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Abstract. Tracking multiple objects is important in many application
domains. We propose a novel algorithm for multi-object tracking that
is capable of working under very challenging conditions such as min-
imal hardware equipment, uncalibrated monocular camera, occlusions
and severe background clutter. To address this problem we propose a
new method that jointly estimates object tracks, estimates correspond-
ing 2D/3D temporal trajectories in the camera reference system as well
as estimates the model parameters (pose, focal length, etc) within a
coherent probabilistic formulation. Since our goal is to estimate stable
and robust tracks that can be univocally associated to the object IDs,
we propose to include in our formulation an interaction (attraction and
repulsion) model that is able to model multiple 2D/3D trajectories in
space-time and handle situations where objects occlude each other. We
use a MCMC particle filtering algorithm for parameter inference and
propose a solution that enables accurate and efficient tracking and cam-
era model estimation. Qualitative and quantitative experimental results
obtained using our own dataset and the publicly available ETH dataset
shows very promising tracking and camera estimation results.

1 Introduction

Designing algorithms for tracking objects is critical in many applications such
as surveillance, autonomous vehicle and robotics. In many of these applications
it is desirable to detect moving humans or other targets as well as identify their
spatial-temporal trajectories. Such information can enable the design of activity
recognition systems for interpreting complex behaviors of individuals and their
interaction with the environment. This can also provide crucial information to
help an autonomous system to explore and interact with complex environments.

Among the key desiderata of an ideal tracking system researchers have identi-
fied the ability to: i) estimate stable and accurate tracks and uniquely associate
them to a specific object; ii) associate tracks to 2D/3D-temporal trajectories
in the 3D scene; iii) work with the minimal hardware equipment (e.g., single
camera-vs-stereo cameras; no laser data); iv) work with a moving camera. Meet-
ing all these desiderata is extremely challenging. For instance estimating stable
tracks is difficult as objects are often subject to occlusions (they cross each other
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Fig. 1. Example result on ETH Seq.#2. Left: targets(colored bounding boxes) and
the trajectories automatically produced by our algorithm in the image plane. Right:
estimated location of targets (filled circles) on the 3D coordinate. Our algorithm not
only tracks targets in the 3D coordinate system, but also estimates ego-motion of the
camera by using ground plane features (red dots) and automatically discovers group
of people in the scene (magenta link). Our algorithm is capable to estimate the 3D
trajectories from a monocular moving camera.

in the image plane), illumination conditions can change in time, the camera mo-
tion can disturb the tracking procedure. Estimating tracks (trajectories) in the
3D world (or camera) reference system is also very hard as estimating 3D world-
2D image mapping is intrinsically ambiguous if only one camera is available and
camera parameters are unknown. Structure from motion (SFM) techniques are
often inadequate to estimate motion parameters in that: i) the reconstruction is
noisy and unreliable if small base-line is considered, ii) cluttered dynamic scene
elements violate the SFM assumption of static background, iii) the procedure is
computationally expensive and can be hardly implemented in real time.

Inspired by the work of [1] wherein a method for integrating multiple cues
(such as odometry, depth estimation, and object detection) into a cognitive feed-
back loop was proposed, we present a new framework for tackling most of the
issues introduced above in a coherent probabilistic framework. Specifically, our
goals are to: i) solve the multi-object tracking problem by using a single uncal-
ibrated moving camera; ii) handle complex scenes where multiple pedestrians
are moving at the same time and occluding each other; iii) estimate the 2D/3D-
temporal trajectories within the camera reference system.

The key contribution of our work relies on the fact that we simultaneously
estimate the camera parameters (such as focal length and camera pose) and track
objects (such as pedestrians) as they move in the scene (Fig.1). Tracks provide
cues for estimating camera parameters by using their scale and velocity in the
image plane; at the same time, camera parameters can help track objects more
robustly as critical prior information becomes available. This, in turn, allows
us to estimate object 3D trajectories in the camera reference system. Inspired
by [2], we utilize a simplified camera model that allows to find a compact (but
powerful) relationship between the variables (targets and camera parameters) via
camera projection constraints. The identification of a handful of feature tracks
associated with the static background allows us to add additional constraints to
the camera model. Eventually, we frame our problem as a maximum-posterior
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problem in the joint variable space. In order to reduce the (otherwise extremely)
large search space caused by the high dimensionality of the representation, we
incorporate MCMC particle filtering algorithm which finds the best explanation
in sequential fashion. Notice that, unlike previous methods using MCMC, our
method is the first that uses MCMC for efficiently solving the joint camera
estimation and multi-target problem.

The second key contribution is that we obtain robust and stable tracking
results (i.e. uniquely associate object identities to each track) by incorporating
interaction models. Interaction between targets have been largely ignored in the
object tracking literature, due to the high complexity in modeling moving targets
and the consequential computational complexity. The independent assumption
is reasonable when the scene is sparse (only few objects exists in the scene). In a
crowded scene, however, the independent motion model often fails to account for
the target’s deviation from the prediction, e.g. if a collision is expected, targets
will change their velocity and direction rapidly so as to avoid a collision. Thus,
modeling interactions allows us to disambiguate occlusions between targets and
better associate object labels to underlying trajectories. This capability is further
enhanced by the fact that our trajectories are estimated in 3D rather than in the
image plane. Our interaction models are coherently integrated in the graphical
model introduced above.

We validate our theoretical results in a number of experiments using our
own dataset [3] and the publicly available ETH dataset [1]. Our dataset con-
tains several sequences of multiple humans observed under challenging condi-
tions (moving camera with shakes, occlusions, etc). Our algorithm shows very
promising results (all the results were superior than the detector baseline). Also,
we evaluate our system functionalities and report detection rates by turning on
and off interaction/repulsion models and camera estimation capabilities. Such
results confirm our intuition that both camera models and interaction models
play a critical role into the construction of stable tracks. Moreover, experiments
with the ETH dataset show that our method outperforms (in terms of tracks
detection accuracy) the state-of-the-art results [1]. Anecdotal examples on both
datasets demonstrate that our algorithm is capable to estimate the 3D trajec-
tories of multiple targets in the camera reference system as well as estimate the
(moving) camera trajectory in a given world reference system.

2 Related Work

Multi-target tracking has received a large amount of interest among computer
vision researchers. Tracking algorithms based on appearance infromation [4–6]
are often able to track targets very well when the scene is uncluttered and the
camera is static. However, as the complexity of the scene increases (complex
background, crowded scene, etc), these algorithms suffer from the well-known
tracker drift problem [7]. Recent improvement in object detection [8, 9] makes it
possible to apply detection algorithms which can effectively reduce the amount of
error accumulated during tracking [10, 1, 11, 12]. However, nearly none of these
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algorithms [10, 12, 11] take advantage of the scene geometry or the interplay
between the scene and the camera model to improve the tracking capabilities,
especially for pruning out unlikely target trajectories, such as a floating human.
Furthermore, methods relying on detection results [8, 9] are still prone to high
degree of false alarms which result in false trajectory initializations. Not only
does this make the system unreliable, but also increases the complexity of the
correspondence problem – a critical component of the multi-target tracking algo-
rithm. Recently, [1] proposed a mobile tracking system that can simultaneously
carry out detection and tracking by incorporating various sources of information
(depth map, visual odometry). While this method demonstrates that putting
together cues into a cognitive loop greatly helps reduce the false alarm rate,
it leverages on the usage of stereo cameras and other specific hardware compo-
nents. Multi-target tracking can be also aided by considering interaction between
targets [13–15]. The usage of such interaction model, however, is mainly limited
to the repulsion models which cannot explain the targets moving as a group.
Moreover, such interaction models have never been incorporated into framework
for simultaneous camera and scene estimation, and object tracking.

3 Multi-Target Tracking Model

3.1 Overall Method

Given a video sequence, our goal is to jointly track multiple moving or static tar-
gets (e.g. cars, pedestrians), identify their trajectories in 3D with respect to the
camera reference system, and estimate camera parameters (focal length, viewing
angle, etc). We model each target as a hidden variable Zi in 3D space whose
trajectory in time must be estimated and separated from all other trajectories.
We argue that estimating trajectories in 3D is more robust than estimating tra-
jectories in the image plane because we can impose a number of priors in actual
3D space as we shall see next.

Such trajectories in 3D are estimated by measuring their projections onto
2D image plane which represent our observation variables Xi (Fig.2). Given the
observations, tracks Zi in 3D are estimated by jointly searching the most plau-
sible explanation for both camera and all the existing targets’ states using the
projection characterized by the camera model (Sec.3.3). Clearly the projection
from Zi to observation Xi is a function of camera parameters. Thus, we intro-
duce a simplified camera model (Sec.3.3) which allows us to reduce the number
of parameters that are required to be estimated. We assume rough initial cam-
era parameters are given and can be better estimated by the detected targets in
the image plane. All camera parameters at time t are collected in the variable
Θt. Moreover, as an important contribution of our work, we do not assume that
targets are moving independently but their motion may be interrelated. Thus we
introduce an interaction model which allows us to better estimate the states of
all target. Our interaction model is composed of repulsion and attraction model
(Sec.3.6). We assume i) targets cannot take the same location in the 3D coordi-
nate and cannot collide with each other (repulsion model), and ii) targets that
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have moved in a coherent fashion (as a group) up to time t are likely to move
as a group after time t as well (attraction model).

In our work, we assume that the following information can be extracted from
the video sequence: i) Visible targets’ location and bounding box can be detected
at each frame with some number of false alarms. Target detections are used to
initiate tracks and gather evidence for existing targets. We use the state-of-the-
art object detector [9] for detecting targets (sec.3.2). ii) Rough trajectories in
the image plane are available. This additional piece of information is used as a
complementary cue to better locate targets in the image plane and it is useful
when the target is not properly detected by the detector. We use mean-shift al-
gorithm [4] to obtain them (sec.3.2). iii) Feature points from static background
can also be identified and tracked. Background features help the algorithm esti-
mate the camera parameters’ variations in time. For this task, KLT tracker [16]
is incorporated in our algorithm. Given above cues, the targets are automatically
identified/tracked/terminated using our coherent multi-target model.

3.2 Track Initiation, Termination and Correspondence

Target initiation and termination. As detection results are given by the
detector, our multi-target tracking algorithm automatically initiates targets. If
there exists a detection that is not matching any track, the algorithm initiates
a target hypothesis. If enough matching detections for the hypothesis are found
in Ni consecutive frames, the algorithm will recognize the hypothesis as a valid
track and begins tracking the target. Conversely, if no enough detections are
found for the same target within Nt consecutive frames, the track is automati-
cally terminated.
Correspondence. Target correspondence is a very challenging problem by it-
self. For simplicity, we use the Hungarian algorithm [17] which is based on the
overlap ratio between existing targets and detections. We employ two indepen-
dent sources of information to solve the correspondence problem: affinity ma-
trices of prediction and appearance tracking. The first one is constructed using
the image plane prediction of ith target X̂it = E[Xit|Zi(t−1), Θt−1] in time t,
where t indicates the time dependency at instant (time stamp) t. By computing
the negative log of pairwise overlap ratio between the predictions X̂it and de-
tections Xjt, A(Xit, Xjt) = −log( Intersection(Xit,Xjt)

Union(Xit,Xjt)
), we construct a pairwise

affinity matrix between detections and predictions. The second one leverages on
the mean-shift tracker [4] (this cue is also used in the estimation). When a new
target hypothesis is created, an individual mean-shift tracker is assigned to each
target and applied to each frame until the target tracking is terminated. The
appearance model (color histogram) is updated only when there is a supporting
(matching) detection to avoid tracker-drift. Similarly to the prediction-detection
affinity matrix, we compute another affinity matrix between mean-shift output
Yit and detections. Given the two affinity matrices, we sum the two matrices to
calculate the final matrix which will be the input of Hungarian algorithm. In
following sections, we assume the correspondence is given by this algorithm, so
Zit and its observation Xit are assumed to be matched.
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3.3 Camera Model and KLT features

Camera Model. Due to the inherent uncertainty in the camera projection
matrix, it is very challenging to infer the exact location of an object in 3D given
image plane location and camera parameters. To mitigate this problem, we set
a number of assumptions on the underlying geometry and camera configuration
similarly to [2]. We additionally assume that the camera follows forward motion
only. With these assumptions, the camera parameters can be represented by
following variables: focal length fθ, height hθ, horizontal center point uθ, horizon
position vθ, panning angle φθ, absolute velocity rθ, and 3D location (xθ, zθ)
with respect to the reference system associated to the initial frame. Thus, the
projection function fP can be defined

X = fP (Ẑ;Θ) =


fθxz
zz

+ uθ
fθhθ
zz

+ vθ
fθhz
zz

 , Ẑ = f
−1
P (X;Θ) =


hθ(ux−uθ)
vx−vθ
fθhθ
vx−vθ
hxhθ
vx−vθ

 , Z =

[
R(φθ) 0

0 1

]
Ẑ +

xθzθ
0


(1)

where X = [uX , vX , hX ]T and Z = [xZ , zZ , hZ ]T ; uX , vX , and hX are the
(bottom) center point location and height of an observation in the image plane
respectively; xZ , zZ , and hZ are the location and the height of the object in
world coordinate. Here Ẑ denotes the location of the target in current camera
coordinate system, and Z denotes the state of the target in global reference
system.
KLT for Camera Motion. In order to track multiple targets reliably, it is
crucial to get a good estimate of the camera’s extrinsic parameters (panning,
location, and velocity). At that end, we use KLT features [16] as additional
observations. Suppose we can extract feature points τt which are lying on the
ground plane. Then by applying the inverse projection f−1

P and forward projec-
tion fP on τt−1 with camera parameters in each time frame Θt−1, Θt, we can
obtain the expected location of τ̂t. By comparing the difference between τt and
τ̂t , we can infer the amount of camera’s motion in the time. As we will show in
the experimental section, this feature improves the tracking performance signif-
icantly. This is inspired by SLAM procedures such as [18, 19].

3.4 Target Class Model

We use state-of-the-art object detector [9] for detecting targets. Despite its excel-
lent performance, [9] still yields false detections in the challenging experimental
setting we work with. In order to differentiate such false detections, we introduce
one more multinomial hidden variable c in the target states Zt, which indicates
the object class of the target being tracked. If one target’s c variable is set to be 0,
then the target is not a valid object and thus can be removed. To guide the algo-
rithm estimate the category of the class, we assign a height prior to each variable
describing an object class. This follows a normal distribution with a particular
mean and variance. Non-object class are described by a uniform distribution.
Thus, if any observation yields a very unlikely large or small height for a certain
target class (such as 1 meter for humans), than the algorithm will automatically
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Fig. 2. Graphical model describing underlying model for multi-object tracking. Shaded
nodes represent observable variables and empty nodes shows the hidden variables.
Panel (a) shows overall relationship between observations X,Y, τ , camera parameters
Θ, ground features’ state G and targets’ states Z. Here, we dropped the mean-shift
observation Y on the graph to avoid clutter. Panel (b) shows the interaction between
targets (i, j, k). The interaction is modelled by the undirected edges between targets.

reject out this observation. Not only does this help the algorithm to reduce the
number of false alarms, but it also helps the camera parameter estimation to be
more robust since it essentially rejects out outliers in the estimation process.

3.5 Sequential Tracking Model with Independent Assumption

In this section, we discuss in details the probabilistic relationship between the
hidden statesΩt−1 = [Zt−1, Θt−1, Gt−1] and all the observations χt = [Xt, Yt, τt].
Given the evidences χt and the estimates Ωt−1 at a previous time stamp, we
can compute the posterior distribution P (Ωt|χt). Here, we use superscripts for
denoting all the history up to time t and subscripts for current time t variables.
Notice that Zt, Gt, Xt, Yt, and τt collects variables for each individual target
state, ground feature state, target observation, and feature observation respec-
tively. Following the basic Bayesian sequential model, the posterior distribution
P (Ωt|χt) can be factorized as follows :

P (Ωt|χt) ∝ P (Ωt, χt|χt−1) = P (χt|Ωt)
∫
P (Ωt|Ωt−1)P (Ωt−1|χt−1)dΩt−1 (2)

Here, the first term P (χt|Ωt) represents the observation model and the term
P (Ωt|Ωt−1) explains the motion model. Based on the conditional independence
assumption represented in Fig.2, each term can be further factorized into :

P (χt|Ωt) = P (Xt, Yt|Zt, Θt)P (τt|Gt, Θt) (3)
P (Ωt|Ωt−1) = P (Zt|Zt−1)P (Θt|Θt−1)P (Gt|Gt−1) (4)

Target Model. The targets’ state Zt = {Zit}Ni=1 is composed of 6 variables,
(x, z) 3D location, (vx, vz) velocity, h height, and c class indicator. Given this
parameterization, we formulate the motion model for targets as P (Zt|Zt−1) =∏N
i=1 P (Zit|Zi(t−1)) where

P (Zit|Zi(t−1)) ∝ P (mit|mi(t−1))P (hit|hi(t−1))P (cit|ci(t−1))P (hit|cit) (5)
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Here, the variables x, z, vx, vz were substituted with m to make the notation
more compact. The first term P (mit|mi(t−1)) is modeled as a simple first or-
der linear dynamic motion model with an additive gaussian noise. The second
term P (hit|hi(t−1)) is modeled as P (hit|hi(t−1)) ∼ N(hi(t−1), σh) to allow some
degree of variation in height. P (cit|ci(t−1)) is modeled as a indicator function
I(cit = ci(t−1)), since we do not allow the target’s class to be changing in time.
The targets’ height prior, P (hit|cit), is represented either as a normal distribu-
tion with mean and standard deviation (hck , σck) when c = k or as a uniform
distribution pc0 when c = 0 (no object). In our MCMC particle filter implemen-
tation, this uniform-gaussian mixture formulation plays an “outliers-rejection”
role similar to RANSAC, since it will “push out” targets from class k which are
not consistent with the “consensus” to maximize the posterior distribution. Ob-
servations are modeled using the forward projection fP : Xit = fP (Zit, Θt) +W ,
where W is gaussian noise. Similarly, we assume that mean shift tracker can be
modelled as Yit = fP (Zit, Θt) + V , again V is gaussian noise.

Ground feature Model. As stated in Sec.3.3, we use KLT tracker to track
stationary features on the ground so as to get a robust estimate of the camera
motion. This can be achieved by introducing the hidden state Git which captures
the true location of a ground feature in 3D. Let τit be the ground feature tracked
in the image plane at time t, and τ̂it the projection of Git into the image plane
at t. This indicates the expected location of the feature Git at t. Git is composed
of three variables x, z, α (its 3D location and a binary indicator variable, such
variable encodes whether the feature is static and lies on the ground or not)
and τit have two variables u, v (its location in the image plane). Assuming the
ground plane features are static, the motion model of Git will have a simple form
of indicator function, P (Git|Gi(t−1)) = I(Git = Gi(t−1)).

The relationship between the state and observation (P (τt|Gt, Θt)) can be
modelled using the camera projection function fP if the feature is truely static
and lying on the ground plane (α = 1). However, if either the feature is moving
or the feature is not on the ground plane (α = 0), the projection function fP does
not model the correct relationship between τit and Git. Thus, the observation
process is modeled as P (τt|Gt, Θt) ∼ N(fP (Git, Θt), ΣG) if αi is 1, otherwise
P (τt|Gt, Θt) ∼ unif(pG). Similar to the class variable in target model, those
features that are not consistent with the majority of other features will be au-
tomatically filtered out.

Camera Model. In order to deal with camera motion, we also model camera
motion parameters. Note that the camera parameters are coupled with the target
and feature observations and cannot be directly observed. The temporal relation-
ship between camera parameters is simply represented as a linear dynamic model
xtθ = x(t−1)θ−r(t−1)θ∗sin(φ(t−1)θ)∗dt and ztθ = z(t−1)θ+r(t−1)θ∗cos(φ(t−1)θ)∗dt
(we defined the positive value of φ for the left direction so there appears minus
sign on xt). We inject uncertainty in the velocity parameter by adding gaussian
noise. The uncertainty of the other camera parameters (fθ, hθ, uθ, vθ and φθ) are
just modeled as additive gaussian noise.
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3.6 From Independent to Joint Target Model

In real world crowded scenes, targets rarely move independently from each other.
Targets rarely occupy the same physical space (repulsion model). Moreover, once
human targets form a group, they typically tend to move together in subsequent
time frames (group model). In this work, we employ two interaction models be-
tween targets (repulsion and group model) to aid the tracking alogrithm. How-
ever, since these two interactions cannot occur at the same time, we introduce a
hidden variable βijt that lets us select the appropriate interaction model (mode
variable).

The interaction models are modeled as pairwise potentials between current
targets’ states, thus forming a Markov Random Field as shown on fig.2. Thus
the targets’ motion model P (Zt|Zt−1) =

∏N
i=1 P (Zit|Zi(t−1)) can be substi-

tuted by:
∏
i<j ψ(Zit, Zjt;βijt)

∏
i<j P (βijt|βij(t−1))

∏N
i=1 P (Zit|Zi(t−1)) where

ψ(Zit, Zjt;βijt) is the pairwise potential.
Mode variable. In order to model transitions between interactions, we describe
the transition probability P (βijt|βij(t− 1)) as pβ if βijt = βij(t− 1), and as
1−pβ , otherwise. In our implementation, pβ is set to be 0.9. Again, this variable
is automatically estimated given observations. Thus,

ψ(Zit, Zjt;βijt) =
{
ψg(Zit, Zjt), if βijt = 1
ψr(Zit, Zjt), otherwise

(6)

Repulsion model. In order to push away targets that are too close, we model

the repulsion potential as ψr(Zit, Zjt) = e
−1
crrij where rij denotes the distance

between two targets in the 3D space and cr is a parameter controlling the repul-
sion force between those. This pairwise potential has larger values as two targets
are located far away, and has a value closer to 0 when two targets are nearby.
Group Motion Model. The assumption here is that, if two targets are moving
together while keeping the same distance (group movement), they will tend to
keep the same relative location in consecutive time frames as well. This can be
modelled as pit− pjt ≈ pi(t−1)− pj(t−1), which is in turn equivalent to vit ≈ vjt,
where pit is the target’s location in 3D and vit is the velocity component of Zit.
Thus, we model the group motion potential as a ψg(Zit, Zjt) = e−cg∗‖vit−vjt‖,
where cg is a parameter controlling the similarity of velocities. Since groups of
targets are also defiend by the distance among each others, we enforce that the
distance rij between two targets should be close enough in order to be considered
as a group. This can be modeled by multiplying ψg with a soft step function
and obtain ψg(Zit, Zjt) = 1

1+esg(rij−tg) ė
−cg∗‖vit−vjt‖, where sg is a parameter

regulating the slope of soft step function and tg is a distance threshold.

4 Tracking Multi-Target by MCMC Particle Filter

Considering the complexity of the given probabilistic formulation, it is extremely
challenging to design an analytical inference method for estimating the Maximum-
a-Posteri solution. This challenge is due to the presence of: 1) the high nonlin-
earity of projection function(EQ.1); 2) the MRF induced by pairwise potential;
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3) the non-gaussian nature of the posterior and prior distribution. Instead of
relying on an analytical solution, we employ a sampling based sequential filter-
ing algorithm (the Monte-Carlo Markov-Chain (MCMC) Particle Filter [13]).
Inspired by [13], we employ MCMC sampling scheme to propagate the posterior
distribution in the particle filtering framework. In each frame, we keep the num-
ber of samples without weights and thus approximate the prior distribution with
N dirac samples P (Ωt−1|χt−1) ≈ {Ωrt−1}Nr=1. Subsequently the final posterior
distribution in time t can be approximated by following equation

P (Ωt|χt) ≈ cP (Xt|Zt, Θt)P (τt|Gt, Θt)
N∑
r=1

P (Zt|Z(r)
t−1)P (Gt|G(r)

t−1)P (Θt|Θ(r)
t−1) (7)

As a condition for the construction of an MCMC method, we need to design
a Markov chain over the joint space of Ω. This has the same stationary dis-
tribution as the posterior distribution P (Ωt|χt). First, we define the proposal
distribution as a combination of 1) weighted sampling from all existing targets,
features, and camera and 2) appropriate random perturbation to the chosen node
(additive gaussian or switching state). The proposal density can be represented
as follows: 1) sample one hidden state(camera, target, feature) with probability
pi = wi∑M

k=0 wk
. 2) if the camera Θ is selected, sample from a multinomial normal

distribution to get new sample Θ′t = Θ
(s)
t + µ, where µ is the gaussian sample.

3) If a target Zi is chosen: i) sample from a multinomial normal distribution
and add it to x, z, vx, vz, h; ii) switch the class variable ci by pfc ; iii) switch in-
teraction mode βijt for all j by pfβ . 4) If a feature Gi is selected: i) sample from
a multinomial normal distribution and add it to x, z; ii) switch the indicator
variable αi by pfα. Here we assign higher weight wi onto the camera’s state since
camera parameters are coupled with all states and so this estimation process
requires a larger number of trials. Since this proposal distribution is symmetric
(the probability to move from Ω′t to Ω(s)

t and from Ω
(s)
t to Ω′t is the same), we

can drop the proposal distribution term from the acceptance ratio a. Thus a can
be written as :

a =



∏n
i=1 P (Xit|Z′it,Θ

′
t)
∏m
i=1 P (τit|G′it,Θ

′
t)P (Ω′t|χ

t−1)∏n
i=1 P (Xit|Z

(s)
it ,Θ

(s)
t )

∏m
i=1 P (τit|G

(s)
it ,Θ

(s)
t )P (Ω

(s)
t |χt−1)

, when the camera is chosen

P (Xkt|Z′kt,Θ
′
t)P (Ω′t|χ

t−1)

P (Xkt|Z
(s)
kt
,Θ

(s)
t )P (Ω

(s)
t |χt−1)

, when a target is chosen∏n
i=1 P (τit|G′it,Θ

′
t)P (Ω′t|χ

t−1)∏n
i=1 P (τit|G

(s)
it ,Θ

(s)
t )P (Ω

(s)
t |χt−1)

, when a feature is chosen

(8)

where P (Ωt|χt−1) ≈
∑N
r=1 P (Zt|Z(r)

t−1)P (Gt|G(r)
t−1)P (Θt|Θ(r)

t−1). Note that the
computation of other observation likelihood is not necessary in the case of sam-
pling a target or ground feature. Even though the computation of prediction
term P (Ωt|χt−1) involves several multiplication and summation operations. The
majority of target’s state remains unchanged during a sampling iteration. This
enables an efficient implementation by caching unchanged priors.

5 Experimental Results and Implementation Details

In order to evaluate the performance of our tracking algorithm, we applied it
to two datasets: our own dataset and ETH moving vehicle dataset [1]. During



MTT in World Coordinate with Single camera 11

0 0.5 1 1.5 2 2.5 3
0.6

0.65

0.7

0.75

0.8

0.85

Recall/FPPI

FPPI

Re
ca

ll

 

 
Full Model
No Geometry
No Interaction
Baseline [9]

Fig. 3. Our full model obtains the best Re-
call rates when compared to the baseline de-
tector [9]. Note that the effect of τ is quite
significant. To obtain plots, we run the al-
gorithm with different threshold values for
the detector.

all experiments, we assumed rough initial camera configuration is given (focal
length, camera height, horizon). Since cameras are not calibrated in our dataset,
camera configuration is initialized to some reasonable value. For ETH dataset, we
use the calibration information provided by the authors to initiate the algorithm.
Detector. Human targets are detected using the part-based detector [9] which
is trained on the VOC 2006 dataset. As a benchmark, we report the recall/FPPI
(False Positive Per Image) measure of the detector [9] along with our result in
Fig.3.
Mean-shift. Appearance-based tracks are obtained using the mean-shift tracker
with a similarity threshold of 0.94 in order to avoid false correspondences.
Feature selection. We extract 1300 KLT features to cover the visible area for
every frame. After extracting KLT features, we select candidate ground plane
features by rejecting out those lying on a target’s prediction area or above the
horizon. Among those candidates, a maximum number of 10 features were used
in MCMC to reduce the computational burden. In practice these were sufficient
to obtain robust estimation of the camera parameters.
MCMC Implementation. In the actual implementation of MCMC particle
filter, we incorporated a burn-in and thinning scheme. We ignored the inital
number of samples to avoid wrong estimation. In each experiment, we set 2000
of burn-in samples and selected one out of 100 samples.
Semi-static Camera. Firstly, we show the performance of our algorithm using
our own dataset. Our dataset is ideal to test sequences with semi-static camera
mation [3]. It is composed of nine short video sequences recorded at 30FPS by
a hand-held video camera. These contain random shakes, sudden camera pan-
ning, and multiple number of pedestrians. The dataset contains 4749 frames and
3685 pedestrian annotations in total (every 10th frame is manually annotated).
In our experiment, we ignored every other frame, so the tracking algorithm is
applied at 15 fps. We report the quantitative measure of the performance by
the recall/FPPI rate. Fig.3 shows the overall recall/FPPI curve obtained by
our algorithm and the baseline detector [9]. In order to evaluate the effect of the
tracked ground features and interaction model to the final performance, we show
recall/FPPI curves when no features τ were tracked (blue) and no interaction
models were used (cyan).
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Recall/FPPI on ETH dataset

Method Seq.#2 Seq.#3

Our Algorithm
Recall 0.556 0.541 0.519 0.339 0.421 0.497
FPPI 0.792 0.442 0.267 2.792 1.608 0.647

ETH [1]
Recall 0.498 0.404 0.338 0.673 0.616 0.484
FPPI 0.781 0.431 0.262 2.772 1.593 0.638

Table 1. The recall/FPPI of ETH[1] algorithm is measured at the point having similar
FPPI value to our algorithm. The performance of our algorithm was comparable or su-
perior to ETH algorithm for Seq.#2. Notice in Seq.#3, as the number of false positives
increases drastically, our algorithm was not able to correctly differentiate between true
and false positives.

Frame 176

42

4344

45

Frame 1064

121

177
178

179

Fig. 4. The camera’s trajec-
tory estimated by our algo-
rithm (yellow) for Seq.#2 and
by [1] (red). The trajectories
are overlaid onto the satellite
image by rotating and rescal-
ing with the same factor in
(x,z) direction. Notice our tra-
jectory was obtained without
using stereo cameras or SFM.

ETH dataset. To show the versatility of our algorithm, we also applied our
algorithm on the ETH dataset [1]. ETH dataset is taken by a stereo pair of
cameras mounted on a small cart which navigates through busy downtown envi-
ronment. We evaluated our algorithm using only left camera images for tracking.
Among five sequences listed in [1], we applied our algorithm on the “Seq#2” and
“Seq#3”. Both sequences contain large number of pedestrians walking around
a downtown area. In both sequences, our algorithm was working better or as
well as [1]. Unlike [1], we used only the single (left) camera sequence throughout
the experiments so the performance of tracking algorithm was solely relied on
better estimation capability of our algorithm. Quantitative results are reported
in Table.1. Following the evaluation criteria of [11, 1], we report the number of
pedestrians, the number of trajectories, the number of mostly hit trajectories,
mostly missed trajectories, the number of false alarm, and the number of ID
switch for the Seq.#2 as following: 33, 47, 28, 8, 3, 2. Since [1] did not report ex-
act frame numbers, we choose 350 to 800 frames. Following [1], we also counted
as a new trajectory if a person is occluded for more than 10 frames. Overall,
about 60% of the trajectories were covered and most of the missed trajectories
belonged to small people. Qualitative results are reported in Fig.4, 5 and 6. For
additional results, please visit our project’s webpage [3].
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6 Conclusion

In this paper, we presented a fully automatic multi-target tracking algorithm.
Different sources of information were integrated into one coherent probabilistic
framework and all the variable was estimated in a joint fashion. Our framework
has very flexible structure, so other additional cues can be incorporated for fur-
ther stabilization. Combining other geometric cues is our plan for investigation.
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Fig. 5. Examples of tracking subsequences obtained by our algorithm in Seq.#2. Top:
trajectories in the image plane; bottom: trjectory estimates in 3D space along with the
camera’s location and viewing angle estimates.
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Fig. 6. Tracking comparison. Upper two rows: example of tracking results with and
without the interaction model. Note that the group interaction (magenta link) prevents
possible ID switch (red arrows) between two similar targets after occlusion. Bottom
two rows: tracking results with and without ground features. Ground features not only
helps the algorithm estimate the camera motion robustly but also generates better
trajectories. Note that the ID of two targets (red arrows) are not maintained (if ground
features are not used) due to poor camera motion estimation.


