compared to feature-point-based SFM al-
gorithms, iii) improve object detections given multiple un-
calibrated images, compared to independently detecting ob-
jects in single images. Extensive quantitative results on
three datasets – LiDAR cars, street-view pedestrians, and
Kinect office desktop – verify our theoretical claims.

1. Introduction
Understanding the 3D spatial and semantic structure of

complex scenes from images is one of the critical capa-
bilities of an intelligent visual system. Consider the pho-
tographs in Fig. 1(a). These show the same environment
observed from a handful of viewpoints. Even if this is
the first time you (the observer) have seen this environ-
ment, it is not difficult to infer: i) the spatial structure of
the scene and the way objects are organized in the physi-
cal space; ii) the semantic content of the scene and its in-
dividual components. State-of-the-art methods for object
recognition [9, 20, 10, 19] typically describe the scene with
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Figure 1: Main objective of SSFM. (a) Input photos showing the same
environment observed from a handful of viewpoints. (b) Traditional object
recognition algorithms identify objects in 2D without reasoning about the
3D geometry. (c) SFM returns 3D scene reconstruction (3D point clouds)
with no semantic information attached to it. (d) SSFM aims to jointly
recognize objects and reconstruct the underlying 3D geometry of the scene
(cameras, points and objects).

a list of class labels (e.g., a chair, a desk, etc...) along with
their 2D location and scale, but are unable to account for
the 3D spatial structure of the scene and object configura-
tions (Fig. 1(b)). On the other hand, reconstruction meth-
ods (e.g., those based on SFM) [25, 8, 30, 23, 31] produce
metric recovery of object and scene 3D structure (3D point
clouds) but are mostly unable to infer the semantic content
of its components (Fig. 1(c)).

In this paper we seek to fill this representation gap and
propose a new framework for jointly recognizing objects
as well as discovering their spatial organization in 3D (Fig.
1(d)). The key concept we explore in this work is that mea-
surements across viewpoints must be semantically and geo-
metrically consistent. By measurements, we refer to the set
of objects that can be detected in the image (e.g. a chair or
monitor in Fig. 1), their x,y location in the image, their scale
(approximated by a bounding box) and their pose. Given
a set of measurements from one view point, we expect to
see a set of corresponding measurements (up to occlusions)
from different view points which must be consistent with
the fact that the view point has changed. For instance, the
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chair in Fig. 1(a) appears in two views and its location,
scale and pose variation across the two views must be con-
sistent with the view point transformation. In this work we
exploit this property and introduce a novel joint probability
model where object detection and 3D structure estimation
are solved in a coherent fashion.

Our proposed method has the merit of enhancing both
3D reconstruction and visual recognition capabilities in two
ways: i) Enhancing 3D reconstruction: Our framework can
help overcome a crucial limitation of scene/object modeling
methods. State-of-the-art SFM techniques mostly fail when
dealing with challenging camera configurations (e.g., when
the views are too few and the view baseline is too large).
This failure occurs as it is very hard to establish correct fea-
ture correspondences for widely separated views. For in-
stance, the 3D reconstruction in Fig. 1(c) was obtained us-
ing a state-of-the-art SFM algorithm [13] using 43 densely-
sampled pictures of an office. The same algorithm would
not work if we just used the two images in Fig. 1(a) for
the reasons mentioned above. By reasoning at the seman-
tic level, and by establishing object correspondences across
views, our framework creates the conditions for overcoming
this limitation. We show that our framework has the abil-
ity to estimate camera poses from object detections only.
Moreover, our framework can still exploit traditional SFM
constraints based on feature correspondences to make the
3D reconstruction process robust. We show that our method
can significantly outperform across-view feature matching
SFM algorithms such as [30, 22] (Tab. 1). ii) Enhancing vi-
sual recognition: Traditional recognition methods are typi-
cally prone to produce false alarms when appearance cues
are not discriminative enough and no contextual informa-
tion about the scene is available. For instance, the cabinet
in Fig. 1(a) can be easily confused with a monitor as they
both share similar appearance characteristics. By reasoning
at the geometrical level, our framework is able to identify
those hypotheses that are not consistent with the underly-
ing geometry and reduce their confidence score accordingly.
Our model leads to promising experimental results showing
improvements in object detection rates compared with the
state-of-the-art methods such as [9] (Fig. 4 and Tab. 2).
Also, we show that we can automatically establish object
correspondence across views.

Recently, a number of approaches have explored the
idea of combining semantic cues with geometrical con-
straints for scene understanding. Notable examples are
[14, 29, 21, 32, 16]. These focus on single images and,
unlike our work, they do not attempt to enforce consis-
tency across views. Moreover, they make restrictive as-
sumptions on the camera and scene configuration. Other
methods have been proposed to track objects with multi-
view geometry [18], but they assume that the underlying
scene geometry is available. A large number of works have

proposed solutions for interpreting complex scenes from 3D
data [11, 17, 27, 26] or a combination of 3D data and im-
agery [3]. However, in most of these methods 3D informa-
tion is either provided by external devices (e.g. 3D scanning
systems such as LiDAR) or using traditional SFM tech-
niques. In either case, unlike our framework, the recogni-
tion and reconstruction steps are separated and independent.
[5] attempts joint estimation using a “cognitive loop” but
requires a dedicated stereo-camera architecture and makes
assumptions about camera motion. To our best knowledge,
this is the first work that seeks to make these two steps co-
herent within a setting that requires only images with un-
calibrated cameras (up to internal parameters) and arbitrary
scene-camera configurations.
2. The Semantic Structure from Motion Model

Conventional rigid structure from motion (SFM) ad-
dresses the problem of recovering camera parameters C and
the 3D locations of scene points Q, given observed 2D im-
age feature points. In this paper, we propose a new for-
mulation where, in addition to the geometrical constraints
provided by SFM, we take advantage of both the seman-
tic and geometrical properties associated with objects in the
scene in order to recover C and Q as well as the 3D loca-
tions, poses, and category memberships of objects O in the
scene. We call this semantic structure from motion (SSFM).
The key intuition is that, in addition to image features, the
measurements of objects across views provides additional
geometrical constraints that relate camera and scene param-
eters. We formulate SSFM as a maximum likelihood esti-
mation (MLE) problem whose goal is to find the best con-
figuration of cameras, 3D points and 3D objects that are
compatible with the measurements provided by a set of im-
ages.
2.1. Problem Formulation

In this section we define the SSFM problem and formu-
late it as an MLE problem. We first define the main vari-
ables involved in SSFM, and then discuss the MLE formu-
lation.

Cameras. Let C denote the camera parameters. C =
{Ck} = {Kk, Rk, T k} where K is the camera matrix cap-
turing the internal parameters, R rotation matrix, and T
translation vector with respect to a common world refer-
ence system. K is assumed to be known, whereas {R, T}
are unknown. Throughout this paper, the camera is indexed
by k as a superscript.

3D Points Q and Measurements q,u. Let Q = {Qs}
denote a set of 3D points Qs. Each 3D point Qs is speci-
fied by (Xs, Ys, Zs) describing the 3D point location in the
world reference system. Q is an unknown in our problem.
Denote by q = {qki } the set of point measurements (image
features) for all the cameras. Namely, qki is the ith point
measurement in image (camera) k. A point measurement
is described by the measurement vector qk = {x, y, a}ki ,
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Figure 2: 3D object’s location and pose parametrization. (a) Assume an
object is enclosed by the tightest possible bounding cube. The object 3D
location X,Y, Z is the centroid of the bounding cube. The object’s pose
is defined by the bounding cube’s three perpendicular surface’s norms that
are n, q, t and parametrized by the angles Θ,Φ in a given world reference
system (b). r is the ray connecting O and the camera center. Let zenith
angle φ be the angle between r and n, and azimuth angle θ be the angle
between q and rS , where rS is the projection of r onto the plane perpen-
dicular to n. We parametrize an object measurement in the image by the
location x, y of tightest bounding box enclosing the object, the width w
and height h of the bounding box (object 2D scale), the object pose θ, φ,
and class c.

where x, y describe the point image location, and a is a lo-
cal descriptor that captures the local neighborhood appear-
ance of the point in image k. These measurements may
be obtained using feature detectors and descriptors such as
[22, 34]. Since each image measurement {qki } is assumed
to correspond to a certain physical 3D point Qs, we model
such correspondence by introducing an indicator variable
uki , where uki = s if {qki } corresponds to Qs. A similar
notation was also introduced in [7]. A set of indicator vari-
ables u = {uki } allows us to establish feature correspon-
dences across views and to relate feature matches with 3D
point candidates (Sec. 2.3). Unlike [7], we assume the fea-
ture correspondences can be measured by feature matching
algorithms such as [22]. Throughout this paper, Q and q
are indexed by s and i respectively and they appear as sub-
scripts.

3D Objects O and Measurements o. Let O = {Ot}
denote a set of 3D objects Ot. The tth 3D objects Ot is
specified by a 3D location (Xt, Yt, Zt), a pose (Θt,Φt),
and a category label ct (e.g, car, person, etc...). Thus, a
3D object is parametrized byOt = (X,Y, Z,Θ,Φ, c)t (Fig.
2). The set O is an unknown in our problem. Denote by
o = {okj } the set of object measurements for all the cam-
eras. Thus, okj is the jth measurement of an object in image
(camera) k. An object measurement is described by the fol-
lowing measurement vector okj = {x, y, w, h, θ, φ, c}kj (Fig.
2). As discussed in Sec. 2.2, these measurements may be
obtained using any state-of-the art object detector that can
return the probability that certain location x, y in an image
is occupied by an object with category c, scale h,w, and
pose θ, φ (e.g. [28]) 1. Similar to the 3D point case, since
each object measurement {okj } from image k is assumed to
correspond to some physical 3D object Ot, such correspon-
dence may be modeled by introducing an indicator variable

1State of the art object detectors such as [9] can be modified so as to
enable pose classification, as discussed in Sec.4.1.

vkj , where vkj = t if okj corresponds to 3D object Ot. How-
ever, for the object case, we seek to estimate object cor-
respondence automatically as part of our inference process
(Sec. 3). Thus, from this point on, we assume 3D object
observations are given by o. We denote 3D object and 2D
object using the subscript index t and j respectively.

MLE formulation. Our goal is to estimate a configura-
tion of Q, O and C that is consistent with the feature point
measurements q,u and the object measurements o. We for-
mulate this estimation as the one of finding Q,O,C such
that the joint likelihood is maximized:

{Q,O,C} = arg max
Q,O,C

Pr(q,u,o|Q,O,C)

= arg max
Q,O,C

Pr(q,u|Q,C) Pr(o|O,C) (1)

where the last expression is obtained by assuming that,
given C, Q and O, the measurements associated with 3D
objects and 3D points are conditionally independent. In the
next two sections we show how to estimate the two like-
lihood terms Pr(q,u|Q,C) (Eq. 4 or 5) and Pr(o|O,C)
(Eq. 3).
2.2. Object Likelihood Pr(o|O,C)

Pr(o|O,C) measures the likelihood of object measure-
ments o given the the camera and object configurations
O,C. This term can be estimated by computing the agree-
ment between predicted measurements and actual measure-
ments. Predicted measurements are obtained by introducing
a mapping ωkt = ωk(Ot) = ωk((X,Y, Z,Θ,Φ, c)t) that re-
lates the parameters describing the 3D object Ot to the im-
age of camera Ck. Thus, ωkt is a parameter vector that con-
tains the predicted location, pose, scale and category of Ot
in Ck. Next, we present expressions for predicting the mea-
surements and relating them to actual measurements and for
obtaining an estimate of the likelihood term.

Computing Predicted Measurements. The transfor-
mation ωkt = ωk(Ot) can be computed once cameras C are
known. Specifically, let us denote by Xk

t , Y
k
t , Z

k
t the 3D

location of Ot in the reference system of Ck and by Θk
t ,Φ

k
t

its 3D pose (these can be obtained from Xt, Yt, Zt,Θt,Φt
in the world reference system by means of a (known)
rigid transformation). Predicted location (xkt , y

k
t ) and pose

(φkt , θ
k
t ) of Ot in camera Ck can be computed by us-

ing the camera projection matrix [15] as [xkt , y
k
t , 1]′ =

Kk[Xk
t , Y

k
t , Z

k
t ]′/Zkt and [φkt , θ

k
t ] = [Φkt ,Θ

k
t ]. Predicting

2D object scales in the image requires a more complex geo-
metrical derivation that goes beyond the scope of this paper.
We introduce an approximated simplified mapping defined
as follows:{

wkt = fk ·W (Θk
t ,Φ

k
t , ct)/Z

k
t

hkt = fk ·H(Θk
t ,Φ

k
t , ct)/Z

k
t

(2)

where wkt , h
k
t denote the predicted object 2D scale (sim-

ilar to Fig. 2), fk is the focal length of the kth cam-
era. W (Θk

t ,Φ
k
t , ct) or H(Θk

t ,Φ
k
t , ct) is a (scalar) mapping

that describes the typical relationship between physical ob-
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Figure 3: Multi-pose and multi-scale object detection illustration. The “probability maps” are obtained by applying car detector with different scales and
poses on the left image. The color from red to deep blue indicates the detector response from high to low. We used LSVM [9] (Sec. 4.1) to obtain these
probability maps. In this example, Ξ has dimensions Lx × Ly × 15. If the scale=3 (small), pose=4, and category=car, Π will return the index π = 14 (the
red circle). Thus, Ξ(x, y, 14) will return the confidence of detecting a car at small scale and pose=4 at location x, y in the image (the orange rectangle).

ject bounding cube and object image bounding box. This
mapping is a function of the object pose Θk

t ,Φ
k
t and cat-

egory ct. It can be learned by using ground truth 3D ob-
ject bounding cubes and corresponding observations using
ML regressor [1]. In conclusion, the equations above al-
low us to fully estimate the object prediction vector ωkt =
{x, y, w, h, φ, θ, c}kt for object Ot in camera Ck.

Measurements as Probability Maps. Pr(o|O,C) can
be now estimated by computing the agreement between pre-
dicted measurements and actual measurements. Such agree-
ment is readily available using the set of probability values
returned by object detectors such as [9] applied to images
(Fig. 3). The output of this detection process for the im-
age of Ck is a tensor Ξk of M probability maps wherein
each map captures the likelihood that an object of category
c with scale w, h and pose θ, φ presents at location x, y in
the image. Thus, we can interpret Ξk as one Lx × Ly ×M
tensor, where Lx and Ly are the image width and height and
M adds up to the number of object categories, scales and
poses. Let us denote by Π : {w, h, φ, θ, c} → π ∈ 1 . . .M
the indexing function that allows retrieval from Ξk the de-
tection probability at any location x, y given a set of values
for scale, pose and category. Fig. 3 shows an example of
a set of 15 probability maps for only one object category
(i.e., the car category), three scales and five poses associ-
ated with a given image. Notice that since measurements
can be extracted directly from Ξk once the mapping 3D-
object-image ω is computed, the 2D objects of the kth im-
age are automatically associated with the 3D objects. As
a result, across-view one-to-one object correspondences are
also established.

Estimating the likelihood term. The key idea is that
the set Ξk of probability maps along with π can be used
to estimate Pr(o|O,C) given the predicted measurements.
To illustrate this, let us start by considering an estima-
tion of the likelihood term Pr(o|Ot, Ck) for Ot observed
from camera Ck. Using ωkt , we can predict the object’s
scale {w, h}kt , pose {φ, θ}kt and category ckt . This al-
lows us to retrieve from Ξk the probability of detecting an
object at the predicted location {x, y}kt by using the in-
dexing function πkt , and in turn estimate Pr(o|Ot, Ck) =
Ξk(xkt , y

k
t , π(wkt , h

k
t , φ

k
t , θ

k
t , c

k
t )). Assuming that objects

are independent from each other and camera configurations
are independent, the joint likelihood of objects and cameras
can be approximated as:

Pr(o|O,C) ∝
Nt∏
t

Pr(o|Ot,C) ∝
Nt∏
t

(1−
Nk∏
k

(1− Pr(o|Ot, Ck)))

(3)where Nt is the number of objects and Nk is the number of
cameras. Nt is in general unknown, but it can be estimated
using detection probability maps (Sec.3.1). Notice that this
term does not penalize objects that are observed only by a
portion of images while they are truncated or occluded in
other images. Pr(o|Ot,C) is only partially affected by an
occluded or truncated object Ot in the kth image even if the
object leads to a low value for Pr(o|Ot, Ck).
2.3. Points Likelihood Pr(q,u|Q,C)

Pr(q,u|Q,C) measures the likelihood of the 3D points
and cameras given the measurements of 3D points and their
correspondences across views. This likelihood term can be
estimated by computing the agreement between predicted
measurements and actual measurements. Similar to the 3D
object case, predicted measurements are obtained by intro-
ducing a mapping from 3D points to the images.

Predicted Measurements. Predicted measurements can
be easily obtained once the cameras C are known. We in-
dicate by qks the predicted measurement of the sth point Qs
in camera Ck which can be computed by using the camera
Ck projection matrix, similar to Sec. 2.2. Recall that qks
is expressing a location x, y in pixels in the image. Since
we know which point is being projected, we have a predic-
tion for the indicator variable as well. This is equivalent
to predicting the projection qks of Qs to camera Ck and the
projection qks of Qs to Ck are in correspondence.

Point Measurements. Point measurements are denoted
by qki = {x, y, a}ki , where x, y describe the point location
in image k of measurement i, and a is a local descriptor that
captures the local appearance of the point in a neighbor-
hood of image k. We obtain location measurements {x, y}ki
using a DOG detector equipped with a SIFT descriptor for
estimating aki [22]. Measurements for feature correspon-
dences (matches) across images are obtained by matching
the point features.

Estimating the likelihood term. Pr(q,u|Q,C) can
be estimated by computing the agreement between pre-
dicted measurements and the actual measurements. To il-
lustrate this, let us start by considering the likelihood term
Pr(q|Os, Ck) for one point Qs and for camera Ck. As in-
troduced in [7], one possible strategy for computing such
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agreement assumes that the location of measurements and
predictions are equal up to a noise n - that is, qki = qks + n,
where s = uki . If we assume zero mean Gaussian noise,
we can estimate Pr(qki |Qs, Ck) ∝ exp(−(qki − qkuki )2/σq),
leading to the following expression for the likelihood:

Pr(q,u|Q,C) =

NQ∏
i

Nk∏
k

exp(−(qki − qkuki )2/σq) (4)

where Nk is the number of cameras, NQ is the number of
points, and σq is the variance of 2D point projection mea-
surement error. This is obtained by assuming independence
among points and among cameras.

We also propose an alternative estimator for
Pr(q,u|Q,C). While this estimator leads to a coarser
approximation for the likelihood, it makes the inference
process more efficient and produces more stable results.
This new estimator exploits the epipolar constraints relating
camera pairs. Given a pair of cameras Cl and Ck, we
can estimate the fundamental matrix Fl,k. Suppose qki ,
qlj are from Ck and Cl respectively, and the matching
algorithm predicts that qki and qlj are in correspondence.
Fl,k can predict the epipolar line ξl,ki (or ξk,lj ) of qki (or
qlj) in image Cl (or Ck). If we model the distance2 dl,kj,i
between ξl,ki and qlj as zero-mean Gaussian with variance
σu, Pr(qki , q

l
j |Qs, Cl, Ck) ∝ exp(−dl,kj,i/σu). Notice that

this expression does not account for appearance similarity
between matched features – that is the similarity between
the descriptors aki and alj . We model appearance similarity

as exp(−α(aki ,a
l
j)

σα
) where α(·, ·) captures the distance

between two feature vectors and σα the variance of the
appearance similarity. Overall, we obtain the following
expression for the likelihood term:

Pr(q,u|Q,C) ∝
Nk∏
k 6=l

Ns∏
i 6=j

Pr(qki , q
l
j |Qs, Cl, Ck)

∝
Nk∏
k 6=l

Ns∏
i 6=j

exp(−
dl,kj,i

σu
) exp(−

α(aki , a
l
j)

σα
) (5)

Eq. 5 is obtained by assuming that feature locations and ap-
pearance are independent. During the learning stage, we
learn the variance σu and σα using an ML estimator on
a validation set. Notice that Pr(q,u|Q,C) is no longer a
function of Qs. This significantly reduces the search space
for solving the MLE problem.
3. Max-Likelihood Estimation with Sampling

Our goal is to estimate camera parameters, points, and
objects so as to maximize Eq. 1. Due to the high dimension-
ality of the parameter space, we propose to sample C,Q,O
from Pr(q,u,o|Q,C,O) similar to [7]. This allows us
to approximate the distribution of Pr(q,u,o|Q,C,O) and

2To account for outliers, we set a threshold on dl,kj,i . Namely, if d̄l,kj,i
is the measurement, we set dl,kj,i = min(d̄l,kj,i ,Γ). We learn the outlier
threshold Γ using a validation set.

find the C,Q,O that maximize the likelihood. In Sec. 3.1
we discuss the initialization of the sampling process, and in
Sec. 3.2 we describe a modified formulation of the Markov
Chain Monte Carlo (MCMC) sampling algorithm for solv-
ing the MLE problem.
3.1. Parameter Initialization

Appropriate initialization of cameras, objects, and points
is a critical step in the sampling method. We initialize cam-
era configurations (i.e. estimate camera configurations that
are geometrically compatible with the observations) using
feature point matches and object detections.

Camera Initialization by Feature Points. We follow
[23] to initialize (estimate) C from image measurements q.
Due to the metric reconstruction ambiguity, we scale the
estimated camera translation with several random values to
obtain several camera pose initializations.

Camera Initialization by Objects. We use a standard
object detector [9] to detect 2D objects and estimate object
pose and scale (Sec. 4.1). Next, we use such object detec-
tions to form possible object correspondences and use these
to estimate several possible initial camera configurations.
It can be shown [1] that object pose and scale consistency
constraints (across views) can be used to reduce the large
number of possible initial configurations.

Points and Objects Initialization. Camera configura-
tions obtained by using points and objects form the initial-
ization set. For each of these configurations, object detec-
tions are used to initialize objects in 3D using the map-
ping in Eq. 2. If certain initialized 3D objects are too
near to others (location and pose-wise), they are merged
to a single one. Similarly, for each camera configura-
tion, feature points q are used to initialize 3D points Q by
triangulation[15]. Correspondences between q and Q are
established after the initialization. We use index r to indi-
cate one out of R possible initializations for objects, cam-
eras and points (Cr,Or,Qr).
3.2. Sample and Maximize the Likelihood

We sample C,O,Q from the underlying
Pr(q,u,o|Q,C,O) using a modified Metropolis al-
gorithm [12] (Algo. 1). Since the goal of the sampling is
to identify a maximum, the samples should occur as near
to max Pr(q,u,o|Q,C,O) as possible, so as to increase
the efficiency of the sampling algorithm. Thus, we only
randomly sample C, while the best configuration of O
and Q given the proposed C are estimated during each
sampling step. In step 3, the estimation of O′ is obtained
by greedy search within a neighborhood of the objects
proposed during the previous sampling step. Since the
object detection scale and pose are highly quantized, the
greedy search yields efficient and robust results in practice.
The estimation of Q is based on the minimization of the
projection error (similar to [33]).

Following Algo. 1 and using the rth initialization, we
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Algorithm 1 MCMC sampling from rth initialization. See [1]
for details
1: Start with rth proposed initialization Cr,Or,Qr . Set counter v = 0.
2: Propose new camera parameter C′ with Gaussian probability whose
mean is the previous sample and the co-variance matrix is uncorrelated.
3: Propose new O′ within the neighborhood of previous object’s estima-
tion to maximize Pr(o|O′,C′).
4: Propose new Q′ with C′ to minimize the point projection error.

5: Compute the acceptance ratio α =
Pr(q,u,o|C′,O′,Q′)
Pr(q,u,o|C,O,Q)

6: If α > % where % is a uniform random variable % ∼ U(0, 1), then
accept (C,O,Q) = (C′,O′,Q′). Record (C,O,Q) as a sample in
{C,O,Q}r .
7: v = v + 1. Goto 2 if v is smaller than the predefined max sample
number; otherwise return {C,O,Q}r and end.

generate the sample {C,O,Q}r. From all of the samples,
we estimate the maximum of Pr(q,u,o|Q,C,O) as fol-
lows. We concatenate {C,O,Q}r from different initializa-
tions into one sample point set {C,O,Q}. Next, the fre-
quency of the samples will provide an approximation of the
distribution of Pr(q,u,o|Q,C,O). To identify the max-
imum, the MeanShift algorithm [4] is employed to cluster
the samples. The center of the cluster with the highest sam-
ple number is regarded as the approximation of the maxi-
mum of Pr(q,u,o|Q,C,O) and thus taken as the solution
of the final estimation of C,O,Q.

Algo. 1 can be applied using either Eq. 4 or 5. If Eq. 5 is
used, the estimation is greatly simplified as Q no longer ap-
pears in the optimization process. Hence step 4 is no longer
required. Our experiments use the latter implementation.
4. Evaluation

In this section we qualitatively demonstrate the ability of
the SSFM model to jointly estimate the camera pose and im-
prove the accuracy in detecting objects. We test SSFM on
three datasets: the publicly available Ford Campus Vision
and LiDAR Dataset[24], a novel Kinect office dataset3, and
a novel street-view pedestrian stereo-camera dataset. Al-
though SSFM does not use any information from 3D points,
the calibrated 3D points from LiDAR and Kinect allows us
to easily obtain the ground truth information. The typical
running time for one image pair with our Matlab single-
thread implementation is ~20 minutes. Benchmark compar-
isons with the state-of-the-art baseline detector Latent SVM
[9] and point-based SfM approach Bundler [30] demon-
strate that our method achieves significant improvement on
object detection and camera pose estimation results.

To evaluate the object detection performance, we plot
precision-recall (PR) curves and compare the average-
precision (AP) value with baseline detector LSVM [9]. De-
tection performance is computed by projecting the esti-
mated 3D object bounding cube into each image and by
measuring the overlap ratio (>50%) between such projec-
tion and ground truth bounding box. LSVM baseline detec-

3available at the author’s web-page [1]

tor is applied to each image used by SSFM. Thus PR values
are computed for each image for fair comparison.

To evaluate the camera pose estimate, we compare the
camera pose estimation of SSFM with the state-of-the-art
point-based structure-from-motion approach Bundler [30].
Bundler first employs the SIFT feature, five-points algo-
rithm [23] and RANSAC to compute the fundamental ma-
trix, and then applies Bundle Adjustment [33]. In certain
configurations (e.g. wide baseline) RANSAC or Bundle
Adjustment fail to return results. In such cases we take the
camera pose estimation of five-points algorithm as the re-
sults for comparison. We follow the evaluation criteria in
[23]. When comparing the camera pose estimation, we al-
ways assume the first camera to be at the canonical position.
Denote Rgt and Tgt as the ground truth camera rotation and
translation, andRest and Test the estimated camera rotation
and translation. The error measurement of rotation eR is
the minimal rotating angle of RgtR−1

est. The error measure-
ment of translation eT is evaluated by the angle between
the estimated baseline and the ground truth baseline, and

eT =
TTgtR

−T
gt R

−1
estTest

|Tgt|·|Test| . For a fair comparison, the error re-
sults are computed on the second camera.

We also analyze the performance of SSFM as a function
of the number of cameras (views). A testing set is calledN -
view set if it contains M groups of N images. The testing
sets with smaller number of views are first generated (i.e.
2-view set is the very first). If one N -view set is used, the
N+1-view testing set is generated by adding one additional
random view to each of the M groups of N images.
4.1. Implementation Details

SSFM requires an object detector that is capable of de-
termining the object pose. We use the state-of-the-art object
detector [9] and treat object poses as extra-classes for each
object category.
4.2. Ford Campus Vision Dataset[24]

The Ford Campus Vision dataset consists images of cars
aligned with 3D scans obtained using a LiDAR system.
Ground truth camera parameters are also available. Our
training / testing set contains 150 / 200 images of 4 / 5 dif-
ferent scenarios. We randomly select 350 image pairs out
of the testing images with the rule that every pair of im-
ages must capture the same scene. The training set for the
car detector is the 3D object dataset [28]. This training set
consists of 8 poses.

Camera Pose Estimation: SSFM obtains smaller trans-
lation estimation error than Bundler and comparable rota-

Dataset ēT Bundler/SSFM ēR Bundler/SSFM

Ford Campus Car 26.5/19.9◦ 0.47◦/0.78◦

Street Pedestrian 27.1◦/17.6◦ 21.1◦/3.1◦

Office Desktop 8.5◦/4.7◦ 9.6◦/4.2◦

Table 1: Evaluation of camera pose estimation for two camera case. ēT
represents the mean of the camera translation estimation error, and ēR the
mean of the camera rotation estimation error.
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Figure 4: Detection PR results by SSFM with cali-
brated cameras (green), SSFM with uncalibrated cam-
eras (blue) and LSVM [9] (red). Fig. 4c shows av-
erage results for mouse, keyboard and monitor cate-
gories. SSFM is applied on image pairs randomly se-
lected from the testing set (unless otherwise stated).
Calibration is obtained from ground truth.

tion estimation error (Tab. 1).
Object Detection: The PR by SSFM and the baseline

detector are plotted in Fig. 4a. Since ground truth anno-
tation for small objects is difficult to obtain accurately, in
this dataset we only test scales whose bounding box areas
are larger than 0.6% of the image area. SSFM improves the
detection precision and recall.

Camera Baseline Width v.s. Pose Estimation: We an-
alyze the effect of baseline width on the camera pose esti-
mation. Since the rotation estimations of both Bundler and
SSFM contain little error, we only show the translation es-
timation error v.s. camera baseline width (Fig. 5a). This
experiment confirms the intuition that a wider baseline im-
pacts more dramatically the performance of methods based
on low level feature matching than does on methods such as
SSFM where higher level semantics are used.

Comparison for Different Number of Cameras: Tab.
2 shows the camera pose estimation error and the object
detection AP as a function of the number of views (cameras)
used to run SSFM. As more cameras are available, SSFM
tends to achieve better object detection result and camera
translation estimation.

3D Object Localization Performance: Due to the
metric-reconstruction ambiguity, we use calibrated cameras
in this experiment to enforce that the coordinates of 3D ob-
jects have a physical meaning. We manually label the 3D
bounding boxes of cars on the LiDAR 3D point cloud to
obtain the ground truth car 3D locations. We consider a 3D
detection to be true positive if the distance between its cen-
troid and ground truth 3D object centroid is smaller than a
threshold d (see figure captions). The 3D object localization
for one camera (single view) is obtained by using its 2D
bounding box scale and location [2]. SSFM performance
increases as the number of views grows (Fig. 5b).

Object-based Structure from Motion: We disable the
feature point detection and matching, thus no 2D points are
used (i.e. just maximize Pr(o|C,O)). For the two-view
case, the detection AP increases from the baseline 54.5% to
55.2%, while the error of camera pose estimation is ēT =
81.2◦ and ēR = 21.2◦. To the best of our knowledge, this is
the first time SFM has been tested based only on high-level

Camera # 2 3 4

Det. AP (Cali. Cam.) 62.1% 63.6% 64.2%

Det. AP (Uncali. Cam.) 61.3% 61.7% 62.6%

ēT 19.9◦ 16.2◦ 13.9◦

Table 2: Camera pose estimation errors and object detection AP v.s.
numbers of cameras on the Ford-car dataset. The baseline detector AP is
54.5%.

cues (objects) rather than low-level / middle-level cues (e.g.
points, lines, or areas).
4.3. Kinect Office Desktop Dataset[1]

We use Microsoft’s Kinect to collect images and corre-
sponding 3D range data of several static indoor office envi-
ronments. The ground truth camera parameters are obtained
by aligning range data across different views. We manually
identify the locations of ground truth 3D object bounding
cubes similarly to the way we process Ford dataset. The ob-
jects in this dataset are monitors, keyboards, and mice. The
testing and training sets contain 5 different office desktop
scenarios respectively and each scenario has ~50 images.
From each scenario, we randomly select 100 image pairs for
testing or training. SSFM performance is evaluated using
the ground truth information and compared against baseline
algorithms. We show these results as Fig. 4c, Tab. 1, Fig.
5c, and Fig. 5d. Refer to the figure captions for more de-
tails.
4.4. Stereo Street-view Pedestrian Dataset

We collected this dataset by simultaneously capturing
pairs of images of street-view pedestrians. The two cameras
are pre-calibrated so that the ground-truth camera poses are
measured and known. The object category in this dataset
is pedestrian. The training set of object detector is INRIA
pedestrian dataset [6] with no pose label. The two cam-
eras are parallel and their relative distance is 4m. The typ-
ical object-to-camera distance is 5 ∼ 10m. The training
set contains 200 image pairs in 5 different scenarios. The
testing set contains 200 image pairs in 6 other scenarios.
SSFM attains smaller camera pose estimation error com-
pared to Bundler (Tab. 1) and better detection rates than
LSVM (Fig. 4b). Notice in this dataset the baseline width
of the two cameras is fixed thus we cannot analyze the cam-
era pose estimation error v.s. camera baseline width and
cannot carry out experiments with multiple cameras.
5. Conclusion

This paper presents a new paradigm called the semantic
structure from motion for jointly estimating 3D objects, 3D
points and camera poses from multiple images. We see this
work as a promising step toward the goal of coherently in-
terpreting the geometrical and semantic content of complex
scenes.
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