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Abstract

In this paper we present a new method for categorizing

video sequences capturing different scene classes. This can

be seen as a generalization of previous work on scene clas-

sification from single images. A scene is represented by a

collection of 3D points with an appearance based code-

word attached to each point. The cloud of points is re-

covered by using a robust SFM algorithm applied on the

video sequence. A hierarchical structure of histograms lo-

cated at different locations and at different scales is used

to capture the typical spatial distribution of 3D points and

codewords in the working volume. The scene is classified

by SVM equipped with a histogram matching kernel, simi-

lar to [21, 10, 16]. Results on a challenging dataset of 5

scene categories show competitive classification accuracy

and superior performance with respect to a state-of-the-art

2D pyramid matching methods [16] applied to individual

image frames.

1. Introduction

Cheap and high resolution sensors, low cost memory and

increasing bandwidth capacity are enabling individuals to

capture and manipulate visual data more easily than ever.

Current technology allows users to point their cellphone

at a scene, acquiring low resolution video sequences that

capture relevant visual information, and send that data to

a friend somewhere else in the world. It is desirable to go

beyond this and further process the acquired imagery for ex-

tracting useful semantics. Users would benefit from having

an algorithm that is able to answer basic questions such as:

what am I looking at? what are the objects in the scene?

Among these, it is crucial to enable the interpretation of

the overall semantic of the scene, and thus, the recognition

of the category the scene belongs to. Is this an outdoor or

indoor scene? A park, a neighborhood in suburbia or the

parking lot of a shopping mall? This would allow the iden-

tification of the context where the action takes place and

help extracting the semantic of specific objects (such as,

cars, trees, buildings) with higher degree of accuracy and
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Figure 1. The basic scheme.

lower false alarm rates. This capability is also useful in

a number of applications such as automatic annotation of

street view imagery [1] and autonomous navigation. Recog-

nizing scene categories from medium-low resolution video

sequences (that is, video sequences acquired from inexpen-

sive consumer hand-held cameras or cell phone devices) is

the focus of this paper. A critical issue that we address in

this work is the ability to design algorithms that are robust

and efficient, and thus useful in a real time settings.

The problem of recognizing scene categories from sin-

gle 2D images has received increasing attention during the

past few years. Researchers have proposed a wide range

of different representations: from holistic descriptions of

the scene [22] to interpretation of the scene as collection

of features or intermediate topics, [8, 29, 4], with more or

less [8, 25] degree of supervision during the learning pro-

cess. In these models, the scene is represented as collec-

tions of features where the spatial coherency is not pre-

served. Recent works by [10, 16] have shown that it is pos-

sible to incorporate spatial information for efficiently rec-

ognizing large number of scene categories. Here, the typ-

ical 2D layout of appearance elements across instances is



learnt as part of an underlying 2D pyramid structure. Criti-

cally, these methods propose to encode the spatial informa-

tion in terms of 2D spatial locations only, while no addi-

tional 2D/3D geometrical concepts are considered. Recent

works have proposed ideas for extracting geometrical prop-

erties of the scene, such as vertical/horizontal geometrical

attributes [12], approximate depth information [24], as well

as using semantic [28] or geometrical context for improving

object detection [13, 5, 7]. However, none of these methods

have used explicit 3D geometrical reasoning for classifying

scene categories.

We argue that using the underlying 3D structure of the

scene can greatly help toward the goal of scene categoriza-

tion. We propose to extract this information from video

sequences where the same scene is observed for a short

amount of time by a moving camera. Since we would like

to work with medium or low definition video sequences

(where no information about the camera parameters is in

general available), robust techniques for extracting and in-

terpreting 3D information must be used. We propose to em-

ploy recent structure from motion algorithms [6] (Sec. 2)

for solving the full un-calibrated SFM problem. The result

is still a fairly sparse reconstruction of 3D points and cam-

era locations. This makes most of state-of-the-art methods

for 3D shapes classification [23, 14, 11, 9, 15, 26, 17] inade-

quate. In these methods the underlying reconstructed struc-

ture is assumed to be dense and accurate, and appearance

information is most of times ignored.

Thus, our challenge is to find a representation that can be

built from highly sparse reconstructions and low resolution

imagery but at the same time is able to capture the geometri-

cal and appearance essence of a scene category. We propose

to represent a scene by looking at the typical distributions of

3D points along with appearance information for character-

izing a generic urban scene category. In our model, each 3D

point is labeled using a dictionary of codewords capturing

epitomic appearance elements of the scene imagery. Then,

a collection of histograms of codewords computed at differ-

ent locations and scales within the working space is used to

model the scene. Such collection is organized in a 3D hier-

archical structure as explained in Sec. 2 and is recursively

built based on the statistics of occupancy of points in the

3D space across all the categories. Unlike previous work

on scene categorization, our model is robust with respect

view point variability as discussed in 2.3. Finally, video

sequences are categorized with a non linear SVM classi-

fier using a matching kernel similar to the one proposed

by [21, 10, 16] (Sec. 3). A number of experiments with

a 5-class scene dataset of low resolution video sequences

demonstrates that the added 3D spatial information is in-

deed critical for obtaining more accurate scene classifica-

tion (Sec. 4).

2. Scene representation

2.1. Overview

Our goal is to learn models of scene categories from

single video sequences and use these models to categorize

query video sequences. In this section we explain in de-

tails our proposed representation for modeling a scene from

video sequences. Let us denote by c a scene category and

by s a video shot capturing a specific scene of category c.

The first step is to recover the scene structure (3d points)

and camera location from the video sequence s. This can

be implemented by using state of the art SFM techniques as

explained in Sec. 2.2. The reconstructed 3D points along

with the camera locations are used to fix a local reference

system and a working volume V o ( Fig. 1). The working

volume is defined as the 3D volume that encloses the ma-

jority of reconstructed 3D points associated to s (Sec. 2.3).

This steps is critical if one wants to guarantee that a scene

structure has consistent alignment and scale across different

instances s1, s2...sn of the same scene class.

The next step is to transfer appearance information from

the images (frames) of the video sequence to each recon-

structed 3D point. This can be easily done since 3D points

are associated to matched feature key points across the

frames of the video sequence si, as explained in (Sec. 2.2).

Appearance information is encoded by labeling each image

key point using a dictionary of learnt codewords. Image key

point labels are transferred to the corresponding 3D point

using a voting scheme (Sec. 2.4).

Once each 3D point is associated to a codeword label,

the spatial distribution of such codewords in the working

volume must be captured. Inspired by some of the previous

works in 3D shape matching [11], we model such distri-

bution by using histograms. In our work each histogram

is capturing the frequency of occurrences of codewords in

a sub volume V l: The ensemble of such histograms com-

puted at different sub-volume locations and dimensions are

used to model the overall distribution of codewords in V o.

In practice, a hierarchical structure of sub-volumes is con-

structed by recursively subdividing the portion of V o into

smaller sub-volumes V l (Sec. 2.5).

We claim that the 3D hierarchical structure of histogram

of codewords is a good representation for modeling the in-

terclass and intra-class scene variability (different scene cat-

egories differ in terms of their overall codeword label dis-

tribution as well as their multi-scale spatial distribution in

the 3D working volume). Furthermore, we claim that gen-

eralization within each scene category is achieved because:

i) scene shape variability across instances of the same scene

category is accommodated by the ”bag-of-words” paradigm

built on top of multi-scale hierarchical structure; ii) appear-

ance variability is accommodated by introducing the vocab-

ulary of codewords.



Critically, a hierarchical pyramid structure for his-

tograms of codewords has been proposed for modeling

scene categories in 2D images [16] and has been proven

to produce high classification rates. Our method, however,

is not just an extension of [16] to 3D but it differs in one

important aspect. The spatial pyramid structure in [16] re-

cursively decomposes the image into quadrants following

22l progression. Each stage of the decomposition l is called

level. The natural extension of the spatial pyramid to 3D

would be to recursively decomposing the working volume

into eight equal cubic octants following a 23l progression;

thus at level l the 3D decomposition has 2l times more bins.

Notice, however, that, unlike the 2D case where features

statistically occupy the image in an almost uniform fash-

ion across categories, in the 3D case points tend to con-

glomerate into specific regions in the working volume - that

is, points occupy sparse locations in the 3D space (Fig. 5).

The consequence of this is clear: as the level of decom-

position increases, the percentage of empty octants quickly

increases, leaving only a sparse and limited number of oc-

tants embedding the actual scene structure. Thus, rather

than subdividing the whole volume using a blind pyramid

decomposition scheme, we only decompose volumes that

are likely to contain scene structure. We call this scheme an

occupancy decomposition scheme (Sec. 2.5).

2.2. Structure from Motion

The first step of our algorithm is to generate the 3D ge-

ometry of scene and camera locations from our input video

sequences. We use a Structure and Motion solver similar

to [6]. This begins by extracting SIFT [18] key-points from

the input video sequence, resampled at 1 frame / second.

Consistent 2-view matches are found via robust solution

for the Fundamental Matrix using RANSAC. Initial images

for bundle adjustment are selected using a 3D information

criterion similar to GRIC [27]. From here, bundle adjust-

ment proceeds in a metric coordinate frame. Each camera

is parameterized by a rotation matrix, translation and fo-

cal length, and these values are initialized by copying the

parameters of the best matching image. Images are added

one by one, with a pose estimation step with fixed structure

preceding joint optimization over all cameras and structure.

The output of this step is a cloud of 3D points and the loca-

tion and pose of the cameras. Fig. 2 shows a few examples

of reconstructed geometry. Notice that we do not need to

use any prior knowledge about the camera pose or scene

geometry to obtain such reconstruction. As a result of the

reconstruction, 3D points are set in correspondence to im-

age key points, and image key points are linked across the

2 or more frames of the video-sequences if they all corre-

spond to the same 3D point (tracks) (Fig. 4). Experimental

validation shows our average re-projection error is less than

one pixel.

Figure 2. Examples of 3D reconstructions.

2.3. Aligning the Working Volume

The reconstructed 3D points along with the camera lo-

cations are used to locate, re-scale and orient the working

volume V o in the world reference system. This step is criti-

cal in order to guarantee that a scene structure has consistent

alignment across different instances s1, s2...sn of the same

scene class, thus making the 3D representation scale, rota-

tional and translational invariant. The working volume V o

is defined as a cube of side d that encompasses the majority

of 3D points. We set d = 2σ, where σ is the standard devia-

tion of the distribution of 3D points in space and normalize

(rescale) the cube size so as to have a cube side of unitary

length. The orientation of V o in space requires more care-

ful analysis. It is clear that V o can be locked in 3D if the

orientation and direction of two (normal) vectors are deter-

mined. One normal direction and orientation is locked by

estimating the normal of the ground plane.

We estimate the ground plane using a source of meta-

data that the camera-person unconsciously provides via the

camera trajectory. To do this, we make use of the following

assumptions: 1) The camera is kept at a constant height; 2)

The user does not twist the camera relative to the horizon;

3) The ground plane is flat (i.e. the plane normal is aligned

with gravity). In practice, assumptions 1 and 2 are obeyed

quite well by even an amateur camera-person, and assump-

tion 3 is also reasonable for our sequences. Given that these

assumptions hold, the camera x-axes and centres of projec-

tion all lie in the same plane (the ground plane). We can

combine these sources of information by finding the nor-

mal to the plane containing the camera motion vectors and

x-axis directions

u
∗ = arg min

u

u
T
Cu , (1)

where u is a unit vector and C is given by



C =
∑

i

u
(i)
x u

(i)T
x +

∑

i

u
(i)
m u

(i)T
m . (2)

u
(i)
x is a unit vector parallel to the x-axis of the ith cam-

era, and u
(i)
m is a unit motion vector between that camera

and another camera selected at random from the sequence.

This gives equal weight to the information provided by as-

sumptions 1 and 2. Note that there is a degeneracy in this

procedure if the motion vectors and camera x-vectors are

all parallel, in which case there is a 1 parameter family of

valid normal vectors. However, this is unlikely to occur in

practice as it would require the camera to translate exactly

sideways along its x-axis in all frames.

A second normal can be estimated by assuming that (at

least) one dominant planar surface exists in the scene. This

is a reasonable assumption as we are focussing on classify-

ing urban scene categories that are likely to contain vertical

planes such as walls, fences, or facades. The orientation of

the cube can be fixed using this second normal.Such pla-

nar surfaces can be identified by analyzing the distribution

of normal vectors computed from the 3D points (Fig. 3).

Standard techniques can be used for robustly estimating the

normals from a neighbor of 3D points. Normals can be used

to build a co-variance matrix whose eigenvalues indicate the

modes of the distribution. The first mode corresponds to the

first dominant plane. The remaining ambiguity - the cube

orientation is defined up a 180 rotation - can be resolved

by using the visibly constraint: the normal vectors must

be pointing toward camera view centers (Fig. 3). Notice

that other methods based on pyramid matching [21, 10, 16]

make no attempt to set a reference system in 2D (for achiev-

ing rotational or scale registration).

Experimental analysis shows that this registration proce-

dure is very robust for urban scenes. Our quantitative anal-

ysis (based on visual inspection) shows that the rough loca-

tion of the ground plane is correctly estimated about 95%
of times and that most of the sequences do contain a dom-

inant plane (thus, a dominant normal orientation). Notice

that we obtain successful alignment even when no corners

(plane intersections) are detectable in the video sequence.

Some examples are reported in Fig. 3.

2.4. Codeword Dictionary and Labeling

Next, appearance information must be transferred from

the images (frames) of the video sequence to each recon-

structed 3D point. This task is easy since 3D points are

associated to matched image key points across the frames

of the video sequence (Sec. 2.2, Fig. 4). First, a dictionary

of codewords is constructed to capture epitomic 2D local

appearance information across instances and category. This

is done by clustering descriptors associated to image key

points (extracted from training images) and assigning code-

words labels to each cluster center. Then, each keypoint
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Figure 3. Computing the orientation of the working volume V
o in

the world reference system is critical in order to guarantee that a

scene structure has consistent alignment across different instances.

See text for details. Top row: The reconstructed 3D points along

with the camera locations are used to locate and orient the work-

ing volume V
o in the world reference system. Green lines indicate

the ground plane; cyan lines define the sky plane. The blue nor-

mal indicates the plane facing the cameras (viewer). Bottom row:

Distribution of normal vectors computed from the 3D points. The

main mode of this distribution (highlighted by the circle) corre-

sponds to the dominant plane in the scene.

in each image is assigned to a codeword based on descrip-

tor similarity. Finally, image key point codeword labels are

transferred to the corresponding 3D point. Since codewords

labels may not be in agreement, a simple voting scheme

is used to select the actual 3D point label. Specifically,

the label with highest percentage of occurrence among all

matched key-points is selected. The percentage of occur-

rence may be used to prune out 3D points whose label is

assigned with low confidence.

2.5. The hierarchical spatial structure

Once each 3D point is associated to a codeword label,

the spatial distribution of such codewords must be captured

at different scales and different locations in the working vol-

ume V o (hierarchical spatial structure). We will first illus-

trate the simpler case of modeling such distribution using a

3D pyramid structure H of histograms of codeword labels.

Pyramid decomposition scheme. We proceed by de-

composing the working volume V o into a pyramid struc-

ture of sub-volumes. This is similar to an octree subdivision

scheme where V o is partitioned by recursively subdividing

it into eight octants V l
1 ...V l

8 (Fig. 1). If we denote by L the

last level of subdivision, it is easy to verify that the num-

ber D of partitions at level L is D = 23L. The pyramid

structure H(L) is obtained as an ensemble of histograms

H l of codewords computed in each sub-volume for each



tracks between corresponding keypoints

frames

3D points

key point

Figure 4. As a result of the reconstruction, 3D points are set in cor-

respondence to image key points, and image key points are linked

across the 2 or more frames of the video-sequences if they all cor-

respond to the same 3D point (tracks).

level of subdivision l. H l is obtained by concatenating 23l

histograms computed for all of the 23l sub-volumes for level

l. Histograms are concatenated so as to be suitable for SVM

classication when equipped with a pyramid matching kernel

(Sec. 3).

Occupancy-based decomposition scheme. It is clear

that as the level of the pyramid structure increases, the his-

tograms are computed on smaller supports, hence increas-

ing the resolution of the overall the representation. As

mentioned in Sec. 2.1, one drawback of this decomposition

scheme is that, as the level increases, the number of octants

that remains empty becomes higher and higher. Using the

database introduced in Sec. 4 we have calculated the statis-

tics of occupancy of each octant for each level computed

across sequences and across categories. The results are re-

ported in Fig. 5,(a). As the figure shows, at level 0, there is

obviously only one volume that contains all the points; sim-

ilarly, at level 1, all of 8 octants (sub-volumes) are occupied

by 3D points. However, at level 2 we estimate about 40% of

empty octants; this number becomes exponentially smaller

as the number of level increases. Even if the number of cat-

egories increases we still expect some portions of the cube

to be empty. This suggests that a simple pyramid decompo-

sition: i) produces a large number of uninformative octants

that yield unnecessary long histograms; ii) as the level in-

creases, the size of each octant quickly reaches small vol-

umes (at level 2, V2 = V0/64; at level 4, V2 = V0/4096),

whereas a slower decay would be more adequate in captur-

ing the scene structure across scales.

We propose to decompose the working volume as fol-

lows. This decomposition is constructed once per all by

looking at the statistics of occupancy of 3D point across

categories for a validation set. First, the level-zero volume

level 1

1

2

3

4

5
x 10

5
Sub-volume  Occupancy Estimation

level 0

level 2

Volume Vo

Volume Vo

Volume VL

(a) (b)

Figure 5. (a) Occupancy (that is, number of 3D points) within

each sub-volumes (octants) for different levels for the dataset in-

troduced in Sec. 4. (b) Anecdotal example of distribution of points

in a volume V
o. The new working volume V̄

o (outlined in orange)

is defined as the collections of level-L octants that have a level of

occupancy greater than a threshold T .

V o is recursively decomposed in octants by following the

pyramid decomposition scheme described above until level

L. L defines the granularity of our representation. Sec-

ond, the level zero volume is redefined as V̄ o - that is, as

the collection of those level-L octants that contain a num-

ber of 3D points greater than a threshold T with probability

p (Fig. 5(a)). Thus, octants that tend to be empty most of

the times are excluded. T , L and p are determined empir-

ically. Third, V̄ o is recursively randomly decomposed into

sub-volumes using a quadratic or linear progression func-

tion. The structure of histograms H̄(L) is now obtained as

the ensemble of the histograms H̄ l of codewords computed

in each sub-volume for each level of subdivision l of V̄ o .

More specifically: H̄(L) = {H̄o, H̄1, ...H̄ l, ...H̄L}, where

H̄ l is the histogram in V̄ o; H̄ l is obtained by concatenating

2l histograms computed for all of the 2l sub-volumes for

level l. Again, these histograms are matched using a SVM

classification machinery (Sec. 3).

Computational efficiency. One clear advantage of the

occupancy-based decomposition scheme is that it is compu-

tationally more efficient than the basic pyramid one: Fewer

and fewer cubes are recursively decomposed at each itera-

tion (level) – that is, only cubes that contain more than T
points with probability p are further processed; This results

in having a structure H̄(L) of concatenated histograms with

a reduced number of bins, and thus, a matching procedure

that is faster and more efficient.

View point invariance. We note that this representa-

tion for scene categories is robust with respect to view point

changes. The reason is three-fold: i) the underlying 3D

structure is merely view point invariant thanks to the align-

ment procedure discussed in Sec. 2.3; ii) each histogram

captures a distribution of codewords which are obtained by

vector quantizing SIFT descriptors which are known to be

robust with respect to small view point changes [19]; iii) the

distribution of codewords within each sub-volumes sum-

marizes the appearance of the scene from several vantage
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Figure 6. Examples of frames from our dataset of 5 scene cate-

gories videos.

points; indeed, codewords are assigned to 3D points which

are extracted from tracks of features across frames (Fig. 4);

thus, subvolumes include a redundant number of 3D points

associated to multiple observations of the same scene from

different vantage points; this enables partial view point ap-

pearance invariance.

3. Discriminative Model Learning

In Sec. 2 we have proposed a new representation for

modeling a scene from a video sequence. Our represen-

tation is built on the 3D histogram structure H̄(L) as dis-

cussed in Sec. 2.5. From now on, we simplify the notation

by suppressing the bar in H̄ and V̄ . By using a suitable

kernel, it is possible to learn a SVM classifier for discrimi-

nating 3D histogram structures H(L) belonging to different

scene classes. The kernel is chosen as the weighted sum of

histogram intersections (also called, the 3D matching ker-

nel), similarly to those originally introduced by [10, 16]:

K(Hi(L), Hj(L)) = woI(Ho
i , Ho

j ) +
L∑

l=1

wlI(H l
i , H

l
j)

where the histogram intersection I is defined as

I(H l
i , H

l
j) =

D∑

k=1

min(H l
i(k), H l

j(k))

and where L is the level of decomposition, D = 2l is the

total number of cells of a 3D histogram structure of level l;
and w is the weight of the level and is calculated as inversely

proportional to the volume of the octant at level l. Note that

this is a Mercel kernel since it is constructed as a linear

combination of histogram intersections I which are shown

to satisfy the Mercel condition [21, 10].

4. Experimental Results

We tested the ability of our method to categorize query

video sequences. We validate our algorithm with respect

to a challenging dataset [2] comprising 5 scene categories:

’downtown’, ’suburbia’, ’campus’, ’shopping mall’, ’gas

station’. Each category contains 23 short video sequences

(400 frames in average). Each video sequence has a reso-

lution of 720 × 480 pixels per frame. The videos are cap-

tured with a consumer portable camera, with unstable cam-

era motion and under very generic poses mimicking an user

walking on a sidewalk. Examples of frames from videos

in our database are shown in Fig. 6. Even if the scene cat-

egories share similar appearance, subtle differences across

categories are noticeable. For example the campus tends to

have a larger number of windows, the malls tend to show

shorter roof structures. In our experiments, only about 5%
of some 400 frames per sequence were automatically se-

lected by the SFM algorithm and used for the actual re-

construction. Each frame of each video sequence contained

around 2000 − 3000 SIFT descriptors, whereas the recon-

struction (obtained from a given video sequence) contained

approximately 10000−20000 3D points in total. The video

sequences were divided in a training and testing set using a

leave-one-out (LOO) scheme. This way, at every step of the

LOO, as many as 22 video sequences were used in training

and one in testing, for a total number of 23 video shots per

category being tested. The dictionary of codewords as well

as the structure of decomposition of the working volume

were learnt separately in order to avoid contamination.

We validated our method using the occupancy-based 3D

hierarchical structure discussed in Sec. 2.5. We reported 5-

class classification results in Fig. 7. The base volume V̄ o

was estimated as 55% of the initial volume V o. V̄ o was de-

composed following a quadratic progression. As the figure

shows, this subdivision scheme produces the highest per-

formance (72.2%) at the third level of decomposition (with

volume size = V̄ o/16 ). This indicates the optimal level

of decomposition of the 3D structure. After that level, per-

formances dwindle down. Notice that the histogram length

at level 3 is just 29 bins, which makes the construction of

the kernel matrix very efficient. These results were obtained

using a dictionary of 200 codewords. Different dictionary

sizes produced either inferior or equivalent results.

Furthermore, we have compared our method with the 2D

spatial pyramid matching algorithm for 2D scene classifica-

tion [16]. This experiment is useful for bench-marking our

results. The method was applied to individual frames of the

video sequence. Since multiple frames are available from

the video sequence, and the choice of the frames may affect

the classification results, we randomly selected N frames

from each video sequence in testing and computed the clas-

sification accuracy as the average across the N frames. In

our experiment N = 5. Fig. 9 shows the average 5-class



40

45

50

55

60

65

70

75

P
E

R
F

O
R

A
M

N
C

E

2D BENCHMARK (no 3D geometry)

3D BENCHMARK (no appearence)

Vo /4 Vo /8 Vo /16 Vo /32 Vo /64

Figure 7. Overall classification accuracy for a 5-class recognition

experiment using occupancy-based 3D hierarchical structure. Per-

formances are plotted as function of the level of decomposition

of the initial volume V̄
o. The best performances (72.2%) are ob-

tained at the third level of decomposition.

classification accuracy for three levels of the pyramid, and

for several values of the dictionary size. The corresponding

standard deviation is depicted as a vertical bar by each data

point. Notice that the best performances (54%, obtained for

L = 2) are 18.2% lower than the ones observed for the 3D

case. Performances for L > 2 appear to be lower than 54%.

A similar behavior was reported in [16]. Also, notice that

performances are overall quite low. This is not surprising

given that the scene categories in our dataset are all urban

scenes and share very similar appearances. This also sug-

gests that our dataset is a good starting point for validating

algorithms for urban scene classification. Classification ac-

curacy for individual classes is reported in the confusion

table in Fig. 8.

Finally, we have compared our algorithm with two 3D

shape matching methods where the appearance information

is partially or fully ignored. The first comparison was done

by using the same 3D spatial hierarchical scheme as dis-

cussed above. The idea is to eliminate the contribution of

appearance information by utilizing dictionaries of code-

words of reduced size. When the dictionary size is 1 (i.e.,

there is only one codeword), no appearance information

is encoded. Results are summarized in Table 1. Notice

that as the level of decomposition increases the hierarchical

structure starts capturing stronger and stronger information

about the 3D layout of the scene categories. The best re-

sults however (which are achieved for level L = 4) are still

significantly lower than those obtained using the complete

scheme.

The second comparison is made by replacing codewords

using vector quantized local shape descriptors, i.e rather

than labeling each 3D point with codewords computed by
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Figure 8. Left: Confusion table showing classification accuracy

using 2D pyramid matching framework (level two; 200 code-

words). Right: Confusion table showing classification accu-

racy using the occupancy-based 3D structure matching framework

(level 3; 200 codewords).

level 0 level 1 level 2 level 3 level 4

NA 0.21 0.27 0.35 0.42 0.43

Table 1. 3D Benchmark comparison table. NA: results using our

3D hierarchical structure with no appearance (dictionary size=1).
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Figure 9. Overall classification accuracy for a 5-class recognition

experiment using the 2D spatial pyramid matching algorithm [16].

The figure reports performances for three levels, and several values

of the dictionary size. No significant improvement is observed

after level 2 as reported by [16].

clustering relevant keypoint SIFT descriptors from the im-

age, we label 3D points with codewords computed by clus-

tering 3D shape context descriptors [3, 9] computed around

the 3D points. In our experiments 3D shape context descrip-

tors were 48-dimensional histograms composed of 3 radial

bins and 4× 4 angular bins. We used a level-0 3D structure

of histograms for capturing the distribution of shape-context

codewords. This allows us to make a fair comparison with

appearance-based methods. We found a classification accu-

racy of 41%. This result confirms the superior performance

of the occupancy-based 3D structure.

We take note that classifying a query sequence using our

SVM-based 3D structure matching scheme is very fast and

can be performed in the order of a second on a standard

machine. The actual 3D reconstruction of the query video

sequence, however, may be more demanding computation-



ally. Even if our current implementation cannot achieve real

time reconstruction, recent research [20] has shown that this

can be eventually made possible.

5. Conclusions

We have presented a new method for scene categoriza-

tion from low definition video sequences. As far as we

know, our method is one of the first attempts to combine

structure (collection of 3D points) with imagery (feature

points labeled by codewords) into a single framework for

scene categorization. We argue that the underlying 3D

structure of the scene can greatly help categorization by

capturing the typical distribution of appearance elements in

3D. Our claims are validated by a series of experiments car-

ried out on a challenging dataset of video sequences com-

prising 5 scene categories. We see this work as a promising

starting point toward the goal of designing systems for co-

herent scene understanding and automatic extraction of the

object semantics in the scene.
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