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Abstract

The goal of personal robotics is to create machines that
help us with the tasks of daily living, co-habiting with us
in our homes and offices. These robots must interact with
people on a daily basis, navigating with and around people,
and approaching people to serve them. To enable this co-
existence, personal robots must be able to detect and track
people in their environment. Excellent progress has been
made in the vision community in detecting people outdoors,
in surveillance scenarios, in Internet images, or in specific
scenarios such as video game play in living rooms. The in-
door robot perception problem differs, however, in that the
platform is moving, the subjects are frequently occluded or
truncated by the field-of-view, there is large scale variation,
the subjects take on a wider range of poses than pedestri-
ans, and computation must take place in near real time.

In this paper, we describe a system for detecting and
tracking people from image and depth sensors on board a
mobile robot. To cope with the challenges of indoor mobile
perception, our system combines an ensemble of detectors
in a unified framework, is efficient, and has the potential to
incorporate multiple sensor inputs. The performance of our
algorithm surpasses other approaches on two challenging
data sets, including a new robot-based data set.

1. Introduction

The primary mission of a personal robot is to help and
co-habit with people. At any time, a robot might have to
interact with a person to perform a task such as delivering a
beverage or receiving an object to put away. Other tasks are
best performed without bothering the human co-habitant, by
navigating around a home or an office smoothly, safely and
unobtrusively. To function effectively in a human environ-
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Figure 1. Example tracking results generated by our algorithm.
The left panel shows the detected targets in the RGB image. The
right panel shows a projection of the 3D location onto the ground
plane.

ment, a robot must be able to detect and track people in its
vicinity. Perception in indoor human environments can be
extremely challenging as the world that the robot “sees” is
complex: all of its sensors are mounted on-board a moving
platform, the scene is full of clutter, and the dynamic range
is very high. Moreover, the people it observes may take on
a wide range of poses and motion patterns, be subject to oc-
clusions and self-occlusions, and be truncated by the robot’s
field of view (Fig. 1). On top of all this, a robot must sense
and react to people in near real time to enable interaction.

In this paper, we propose a new system for detection and
multi-target tracking of people as seen in RGB-depth im-
agery acquired from an indoor mobile platform, as exem-
plified in Fig. 1. To cope with the challenges of this task,
we propose to integrate multiple complementary sensing
modalities and perceptual cues acquired using an ensemble
of detectors. This ensemble includes image-based pedes-
trian and upper body detectors, an image-based face detec-
tor, a skin detector, as well as a depth-based shape detector
and motion detector. These detection algorithms are fused
into a coherent framework using a sampling based method
(Reversible Jump Markov Chain Monte Carlo particle fil-
tering) constructed on a tracking-by-detection formulation.

Experimental results show that our approach outper-
forms competing algorithms in a number of detection and
localization tasks as seen in two challenging datasets. These



datasets include RGB-D sequences acquired from a mobile
platform, containing imagery of people performing activi-
ties in a real office environment and under real-world varia-
tion and constraints.

The main contribution of this paper is an algorithm for
person detection and tracking which is capable of handling
i) people in various poses, ii) occlusion, iii) a mobile plat-
form, iv) scene clutter, and v) real-time performance. In ad-
dition, we will contribute the code and data used to evaluate
our algorithm.

2. Related Work
There is a long history of approaches to person detec-

tion and tracking in the computer vision and robotics liter-
ature. Many of these techniques (such as [11, 12, 9, 10])
have been shown to be successful in outdoor scenarios or
when scoped to the scenarios for which they were designed.
They have been less successful, however, for indoor envi-
ronments. In outdoor scenes, people are mostly observed in
an up-right ‘pedestrian’ position, whereas in indoor scenes
people are often seen in more variable configurations (e.g.
sitting on chairs, truncated by the image boundary, or oc-
cluded.)

Methods have been proposed to track targets by learning
a person specific appearance model given an initial posi-
tion [4, 8]. These methods work relatively well when the
background is not cluttered, but often suffer from the prob-
lem of track drift [18] and require manual selection of ini-
tial target positions. The improvement in people detection
algorithms made it possible to design robust tracking-by-
detection algorithms [26, 27, 5, 7, 6, 15]. Wu et al. [27]
integrated an image based detection algorithm into a track-
ing framework. Breitenstein et al. [5] proposed to use the
detector confidence value together with the detection out-
put to generate a robust tracking algorithm. Whereas Khan
et al. [15] proposed an MCMC particle filtering method to
track multiple interacting targets and employed it to analyze
the behavior of ants.

Similar to [15], Choi et al. [7] proposed an algorithm
for simultaneously tracking multiple targets as well as esti-
mating camera parameters. To make tracking more robust,
Wojek et al. [26] explicitly reasoned about the targets’ oc-
clusions. Recently, [6] proposed a novel procedure based on
maximum weight independent sets to solve the correspon-
dence problem among targets.

In order to improve robustness and accuracy, multi-
ple approaches explore the idea of injecting knowledge
about 3D structure of the scene into the tracking pro-
cess [11, 20, 17]. [11, 20] proposed a system which com-
bines depth information obtained from stereo cameras (or
laser scans) and detection responses obtained from an RGB
camera. In [3], a 2D lidar scanner is employed to detect and
track people by identifying the legs’ cylinder shape.
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Figure 2. Our algorithm combines RGB and depth image cues to
detect and track multiple targets robustly. Given a hypothesis of a
valid target location, an ensemble of detectors generates a confi-
dence map (Sec.4) which is then used by Reversible Jump Markov
Chain Monte Carlo particle filtering to identify and localize people
(Sec.5).

The availability of an affordable RGB-D camera from
Microsoft, the Kinect [19], made it possible for everyone to
obtain useful depth information. Recently, [17] proposed a
pedestrian tracking algorithm using a combination of HOG
and HOD features with multiple Kinect cameras. Based
on assumption that the person is detected and segmented
from the background, Shotton et al. [24] proposed a skele-
ton tracking method based on Random Forest using Kinect.

The systems presented above, however, do not focus on
the indoor, mobile platform perception problem, and hence
they do not integrate all of the components necessary to
tackle such a task.

3. Model Representation

We tackle this problem within a sequential Bayesian
framework. At each time stamp, we obtain the approximate
posterior distribution of presence and location in 3D space
for a set of targets using an RJ-MCMC algorithm (Sec. 5).
Each hypothetical sample is then evaluated using an ensem-
ble of detectors on the projection of the 3D location into the
image plane, as in Fig. 2. Below, we describe the Bayesian
model observation likelihood and motion model. Sec. 4 de-
scribes each of the detectors in the ensemble, and Sec. 5
describes the RJ-MCMC sampling framework.

3.1. Bayesian Model
Given a sequence of color and depth images I1∼t in time

(1, 2, ..., t), our goal is to detect and track people in 3D
space. For consistency, we track the top position of each
person’s head. This can be achieved by finding the maxi-
mum a posteri (MAP) solution of the following probabilis-
tic formulation. Let Zt = Z0

t , Z
1
t , ..., Z

k
t be a set of tar-

gets at time stamp t and Zi
t be each target’s head location

parametrized as the 3D point (x, y, z). Following the Se-
quential Bayesian formulation, the posterior probability of



targets P (Zt|I1∼t) can be written as:

P (Zt|I1∼t) ∝ P (It|Zt)︸ ︷︷ ︸
(a)

∫
P (Zt|Zt−1)︸ ︷︷ ︸

(b)

P (Zt−1|I1∼t−1)︸ ︷︷ ︸
(c)

dZt−1

(1)
where (a), (b) and (c) in Eq. 1 represent the observation

likelihood, the motion prior and the posterior at time t− 1,
respectively.

Assuming independent motion between targets, we can
factorize the overall observation likelihood P (It|Zt) and
motion prior P (Zt|Zt−1) as

P (It|Zt) =

Mt∏
i=0

P (It|Zi
t) , P (Zt|Zt−1) =

Mt∏
i=0

P (Zi
t |Zi

t−1)

where Mt indicates the number of targets at time stamp t.

3.2. Observation Likelihood

Instead of using a single detection algorithm, we incor-
porate multiple weak detectors to get a strong confidence
value about the presence of a target(s) in the scene (see
Sec.4 for more details). Assuming independence of the ob-
servations, we can rewrite the observation likelihood of a
target i (P (It|Zi

t)) as follows:

P (It|Zi
t) =

N∏
j=0

Pj(It|Zi
t) (2)

where j is the weak detector. The 3D location of Zi
t does

not directly correspond to a point in the color and depth
images It, so we project Zi

t into the image plane using the
camera parameters.

3.3. Motion Prior

The motion prior of each target encodes two character-
istics: existence and smoothness. The former encodes the
prior probability of the target’s presence at adjacent time
stamps. The intuition is that if a target exists at time stamp
t − 1 then it is more likely for this target to exist at time
stamp t, and vice versa. The latter enforces smoothness of
people’s motion in 3D space, e.g. people cannot jump to
distant locations or heights in a short time. We model the
existence prior by two binomial probabilities Ps and Pe. Ps

is the probability of stay and Pe is the probability of en-
trance. Ps encodes the likelihood that a target will exist in
time t if it exists in time t − 1, and Pe encodes the proba-
bility that a new target will appear in the scene. In practice,
we use 0.9 for Ps and 0.1 for Pe. The motion smoothness is
modeled as a Gaussian distribution over (x, y, z) centered
on the location of the target at t− 1.

4. Observation Cues
Since the color and depth images contain different in-

formation about the scene, combining them results in a

more robust detection algorithm. To that end, we combine
five different observation models: HOG, shape from depth,
frontal face detection, skin and motion detection. In isola-
tion, none of the detectors performs satisfactorily (e.g. the
face detector misses people in profile or turned away from
the camera, and the HOG detector yields many false posi-
tives and missing detections), but combining all of them can
generate much more reliable results. Note that our model is
flexible enough to handle additional observation models as
required to increase robustness.

In this section, we will adopt log likelihood l(It|Zi
t) in-

stead of the likelihood P (It|Zi
t) for simplicity. The entire

observation likelihood P (It|Zi
t) can be obtained by taking

the exponential of a weighted linear sum of each log likeli-
hood. The following sections describe the detectors in de-
tail.

P (It|Zi
t) ∝ exp(

∑
j

wj lj(It|Zi
t)) (3)

4.1. Pedestrian and Upper Body Detector

The first cue originates from the distribution of gradi-
ents in the image as encoded by the Histogram of Oriented
Gradient detector (HOG) [9]. To obtain a detection re-
sponse, the HOG detector performs a dot product between
the model parameter w and the HOG feature h, and thresh-
olds the value (above zero) to find person detections. In this
work, we incorporate two HOG detection models, an upper
body detector and a full body detector, to cope with i) oc-
clusion of the lower body, ii) different pose configurations
and iii) different resolutions of people in images.

Previous work [7] used a Gaussian model centered on
positive detections to obtain the observation model. How-
ever, such approaches often fail when there are many missed
detections or false positives. Inspired by [5], we directly use
the detection response to model the observation likelihood
from the HOG detector.

lHOG(It|Zi
t) = w · h(fP (Zi

t)) (4)

where fP is an image projection function, h(fP (Zi
t)) repre-

sents the HOG feature extracted from the image projection
of Zi

t .

4.2. Depth-based Shape Detector

To model the likelihood of people in depth images, we
define the log likelihood lShape as a distance between a
shape template and the observed shape of a human. The
template is defined for only the head and shoulder region
since this is among the most stable body element across var-
ious types of common human body configurations. Given a
depth image and the location of a person, Zi

t , a W (width)
by H (height) dimensional binary vector is constructed by
thresholding the depth image around Zi

t . Then,

lShape(It|Zi
t) = τs − d(Stemp, S(fP (Z

i
t); It)) (5)
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Figure 3. The shape vector is computed from the upper half of
the depth image bounding box. The binary vector representing
the shape of the person’s head and shoulder area is compared to a
template using the Hamming distance.

where τs is a threshold, Stemp is the template,
S(fP (Zi

t); It) is the shape vector of Zi
t , and d(·, ·) is the

distance between template and shape vector of Zi
t . See

Fig.3 and Sec.6.1 for details.

4.3. Face Detector

The Viola-Jones face detector [25] as implemented in
OpenCV [16, 1] detects people reliably if the image of the
face is large enough (greater than 24 pixels) and the frontal
side of the face is visible. We incorporate the face detector
response as another likelihood measure by calculating the
maximum overlap ratio between detection output Xk

t of the
face detector and image projection of hypothesis Zi

t across
all K face detections at time t:

lFace = max
k

OR(Xk
t , Tf (fP (Z

i
t))) (6)

where Tf is a face cropping transformation and OR(·, ·)
is the standard overlap ratio between two rectangles (the
intersection over the union of the two rectangles).

4.4. Skin Color Detector

The next cue used is skin color. If a person exists in
a location Zi

t , then skin pixels corresponding to the face
region are likely to be observed. To detect skin pixels, we
threshold each pixel in HSV color space and apply a median
filter on the binary skin image ISkin. Given the output, the
likelihood is obtained by computing the ratio of skin pixels
lying in the face region of a hypothesis:

lSkin =
1

|Tf (fP (Zi
t))|

∑
(x,y)∈Tf (fP (Zi

t))

ISkin(x, y) (7)

where | · | represents the area of a bounding box · and ISkin

is the filtered binary skin image.

4.5. Motion Detector

Finally, we use motion as an additional cue that implies
(with high confidence) the presence of a person in the scene.
In order to efficiently identify moving pixels in 3D, we ap-
ply an octree-based change detection algorithm [14] to the

point clouds at two consecutive time stamps. A binary mo-
tion image is obtained by projecting each of the moving
points into the image. Similar to the skin detector, the like-
lihood is obtained by calculating the ratio of moving pixels
lying in the body region of a hypothesis.

lMotion =
1

|fP (Zi
t)|

∑
(x,y)∈fP (Zi

t)

IMotion(x, y) (8)

where IMotion is the binary motion image.
Note that for many of these cues, such as face detection,

skin color detection and motion detection, a positive obser-
vation increases the likelihood that a person is present, but
the lack of observation does not decrease the likelihood that
a person is present.

5. Reversible Jump Markov Chain Monte
Carlo Particle Filtering (RJ-MCMC)

Since people can enter and leave a scene at any time
stamp, the vector Zt has variable dimension. To deal with
this variable dimensionality and efficiently find the MAP
solution over the posterior distribution P (Zt|I1∼t), we in-
troduce a reversible-jump Markov Chain Monte Carlo (RJ-
MCMC) algorithm [15]. The RJ-MCMC automatically de-
tects new targets by using jump moves in different dimen-
sions, e.g. adding new target or deleting existing target by a
random proposals.

Computing the posterior P (Zt−1|I1∼t−1) at t − 1 is in-
tractable, so instead it is approximated using N unweighted
samples P (Zt−1|I1∼t−1) ≈ {Z(r)

t−1}Nr=1. Then the poste-
rior P (Zt|I1∼t) at t can be approximated as follows:

P (Zt|I1∼t) ∝ P (It|Zt)
∑
r

P (Zt|Z(r)
t−1) (9)

Performing RJ-MCMC sampling on the posterior
P (Zt|I1∼t) results in the posterior distribution for the
next time frame. In the following sections, we explain
the details of our proposal distribution and acceptance
ratio computation for the Metropolis-Hasting algorithm.
See [15] for further details of the RJ-MCMC algorithm.

For the remainder of this section, we assume that a weak
detection hypothesis Xt and the correspondences between
targets and detections are available to guide the sampling
procedure. The detections are necessary to help initiate tar-
gets and guide the sampling, but our algorithm is able to
handle missing detections and false positives.

5.1. Proposal Moves

For MCMC sampling to be successful, it is critical to
have a good proposal distribution which can explore the hy-
pothesis space efficiently. Inspired by [15], we define five
different reversible jump moves: Stay, Leave, Add, Delete,



and Update. Each move is designed as a reversible counter-
part of another so as to guarantee the detailed balance of the
Markov Chain.

Stay: Even if a target does not exist in a current sam-
ple Z(r)

t , the Stay move proposes to keep the target in the
new sample Z(r+1)

t . Among the targets in set S(r)
t that are

not in a sample Z(r)
t but existed in Zt−1, one target i is

randomly selected with a uniform probability 1

|S(r)
t |

. Un-

like [15] (which samples from only the previous posterior
P (Zi

t |Zi
t−1)), we sample the new location of a target from

a mixture distribution of P (Zi
t |Xi

t) and P (Zi
t |Zi

t−1), where
Xi

t is a corresponding detection. This makes the sampling
process more robust when a target is moving. If no detec-
tion is available for target i, the new proposal is sampled
from the previous posterior distribution. The proposal can
be written as

QS(Z
(r+1)
t ;Z

(r)
t ) =

{
1

|S(r)
t |

Qi(Z
i(r+1)
t ), if i ∈ S(r)

t

0, otherwise
(10)

whereQi(Z
i(r+1)
t ) is equal to P (Zi

t |Zi
t−1) when there is no

corresponding detection, and 1
2 [P (Zi

t |Zi
t−1) + P (Zi

t |Xi
t)],

otherwise.
Leave: If a target Stays in sample Z(r)

t , the Leave move
proposes to remove the target from the new sample Z(r)

t+1.
This is the reverse jump move of Stay. Among the target set
L
(r)
t that exist in Z(r)

t+1 and existed in Zt, one i is randomly
selected with a uniform probability 1

|L(r)
t |

and removed. The

proposal can be represented as

QL(Z
(r+1)
t ;Z

(r)
t ) =

{
1

|L(r)
t |

, if i ∈ L(r)
t

0, otherwise
(11)

Add: This proposal initiates a new target given the new
detections Xnew

t which do not correspond to any existing
targets. Among the detections A(r)

t = Xnew
t \Z(r)

t that are
not in the current target set Z(r)

t , one i is randomly selected
with a uniform distribution 1

|A(r)
t |

and the new location of

target Zi(r)
t is proposed from a distribution P (Z

i(r)
t |Xi

t).
The corresponding proposal distribution can be written as

QA(Z
(r+1)
t ;Z

(r)
t ) =

{
1

|A(r)
t |

P (Z
i(r)
t |Xi

t), if i ∈ A
(r)
t

0, otherwise
(12)

Delete: Similar to the Leave proposal, Delete is the re-
verse jump move of Add. Among new detections D(r)

t =

Xnew
t ∩ Z(r)

t that are already added in Z(r)
t , one i is ran-

domly drawn with uniform probability 1

|D(r)
t |

and removed

from Z
(r+1)
t .

QL(Z
(r+1)
t ;Z

(r)
t ) =

{
1

|D(r)
t |

, if i ∈ D(r)
t

0, otherwise
(13)

Update: Update proposes a new location of a speci-
fied target. Among all existing targets in a sample Z(r)

t ,
a single target i is randomly selected and a new location
for the sample is proposed from the proposal distribution
Q(Z

i(r+1)
t ;Z

i(r)
t ) ∼ N (Z

i(r)
t ,ΣU ). Note that one Update

move can be “reversed” by another Update move. The pro-
posal can be expressed as follows:

QU (Z
(r+1)
t ;Z

(r)
t ) =

{
1

|Z(r)
t |

Q(Z
i(r+1)
t ;Z

i(r)
t ), if i ∈ L(r)

t

0, otherwise
(14)

5.2. Acceptance Ratio

Following the Metropolis Hasting algorithm, we com-
pute the acceptance ratio of the new sample Z(r+1)

t by the
product of the three ratios:

a =
P (It|Z(r+1)

t )

P (It|Z(r)
t )

P (Z
(r+1)
t |I1∼t−1)

P (Z
(r)
t |I1∼t−1)

Q(Zr
t ;Z

r+1
t )

Q(Zr+1
t ;Zr

t )
(15)

The first term expresses the ratio between the image likeli-
hoods, the second term represents the ratio between approx-
imated predictions and the last encodes the ratio between
proposal distributions. Since we change the state of only
one target’s presence or location, most of the factors can be
canceled out in the above computation. This characteris-
tic makes the algorithm efficient and capable of processing
videos in real-time.

Algorithm 1 RJ-MCMC sampling

Require: Given Xt, It, {Z(r)
t−1}Nr=1

Initialize Z(1)
t

while r < N do
Sample Z ′t ∼ Q(Zt;Z

(r−1)
t )

Compute a following Eq.15
Z

(r+1)
t ← Z ′t with probability a

end while

6. Experimental Evaluation
In this section, we discuss the experimental evaluation

of our algorithm, including the details of the actual imple-
mentation. Testing was performed on both data collected
from on-board a mobile robot (the PR2) moving throughout
an office environment, as well as a stationary Kinect sensor
placed in a different office environment.

6.1. Implementation details

To begin with, an RGB-D sensor (in our case the
Kinect [19]) provides a pair of images, one RGB and one
depth. From these images, detection proposals are gener-
ated using a combination of HOG detections, face detec-
tions and 3D point cloud clusters [23].



The 3D clusters are generated by constructing a 3D point
cloud from the depth image and the camera parameters [23].
Given the robot’s known 3D base location, 3D points on the
floor plane can be reliably removed. The remaining points
are clustered using Euclidean clustering [22]. A single pro-
posal for the location of a human head is given by the high-
est point in a cluster. The proposals from all of the clusters
are filtered by height (1.3∼2.3 m) as appropriate to our ap-
plication and environment. The final remaining proposals
are associated with existing tracks using the Hungarian al-
gorithm and 3D distance. This provides initialization for
our algorithm and guides the MCMC sampling procedure.

To obtain HOG-based proposals and a confidence map
efficiently (sec. 4.1), we use the GPU implementation in
OpenCV [1]. The detector can process 640x480 images in
100∼200 milliseconds. The full body detections are ob-
tained from the model trained on the INRIA dataset [9]
and upper body detections from the CALVIN model [13].
OpenCV also provides reliable face detections (sec. 4.3) us-
ing the Haar feature-based face detection algorithm with a
frontal face model [16]. Despite using OpenCV and the
GPU, the HOG detector (full and upper body) and face de-
tector are the slowest components in our system, so all three
are processed in parallel to the sampling algorithm.

To apply the depth-based upper body template, a ham-
ming distance is computed between the template (fig.3) and
the shape in a depth-image window (sec. 4.2). The intro-
duction of a more sophisticated distance such as a weighted
distance, or learning a depth template could provide a better
estimate, but we leave those as future work.

Skin pixels are found by thresholding the HSV between
(2, 60, 40) and (15, 200, 200) (sec. 4.4). Finally, the octree-
based motion detector is discretized to 3cm (sec. 4.5).

In the current implementation, the model weights for
each detector component are experimentally chosen using
validation data since no large dataset of RGB-D data from
a moving, indoor platform is available. In future work, we
intend to learn the weights.

Sampling is performed as follows. In each frame, we
sample 2500 samples with 500 burn-in samples and 50
samples for thinning to reduce correlation. The posterior
distribution at each time stamp is approximated by 40 un-
weighted samples. This sampling takes about 100 millisec-
onds to process one frame.

Since our algorithm is intended to run on a robot, our
implementation is based on the ROS system [2]. ROS is a
message passing infrastructure for performing computation
in a distributed fashion. ROS also provides standard func-
tionality common to many robot platforms and applications,
such as the ‘tf’ transform library which can be combined
with the Kinect’s camera calibration to estimate the robot
and camera’s location relative to a fixed point in the world.

Our implementation can process 5 frames per second on

average (using a GPU). The code for the entire system will
be posted on-line.

6.2. Dataset

We quantitatively evaluate our algorithm using two chal-
lenging, new datasets. The first (static dataset) is acquired
in an office scenario with a fixed Kinect camera [19, 21].
The dataset contains 17 videos each spanning 2 to 3 min-
utes. The Kinect is mounted approximately 2 meters high
and tilted downwards to improve the vertical field of view.
Videos portray humans under different pose configurations
(e.g. sitting on a chair, standing up), observed from dif-
ferent view points (front, side, 3/4) and subject to various
degrees of occlusion or self-occlusion.

The second dataset (the on-board dataset) was collected
with a Kinect mounted on-board a robot (PR2). The robot
drives (tele-operated) around an office building, seeing peo-
ple in offices, walking in corridors, in the cafeteria, and gen-
erally going about their day. Both the robot and the people
may be moving. Subject distance from the camera, the num-
ber of subjects in a frame, occlusion, lighting (including
difficult skylights) and pose varies. This dataset includes 18
segments.

For both datasets, we hand-annotated the people with
bounding boxes around upper bodies, 3D locations inferred
from the bounding boxes and depth images, and target ID.
The annotation is provided for four images per second.

6.3. Results

We compared our algorithm against two baseline meth-
ods: the Deformable Parts Model (DPM) [12] full body de-
tector and upper body detector as trained by [13]. The DPM
detector is known to be more accurate than the HOG detec-
tor, but the implementation of the HOG detector on a GPU
is faster. We will integrate the DPM detector into our sys-
tem in the future.

We report the log-average miss rate (LAMR) proposed
by [26] as well as miss-rate vs. false-positive-per-image
(FPPI) curve. As in [26], LAMR is computed by draw-
ing equally spaced samples in log space of the FPPI. We
use two evaluation protocols for identifying true positives.
The first is based on the degree of overlap between detected
bounding boxes and ground truth bounding boxes(bounding
box overlap), and the second is a 3D distance threshold for
localization evaluation.

As shown in Fig. 4(left), our algorithm significantly out-
performs both baseline methods. On the static dataset, the
improvement is approximately 13% over both baselines. On
the robot dataset, the improvement is 7% over the upper
body DPM detector and 20% over the full body detector.
This improvement is seen despite using the weaker HOG
detector within our system. As hypothesized, the full body
detector does not work well in our dataset due to occlusions,



tight field of view, and people who are in non-pedestrian
poses such as sitting.

Next, we analyze the contribution of each detector mod-
ule in our method, with results in Fig. 4(middle). As seen in
the plot, the depth shape detector plays the most significant
role, with the HOG detector providing the second largest
contribution.

When people do not show their face (as happens fre-
quently in the static dataset), the face detector is not very
useful. However, when people do show their faces, the
face detector is a very strong contributor to overall detec-
tion. This fact is somewhat diluted in the analysis in Fig. 4.
Motion and skin indicators have similar issues, being very
strong in some instances and useless in others. The rea-
sonable performance of the full algorithm as opposed to the
variability of the individual detectors is promising.

Finally, we evaluated our algorithm’s localization accu-
racy. In Fig. 4(right), we show the LAMR measure over
different 3D distance thresholds. Our algorithm achieves
more accurate results when people are within approximately
5 meters of the camera. This is to be expected as the Kinect
provides virtually no depth information past 5 meters dis-
tance, and in fact the depth information past 3 meters is
extremely noisy.

Overall, experiments show that our algorithm outper-
forms state-of-the-art detectors. In addition, the fusion of
multiple detection cues provides a more reliable final result.
Our fusion method is capable of handling the variable per-
formance of each individual detector.

7. Conclusion
In this paper, we have introduced an algorithm that can

detect and track people in indoor spaces from a mobile plat-
form without instrumenting the environment. As shown in
the experimental evaluation, using an ensemble of detec-
tion algorithms and fusing their results using RJ-MCMC
particle filtering results in robust and accurate person de-
tection. Each detector module has different strengths and
weaknesses, focusing on different body components or data
characteristics, allowing the overall combination to handle
occlusion, motion, truncation, and pose variation.

In future work, we intend to use data-driven training to
improve the algorithm’s parameters without hand tuning.
For example, logistic regression can be used to map detec-
tor confidence to better likelihood values. We also intend
to learn person-specific detection models to improve data
association, especially when people leave the field of view
of the camera for short periods of time. Better matching of
tracklets will improve overall algorithm robustness and also
provide more semantically meaningful track results from
which motion patterns can be learned. An extension of this
idea is to learn the interactions between people during dif-
ferent activities, like walking together or standing in line.

Finally, this work is the first step in performing human pose
tracking from a mobile platform in a complex environment.
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Figure 4. The top row shows results for the stationary Kinect dataset and the bottom row shows results for the on-board Kinect dataset.
In both experiments our algorithm outperforms the baseline methods significantly (left panels). In the middle panel, we compare the
contribution of each detector. As expected, depth and the HOG detector contribute most to the tracking algorithm. The right panel shows
LAMR measure over different distance thresholds. Detections within given threshold distance in the 2D ground plane and within 30 cm in
height from ground truth were considered as true positives. Targets whose upper body is larger than 60 pixels in image were considered to
be “near” (approximately within 5 meters).

Figure 5. Examples of tracking results. First row: results on the stationary camera dataset. Second row: results on the robot dataset.
Detections are shown as bounding boxes in the images, and dots projected onto the ground plane in the top-down view. Each color
represents a different target. Notice that our algorithm can detect people in various poses, truncated by the image border, and despite the
severe occlusions between people which are common in indoor environments. Pedestrian detectors alone will generally fail in these cases.
The last row shows difficult situations in which the people are beyond the Kinect’s depth range or under extreme lighting condition.
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