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1 Interaction Feature

In this paper, we model the interaction feature as a combination of three types
of relative motion features, ψl, ψp, and ψa. Each of the feature vector encodes
relative motion (distance and velocity), one’s location in another’s viewpoint,
and co-occuring atomic action. All of them are represented as a histogram so as
to capture a non-parametric statistics of interactions.

• ψl is a feature vector that captures the relative position of a pair of peo-
ple. In order to describe the motion of one respect to the other, ψl is represented
as a histogram of velocity and location difference between the two within a tem-
poral window (t−4t, t+4t).

• ψp encodes a person’s location with respect to the other’s viewpoint. First,
we define the ith target centric coordinate system for each time t by translating
the origin of the system to the location of the target i and rotating the x axis
along the viewing direction (pose) of the target i. At each time stamp t in the
temporal window, the angle of each target within the others’ coordinate system
is computed and discretized angle is obtained (see Fig.1) in order to describe the
location of one person in terms of the viewpoint of the other. Given each location
bin, histogram ψp is built by counting number of occurrence of the bin number
pair to encode the spatial relationship between two targets within a temporal
window (t−4t, t+4t).

• ψa models co-occurrence statistics of atomic actions of the two targets within
a temporal window (t − 4t, t + 4t). It is represented as a |A| × (|A| + 1)/2
dimensional vector of (ai(t), aj(t)) histogram.

Note that the first two features ψl, ψp are dependent on the trajectories of
the two targets. Thus, change in association will result in a higher or lower value
of an interaction potential.
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Fig. 1: Illustration of target centric coordinate and histogram ψp. Left-bottom and Right-bottom
illustrate typical example of facing-each-other and approaching interaction. Given the location
(circle) and pose (arrow) of target Ai and Aj , each one’s location in terms of the other’s view point
is obtained as a discretized angle (numbers on the figure). The histograms φp of each example (top)
are built by counting number of co-occuring discretized angle in a temporal window.

2 Tracklet Association Details

2.1 Hypothesis Generations

For any pair of tracklets τi, τj that are not co-present at the same time-stamp
(thus can be linked), we generate K path hypotheses to associate the two track-
lets into a unique track. Such hypotheses are obtained by finding K-shortest
paths between the two tracklets in a detection graph (Fig.2). The graph is built
by connecting the residual detections between the two tracklets.

To illustrate, consider the example shown in Fig.2. Beginning from the last
frame (shown as t − 1) of preceding tracklet τi, we find the residual detections
at t that have sufficient amount of overlap with the bounding box of τi at t− 1.
We add these detections as a pair of nodes (shown as square nodes in Fig.2) and
a cost edge (link the two nodes) into the graph. These nodes are linked to the
previous frame’s tracklet by a directed edge. Subsequently, we add detections in
time stamp t+1, by calculating the overlap between the added detection in time
t and all residual detections in time t + 1. We add detection nodes in all time
stamps between τi and τj iteratively and finish the graph building process by
considering the connectivity between τj and detections at t+ 2. The detections
in t+ 2 that do not overlap sufficiently with the bounding box of τj at the first
frame are discarded.

As noted in the graph, there are exponential (and redundant) number of
possible paths that link the two tracklets, which require extensive amount of
computation. Especially, if we consider to take the interaction potential into
account for tracklet association, it is required to compute an interaction fea-
ture for each possible path of target. This can result in infeasible amount of
computation in target association. To avoid this issue, we use K-shortest path
search method [1] that generate a concise set of path hypothesis to link the two
tracklets (Fig.2). In practice, we consider the detection confidence to obtain the
cost for simplicity. One can add more cost features such as color similarity, mo-
tion smoothness, if desired. To avoid having no proposal when there are missing
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Fig. 2: Illustration of path hypothesis generation given detection residuals. Left: the graph is com-
posed of detections in the temporal gap between τi and τj . Each detection is represent as a pair
of square nodes that are linked by a detection response edge. The cost d associated with the edge
encodes the detection confidence value. The detections in time t + 1 that has enough overlap with
the detections in time t are added to the graph. Right: given the detection residual graph above,
we can obtain a concise set of path proposals using K-shortest path search method. Note that there
can be exponential number of possible path in the first graph.

detections, we add one default hypothesis that link two tracklets in a shortest
distance.

2.2 Match Features

As discussed in the paper, each path pkij is associated to a cost value ckij that
measures the likelihood that the two tracklets τi, τj belong to the same target.
We model this cost value as a linear weighted some of multiple match features:
color difference, height difference, motion difference and accumulated detection
confidences of the path.

ckij = wTmdk(τi, τj) (1)

where wm is a model weight and dk(τi, τj) represent the vector representation of
all the features. Each of the features is obtained by following: i) color difference
is obtained by the Bhattacharyya distance between color histograms of τi and
τj , ii) height difference is encoded by computing the difference between average
height of τi and τj , iii) motion difference is computed by absolute difference in
the velocity of τi and τj , and iv) accumulated detector confidence is calculated
by summing up the detection confidence in the path pkij .

Given the match features, we obtain the cost of each path proposal by Eq.1.
In the case of target initiation and termination, we use the cost value cen, cex to
model the cost of initiating and terminating a target.

3 Branch-and-Bound Method for Tracklet Association
with Interaction Potential

The target association problem with the interaction potential can be written as:

f̂ = argmin
f

cT f − Ψ(I, A, T (f)) (2)

s.t. fen,i, fi,ex, f
k
ij ∈ {0, 1}

fen,i +
∑
j

∑
k

fk
ji = fi,ex +

∑
j

∑
k

fk
ij = 1

where the constraints are summarized as: 1) binary flow constraints (the flow
variable should be 0 or 1 integer value specifying that a path is valid or not) and
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2) inflow-outflow constraints (the amount of flow coming into a tracklet should
be the same as the amount of flow going out of it and the amount is either 0
or 1). The c vector is a cost vector that measures the likelihood of linking two
tracklets ckij or the cost to initiate/terminate a target cen, cex and the second
term encodes interaction potential which is dependent on the trajectories derived
from tracklet association.

3.1 The Non-Convex Quadratic Objective Function

Though the match likelihood is represented as a linear function, the interaction
potential involves quadratic relationship between flow variables. As discussed
in the paper, the interaction potential Ψ(I, A, T (f)) is composed of a sum of
interaction potentials each of which is associated to a single interaction variable.

Ψ(I, A, T ) =
∑
i,j

Ψ(Ai, Aj , Iij , T ) (3)

Ψ(Ai, Aj , Iij , T ) =
∑
t∈TV

∑
a∈I

wa
ai · ψ(Ai, Aj , T, t;4t) I(a, Iij) (4)

Since the feature function ψ is dependent on, at most two, flow variables, the
overall objective function can be represented as a quadratic function.

Before moving into detailed description, we define the head and tail path of a
tracklet τi as the path through which the flow comes into τi and the path through
which the flow goes out from τi, respectively. The head path of τi can be among
the entering path fen,i and the path connecting from any other tracklet τl, f

k
li.

Similarly, the tail path of τi can be among the exiting path fex,i and the path
connecting to any other tracklet τm, fkim. A tracklet τi is called intact in a certain
temporal support t ∈ (t1, t2), if the trajectory of the target is fully covered by
the tracklet within the temporal support (i.e, the tracklet is not fragmentized
within the time gap). Otherwise, it is called fragmentized in a certain temporal
support t ∈ (t1, t2).

In order to calculate the interaction between two targets i and j at certain
time stamp t, we need to specify the trajectory of Ai and Aj in all time stamps
t ∈ (t−4t, t+4t) (the temporal support of an interaction, Sec.1), which can
involve selecting at most two flow variables in our flow network.1 If the both
tracklets are intact within the temporal support of Itij , the interaction potential
does not get affected by tracklet association (we need to specify no flow variable
to compute the interaction feature and thus it can be ignored). If only one of
the tracklets is fragmentized and the other is intact, we need to specify only one
head or tail path of the fragmentized tracklet. On the other hand, if the both

1 To be complete, it can involve upto four selections of path proposal to fully specify
the trajectories of Ai and Aj : head of Ai, tail of Ai, head of Aj and tail of Aj if the
two tracklets are both fragmentized in both direction within the temporal support of
an interaction. However, we ignore such cases since i) it rarely happens, ii) it make
the algorithm to be over-complicated and iii) if the tracklets are too short there are
not reliable information we can exploit.
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Fig. 3: Consider the case shown in the figure. In order to compute the interaction potential associated
with Itij , we need to specify the tail paths of both tracklet τi and τj since they are fragmentized in

the temporal support of Itij (shown as a dotted box).

τi and τj are fragmentized in the temporal support, we need to specify two flow
variables to obtain the associated interaction feature (head or tail of τi and head
or tail of τj) (see Fig.3 for more details).

Since the objective function can be specified as a sum of quadratic and linear
functions of flow variable f , the problem can be re-written as follows:

f̂ = argmin
f

cT f − Ψ(I, A, T (f))

= argmin
f

cT f + cTI f + fTHIf (5)

s.t. f ∈ S

S represent the feasible set for f that satisfies the constraints discussed in pre-
vious section, the linear part of interaction potential cI can be obtained by
accumulating the interaction potentials that involve only one selection of path
(one of the two tracklets τi, τj is intact within the temporal support), and HI

can be obtained by accumulating all interaction potentials that involve two se-
lections of flow variables (both of τi, τj are fragmentized in the temporal support
of the given interaction variable as in the example of Fig.3). Note that HI is not
positive semi-definite (thus non-convex) and standard quadratic programming
techniques are not applicable.

3.2 Branch-and-Bound

Since the objective function is non-convex, we employ a novel Branch-and-Bound
algorithm to solve the complicated tracklet association problem. The Branch-
and-Bound (BB) algorithm we describe here find the global minimum of the
objective function over the space S. Starting from the initial subproblem Q = S,
we split the space into two subspaces Q0,Q1 by setting 0 and 1 to a certain flow
variable fi (ignoring/selecting a path). Given each subproblem (where some of
flow variables are already set either 0 or 1), we find the lower bound and upper
bound (of optimal solution) in the subproblem, L(Q) and U(Q). If the difference
between L and U is smaller than a specified precision ε and U(S) is smaller than
the lower bound of any other subspace, we stop the iteration and yield the global
solution. Otherwise, the algorithm iterate the steps of 1) selecting a subproblem,
2) splitting the subproblem, and 3) finding the lower and upper bound in the
subproblem. This is summarized in Algorithm.1.
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Algorithm 1 Branch and Bound (BB) Tracklet Association

Q = S
L0 = L(Q)
U0 = U(Q)
L = {Q}
while Uk − Lk > ε, k++ < maxIter do

Select a subproblem Q ∈ Lk for which L(Q) = Lk.
Split Q into Q0 and Q1

Form Lk+1 from Lk by removing Q and adding Q0 and Q1

Lk+1 = minQ∈Lk+1 L(Q)
Uk+1 = minQ∈Lk+1 U(Q)

end while

In following sections, we discuss about how we compute the lower and upper
bound of a subproblem Q (Sec.3.3) and which variable is to be split to provide
subproblems Q0 and Q1 (Sec.3.4).

3.3 Lower Bound

In this section, we discuss about the lower bound function that we optimize over
in each iteration of our BB algorithm. To make it efficient to solve, we find a
linear lower bound function:

L(f) = (c+ cI + l)T f ≤ (c+ cI)
T f + fTHIf, f ∈ Q (6)

Since the whole interaction potential is represented as a sum of interaction po-
tentials associated with a single interaction variable, it suffices to show that the
lT f is less than or equal to fTHf within one interaction potential (associated
to a single interaction variable Ikij). Thus, we decompose the whole Hessian H
into summation of Hi and show that there exists li which is a linear vector that
yields a lower bound of fTHif , where i denotes an index that enumerates all in-
teraction variables Ikij . It is trivial to show that lT f ≤ fTHf , if lTi f ≤ fTHif , ∀i
where l =

∑
i li and H =

∑
iHi. The matrix Hi can be obtained by computing

the corresponding interaction potential Ψ(Ai, Aj , I
t
ij , T (f)) given each possible

configuration of path flows, e.g. selecting the two solid paths shown in the Fig.3.

Hi(a, b) = −1

2
Ψ(Ai, Aj , I

t
ij , T (f)) where fa = fb = 1 (7)

To obtain the lower bound of fTHif , we note on the two characteristics of
our problem: i) the variables are binary and ii) there must be one and only one
inflow and outflow for each tracklet τi. These two facts can be easily derived from
the basic constraints of the problem (S). Given these, we notice that always two
elements in Hi are selected with symmetry (shown as red box in Fig.4) and the
values are added to produce fTHif = Hi(a, b) +Hi(b, a) where a and b are the
indices of the selected variables in f . Thus, it is easy to show that,

min
k
Hi(a, k) + min

k
Hi(b, k) ≤ Hi(a, b) +Hi(b, a) (8)
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Fig. 4: Illustration of lower bound L computation for the interaction variable corresponding to Fig.3.
Each element of the Hessian Hi is obtained by computing the corresponding interaction potential
Ψ(Ai, Aj , I

t
ij , T ) given the flow configuration. A linear lower bound lT f is derived from fTHf by

taking the minimum of each row in the hessian H matrix. Note that only one configuration can be
selected in the matrix H with symmetry since no two flow coming out from one tracklet τi or τj can
be set simultaneously. The example shows the case when solid edges in Fig.3 are selected.

From this, we obtain the lower bound vector li for Hi as

li(a) = min
k
Hi(a, k) (9)

see Fig.4 for illustration. The overall lower bound function is obtained by sum-
ming up all lower bounds associated to each interaction variable. l =

∑
i li.

Given the lower bound vector l, the lower bound of Q is obtained by applying
binary integer programming on the lower bound with the given constraints of Q,
f̄ = argminf (c+ cI + l)T f, s.t. f ∈ Q. The upper bound is set to be infinite if
there is no feasible solution, or set to be the value of original objective function
if the solution f̄ we obtained is feasible.

3.4 Split Variable Selection

Though the presented lower bound can generate quite tight lower bound in our
problem, not all the variables in f have the same “tightness”. Setting some vari-
able one or zero will have more uncertainties in the difference between the lower
bound and actual objective function, and some will generate smaller differences.
To efficiently split the space and find the solution, we choose the variable to be
selected based on the selecting ‘most ambiguous’ variable first strategy.

In order to measure the ambiguity, we derive upper bound vector ui from Hi

by
ui(a) = max

k
Hi(a, k) (10)

Notice that we take the maximum of a given row in contrast to the minimum in
lower bound case (Eq.9). Similar to the lower bound vector case, we can obtain
full upper bound vector u by accumulating over different interaction variables.
It is trivial to show that :

lT f ≤ fTHf ≤ uT f (11)

Notice that if the value of l(a) is the same as u(a), the value added up in
the final objective function by selecting a flow variable a does not make any
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difference among the above three functions (less ambiguous). However, if the
difference between l(a) and u(a) is large, it means that the variable is more
ambiguous. Therefore, we choose the variable to be split by finding the variable
that has largest difference, argmaxa u(a)− l(a).
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