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ABSTRACT

This paper deals with the problem of computing a semantic
segmentation of an image via label transfer from an already
labeled image set. In particular it proposes a method that
takes advantage of sparse 3D structure to infer the category
of superpixel in the novel image. The label assignment is
computed by a Markov random field that has the superpix-
els of the image as nodes. The data term combines labeling
proposals from the appearance of the superpixel and from
the 3D structure, while the pairwise term incorporates spa-
tial context, both in the image and in 3D space. Exploratory
results indicate that 3D structure, albeit sparse, improves
the process of label transfer.

Categories and Subject Descriptors

1.4.6 [Image Processing And Computer Vision]: Seg-
mentation— Pizel classification

Keywords

Image Parsing, Segmentation, Labeling, Image Understand-
ing, Markov Random Fields, Structure From Motion

1. INTRODUCTION

Semantic image segmentation, also known as image pars-
ing or labeling image regions with their categories, has been
recently tackled as a label transfer approach, which reduces
the inference problem for a new image to the problem of
matching it to an existing set of labeled images. Whereas
this matching is usually accomplished by exploiting local
similarity between images [11, 17, 15], in this paper we in-
vestigate the leverage of sparse 3D information coming from
Structure from Motion to improve the transfer. What mo-
tivates our work is that we expect 3D structure to be a
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powerful cue for matching, while its computation is becom-
ing a “commodity” thanks to the availability of efficient and
robust implementations [14, 7, 5]. In particular, in this work
we concentrate on urban environment application, that has
received much attention both in the segmentation [11, 15,
16] and in the Structure from Motion literature [2].

[2D approach] Previous work on annotation transfer come
from the field of object recognition, where some existing
techniques have been modified in order to deal specifically
with urban outdoor scenarios. To overcome the massive
dataset dimension in [11] the authors present a method that
involves first a retrieval step on a large database of annotated
images using a modified version of SIFT flow [10]. The sub-
sequent steps are applied only on a small subset of images
presenting similar structures alignment. This system inte-
grates multiple cues in a Markov random field framework to
segment and recognize the query image. Even if the algo-
rithm gives accurate results, the matching time for a pair of
images with very small resolution (256 x 256) is around 30
seconds, still not suitable for real-time applications.

Zhang et al. in [17] proposed a similar procedure that in-
volves retrieving multiple image sets of similar annotated
images each of which can cover all semantic categories of the
query image. Then the dense correspondences between these
sets of images and the query are computed at superpixel
level to increase the computational efficiency. The matching
scheme, called KNN-MRF, does not rely only on the single
feature appearance of each superpixel but it considers also
the spatial relation between pairs of neighbor superpixels,
modeling it as a Markov random field. After establishing
the correspondences, a pruning procedure is applied in or-
der to remove the semantic incorrect matches using a trained
classification model.

Another interesting work has been proposed in [15]. The
authors present a non-parametric scalable approach to im-
age labeling at a superpixel level. For each superpixel of the
dataset images, a large number of disparate features have
been extracted describing its appearance. Unlike [17] it re-
quires no training, it also combines semantic (e.g. sky, road,
building) and geometric (e.g. vertical, horizontal) labeling
under the assumption that each semantic label is associated
with a unique geometric label.

Recently [6] proposed a solution that leverages on a graph of
dense overlapping patch correspondences across large dataset
of images avoiding the needs for exhaustive pairwise compar-
isons.



[3D approach] An early attempt of label transfer involving
3D points coming from a Structure from Motion reconstruc-
tion can be found in [13]. In that work a user’s annotation in
one image, in the form of a rectangle with text, is transferred
to the other images of the Structure from Motion dataset
simply by retrieving the 3D points whose 2D projections are
inside the specified rectangle and then reprojecting them on
the other images. The authors apply an additional check in-
volving visibility and scale information that avoids incorrect
reprojections, but the label transfer is still rough, penalized
by tight visibility constraints and it’s restricted to the set of
images involved in the Structure from Motion algorithm.
We proposed a method that falls in between these two dif-
ferent approaches exploiting the effectiveness given by the
additional 3D data and obtaining an high precision that im-
proves image approaches. To the best of our knowledge our
work is the first attempt to combine appearance-based label
transfer with 3D points structure.

The rest of the paper is organized as follows. The next
section gives an overview of the algorithm; Section 3 de-
scribes the pre-computation step of superpixel and feature
extraction and Section 4 explains two different techniques
for retrieving a subset of images in order to limit the main
computation to a more specific and reliable dataset. In Sec-
tion 5 we will describe in detail how we map our problem
in a Markov Random Fields framework; Section 6 describes
the experiments and conclusions are drawn in Section 7.

2. METHOD OVERVIEW

Our method integrates information from the appearance
of an image, captured in a urban environment, with the
three-dimensional structure of the scene in order to perform
the label transfer. In a nutshell, the query image is first
segmented into superpixels, then both information sources
— namely, image appearance and 3D structure — propose a
labeling for each superpixel; these proposals are combined
and then relaxed with a MRF to include spatial context.

It is assumed that a set of images D is available, capturing

a specific urban environment, together with a sparse cloud
of 3D points S representing the structure of the scene de-
picted in D, as it is commonly produced by a Structure from
Motion pipeline like [14].
Moreover, a subset of these images A C D is already la-
beled, i.e. , it has been segmented into small regular and
coherent regions, called superpizels, and each superpixel has
been assigned to a specific semantic class. Additional avail-
able data, obtained by Structure from Motion algorithm,
is the camera pose estimation (the orientation and the 3D
position of the camera center) of each image belonging to
D.

The goal of our work is to label the images belonging
to the set D \ A or another external image not included
in D, captured in the same scene environment. In such
case, the procedure should rely on a localization system,
as described in [8], that efficiently computes the external
camera parameters (orientation and camera center) of the
image with respect to the existing reconstruction.

From this point forward, let us call I, query image, the one
that is going to be labeled.

3. SUPERPIXELS PRECOMPUTATION

As a pre-processing step, computed only once in advance,

the labeled images in A are segmented into superpixels us-
ing the Simple Linear Iterative Clustering algorithm (SLIC)
[1], which starts with a regular grid of cluster centers and
then locally clusters pixels in the combined five-dimensional
color and image plane space. The extracted superpixels are
characterized by a compact and nearly uniform shape, as
shown in Figure 1.

Figure 1: Example of superpixel extraction.

For each superpixel the algorithm extracts three features
related to its location on the image and its color and texture
appearance:

e the top height; linked to the relative “location” of the
superpixels in the image (e.g. in urban scenarios “sky”
superpixels will more likely appear on the top of the
image and “ground” superpixel on the bottom),

e the color histogram in the log-chromaticity space cor-
related to the color appearance of the superpixel,

e an histogram of occurrences of the set of SURF feature
descriptors already extracted from the images during
the structure from motion procedure that are related
to keypoints inside the superpixels.

The number of features is much smaller than in [15], in which
4 global and 13 superpixel features have been extracted. The
main reasons are that:

1) we do not need to compute global features, mainly re-
lated to the image retrieval step, because the algorithm
relies only on the 3D structure for the computation of
the “working reference subset” of most similar images.
Section 4 describes in detail the procedure.

due to the superpixels’ property to have a uniform
shape there is no need to describe in detail both shape
and location proprieties, only one feature, in our case
the top height, can sufficiently characterize the super-
pixels.
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4. ACTIVE SET

Dealing with a potentially large input dataset of images
D taken in a huge urban environment like district areas or
entire cities [4], we need an efficient method to extract the



effective subset of images A; C A that capture the same
scene portion as I; (which we call the “active” set). We
describe now the two possible scenarios already mentioned
in Section 2.

If I, € D we can define A, exploiting the 3D points visi-
bility, since I, shares the visibility of a common portion of
the 3D points cloud. Let us call S; C S the set of 3D points
visible from the query image I4; we reproject the 3D points
in S; onto the images belonging to A and we define A, as
the subset of A in which the 3D projection gives valid val-
ues (i.e., at least a subset of Sy is inside the cameras’ view
frustum of Ag).

If I; ¢ D the image should be initially localized as already
mentioned in Section 2. The first stage of a typical localiza-
tion system consists on a retrieval procedure of most similar
images D, that is done using image information applying
a Bag-of-word approach [12] and can be refined involving
also a 3D structure constraint [8]. A is then defined as the
intersection Dy N A

5. MRF INFERENCE

The label assignment of I, is computed by a Markov Ran-
dom Field (MRF) that has the superpixels of I, as nodes.
An edge is set between two nodes if the corresponding super-
pixels are adjacent. The set of superpixels {s;} is indicated
with V while £ represents the set of edges between neighbor
nodes {(ss,s;)}

5.1 Unary Term

The unary term of the MRF encodes labeling proposals
coming from the actual data, both in terms of appearance
of superpixels and 3D structure.

5.1.1 Appearance based

For each superpixel s; of I, we assign a score at each label
I based on on image appearance, as in [15].

The probability P ( fzk|l) of observing fF¥, the k-th feature
of superpixel s;, given the label | can be estimated empiri-
cally from the frequency of features from the given label in
the neighborhood of fF (in feature space). Specifically, let
NF denote the set of all superpixels in Aq whose k-th feature
distance from fF is below a fixed threshold. Then:

r (i) = G g

where n(l, Z) denotes the number of superpixels in set Z
associated to label [.

Making the custom assumption that the extracted fea-
tures are independent of each other given the label, the like-
lihood ratio for label [ and superpixel s; is:

L PGsil) PO
Aallis) = 5000 = 1:[ P (D) @

where 1 is the set of all labels excluding [ and P,(fF[l) is
computed likewise.

5.1.2  Structure based

In order to exploit the additional information given by the
3D structure, we establish a relationship ¢ that maps super-
pixels from of I, to superpixels in A, via the 3D structure
(details in Sec. 5.1.3). Thanks to ¢ we can compute I1(s;),
the set of points of S; that are projected onto superpixel

s;. Points in II(s;) carry forward the label of the associated
superpixel in Ay, so every point in II(s;) casts a vote for the
label of s;; the probability of s; having label [ (according to
the structure) is estimated by count as:

A
1+ n(x,I0(s:))
where n(x,11(s;)) is simply the cardinality of II(s;).

We combine the two terms Aq (1, s;) and Ps(l]s;) after con-
verting to an energy to obtain the unary (data) term:

Eq(si) = —log Aa(si, 1) — alog Ps(si|l). (4)

Ps(lls:) ®3)

The « coefficient modulates the relative influence of appear-
ance and geometry, and was set to a = 0.8 in our experi-
ments.

5.1.3 Using the structure

In this section we shall discuss the method by which we
establish a relationship between a superpixel in A, and a
superpixel of I, via the 3D structure. The first step (per-
formed once and for all) is to compute the visibility of 3D
points with respect to the superpixels in A,. This is done
with ray-casting in a discretized volumetric space, where a
cell (or voxel) is deemed occupied if more than a given num-
ber of points are inside. Marching along the ray from the 3D
point x to the center of the superpixel s (back-to-front), s is
added to the visibility set of x if all the cells on the path are
free (see Figure 2. Then for each superpixel s we compute
I1(s), the set of 3D points that projects onto s, according to
the visibility. The same procedure is applied to the super-
pixel in I, and in this way a map ¢ from a superpixel s € I
to a set (possibly empty) of superpixels of A, is established:

¢(s) = {si € Aq [ 1(ss) N1TI(s) # O} ()

Figure 2: Illustration of the ray casting procedure.
The path from the corner of the church to the cam-
era position (cross) is obstructed by the statue, so
the ray tracing (light-blue squares) stops there.

This geometric way of handling occlusions fails if the oc-
clusor have not been reconstructed (no 3D points are at-
tached to it). In order to cope with this problem we also
perform a photoconsistency check between superpixels that
have been associated via ¢. In other words, superpixel s
must be photoconsistent (i.e. , have similar appearance)
with the superpixels in ¢(s). The photoconsistency of two
superpixels s; € I, and s; € ¢(s;) is evaluated as the chi-
square distance between two-dimensional histograms of the



log-chromaticity representation of the superpixels. In for-
mula:

Vlhihy) = 23 (hi(m) — h;(m))*

2 2= hu(m) + hy(m) ©

where h; is the color histogram of s; transformed in the log-
chromaticity space and normalized. The log-chromaticity
[3] transformation of an RGB image is defined as:

{R,G,B} — {log(R/G),log(B/G)}. (7)

After transforming in log-chromaticity space, two patches
representing the same surface under different illumination
(in color and intensity) are related by a linear transform
that we factor out by subtracting the mean and dividing
by the standard deviation of the log-chromaticity values.
After such normalization, two patches representing the same
surface should have identical values.

5.2 Pairwise Term

The pairwise term of the MRF enforces the spatial con-
textual constraint on the label assignment. It differs from
the classical constant Potts penalty because the cost is mod-
ulated by a term which is inversely proportional to distance
in 3D space, the rationale being that little or no cost is
payed for assigning different labels to superpixels that are
associated to 3D points that are far apart in space:

¢(la7 lb) = /de6 (la7élb) (8)
The distance term wy is defined as:

wd(si,sj)_{e(””pipj”) if TT(s:)70 A TI(s;)70 o)

1 otherwise

where p; is the centroid of II(s;), and p is a rate of decay that
depends on the scale of the 3D structure. In our experiments
we set S and p respectively to 10 and 4. The resulting
smoothness term is:

ES = Z ¢si,sjv (10)

(sisj)EE

5.3 Inference

The total energy cost function is the sum of the unary
terms (Eq.4) and pairwise terms (Eq.10):

E(s) = > (—logAu(si,1) — alog Ps(si|l).) +
s; €V

Y sy

(si,55)€E

unary term

pairwise term

In order to minimize this submodular function we decide to
apply the tree-reweighted belief propagation algorithm [9],
as its implementation lends itself well to code paralleliza-
tion (in CUDA as well) in order to reach high efficiency
performance. However, this implementation requires a reg-
ular connectivity. While at the onset of SLIC every super-
pixel has exactly four neighbors, during the evolution of the
clusters in principle this connectivity may vary, although
in practice it is mainly preserved. Therefore we decided to
force the connectivity to remain unchanged.

6. EVALUATION

Since no existing benchmark database are available that
meet our requirements, we created a brand new labeled
dataset of 50 images with the related 3D points cloud recon-
struction obtained with a Structure from Motion algorithm
[5] whose implementation is available online’.

Figure 3: Top: sample images from the dataset.
Bottom: a view of the 3D structure.

The depicted scene is a public square in front of a church,
with a horse statue occluding the background in some par-
ticular views2. This particular scenario has been chosen in
order to fully evaluate the 3D data potential. The cardinal-
ity of S, the set of 3D points, in this dataset is about 70k,
a view of the 3D structure can be seen at the bottom of
Figure 3, while some sample images are shown on the top.
The original image resolution, used in the Structure from
Motion algorithm, is 2592 x 1944 pixels but for the labeling
procedure the images have been scaled by a factor of four
in order to speed up the computation and to dampen the
number of superpixels extracted. From each low resolution
image (648 x 486) an average of 600 superpixels have been
computed.

The ground truth data have been obtained by manually
labeling each image of the dataset (in this case D = A) , as-
signing to each superpixel one of the following labels: base
statue, statue’s pedestal, statue’s horse, scaffolding cover,
woodboard, church, church’s cupola , ground, building, sky.
Figure 4 shows an example of ground truth labeling, the por-
tions of the image in grayscale are associated with no label.
1

www.3dflow.net
2Dataset will be available online



We tested our system with a leave-one-out approach. One

Figure 4: Example of hand-made labeling.

at a time each image has been removed from the dataset. As
I, € D the experiment falls in the first of the two retrieval
scenarios explained in Section 4, we reproject into A\ I, the
3D points visible from I; in order to retrieve a subset of at
most 10 most similar images A, that will be used for the
labeling procedure. In this way, in case of a dataset of more
considerable dimension, we do not have to employ the fea-
ture data of the entire dataset during the nearest neighbour
extraction, preserving the system efficiency.

We compared our proposed method to a partial implemen-
tation that ignores the 3D data contributions and is similar
in spirit to [15]. The performance of our system is presented
in terms of per-pixel classification rate, our proposed method
achieves 82.6% whereas the restricted version exploiting only
2D data reaches 78.1%. As shown in Figure 5, due to the
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Figure 5:
dataset.

Superpixels label frequencies in the

lack of uniformity in the dataset label distributions we re-
port also the results in terms of per-pixel classification rate
for each label, see Figure 6. The average per-class rate is
59.4% for the complete version of the proposed method and
49.7% for the 2D restricted version.
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Figure 6: Per-class classification rate.

The addition of the 3D data in the MRF clearly improves
the labeling results, particularly in urban scenarios where
some labels could be difficult to discern, like different build-
ings with similar colors and textures appearance (e.g. “base
statue” and “church” ). This is clearly displayed also in Fig-
ure 7 that shows a qualitative example of two labeling results
related to the first two images of Fig. 3. For some labels
there is not a strong gap in the classification rate, this is due
to the fact that the lack of 3D data, e.g. there can be no 3D
reconstruction of “ground” and “sky” and the “scaffolding
cover” are associated to textureless regions, the Structure
form Motion pipeline in these regions of the images did not
extract any SURF feature descriptors and as a consequence
it did not reconstruct a sufficient number of 3D points, as
shown at the bottom of Figure 3.

The time cost of labeling a query image is summarized in
Table 1 focusing the attention to each steps of the proposed
system.

Table 1: Average time cost
Superpixel extraction 2 sec

Feature extraction 23 sec
Visibility check 25 sec
Label inference 1 sec

The current version of the proposed system is implemented
in MATLAB with no use of parallelization and optimized
data structure; the computational bottlenecks are the Fea-
ture Extraction and the Visibility check stages that could be
speed up exploiting the processing power of a graphic card.

7. DISCUSSION

This paper has investigated the leveraging of 3D structure
in the process of label transfer. The method that has been
presented takes advantage of i) already labeled images, and
ii) sparse 3D structure to infer the category of superpixels
in a novel image. Due to the laboriousness of creating an-
notated datasets with 3d structure, experiments that have
been reported are only exploratory, but they clearly indi-
cate that the 3D structure, even if sparse, can improve the
process of label transfer.
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Figure 7: Two examples of labeling results. The amelioration brought by 3D structure can be appreciated
by comparing the left and right images of the second and third rows.



Future work will be aimed at probing the method on larger
and different datasets, keeping focused on scalability.
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