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Abstract. An important task in object recognition is to enable algo-
rithms to categorize objects under arbitrary poses in a cluttered 3D
world. A recent paper by Savarese & Fei-Fei [1] has proposed a novel
representation to model 3D object classes. In this representation sta-
ble parts of objects from one class are linked together to capture both
the appearance and shape properties of the object class. We propose to
extend this framework and improve the ability of the model to recog-
nize poses that have not been seen in training. Inspired by works in
single object view synthesis (e.g., Seitz & Dyer [2]), our new represen-
tation allows the model to synthesize novel views of an object class at
recognition time. This mechanism is incorporated in a novel two-step
algorithm that is able to classify objects under arbitrary and/or unseen
poses. We compare our results on pose categorization with the model
and dataset presented in [1]. In a second experiment, we collect a new,
more challenging dataset of 8 object classes from crawling the web. In
both experiments, our model shows competitive performances compared
to [1] for classifying objects in unseen poses.

1 Introduction

An important goal in object recognition is to be able to recognize an object or an
object category given an arbitrary view point. Humans can do this effortlessly
under most conditions. Consider the search for your car in a crowded shopping
center parking lot. We often need to look around 360 degrees in search of our
vehicle. Similarly, this ability is crucial for a robust, intelligent visual recognition
system. Fig. 1 illustrates the problem we would like to solve. Given an image
containing some object(s), we want to 1) categorize the object as a car (or a
stapler, or a computer mouse), and 2) estimate the pose (or view) of the car.
Here by ‘pose’, we refer to the 3D information of the object that is defined by
the viewing angle and scale of the object (i.e. a particular point on the viewing
sphere represented in Fig. 6). If we have seen this pose in the training time, and
have a way of modeling such information, the problem is reduced to matching
the known model with the new image. This is the approach followed by a number
of existing works where either each object class is assumed to be seen under an
unique pose [3,4,5,6,7,8,9,10] or a class model is associated to a specific pose
giving rise to mixture models [11,12,13]. But it is not necessarily possible for an
algorithm to have been trained with all views of the objects. In many situations,
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car:
azimuth = 200 deg; zenith = 30 deg.

stapler:
azimuth = 75 deg; zenith = 50 deg.

mouse: 
azimuth = 60 deg; zenith = 70 deg.

Fig. 1. Categorize an Object Given An Unseen View. azimuth: [front,right,back,
left]= [0, 90, 180, 270]o; zenith: [low, med., high]= [0, 45, 90]o

training is limited (either by the number of examples, or by the coverage of
all possible poses of the object class); it is therefore important to be able to
extrapolate information and make the best guess possible given this limitation.
This is the approach we present in this paper.

In image base rendering, new view synthesis (morphing) have been an active
and prolific area of research [14,15,16]. Seitz & Dyer [2] proposed a method to
morph two observed views of an object into a new, unseen view using basic
principles of projective geometry. Other researchers explored similar formula-
tions [17,18] based on multi-view geometry [19] or extended these results to 3-
view morphing techniques [20]. The key property of view-synthesis techniques is
their ability to generate new views of an object without reconstructing its actual
3D model. It is unclear, however, whether these can be useful as is for recognizing
unseen views of object categories under very general conditions: they were de-
signed to work on single object instances (or at most 2), with no background clut-
ter and with given features correspondences across views (Figs. 6–10 of [2]). In
our work we try to inherit the view-morphing machinery while generalizing it to
the case of object categories. On the opposite side of the spectrum, several works
have addressed the issue of single object recognition by modeling different degree
of 3D information. Again, since these methods achieve recognition by matching
local features [21,22,23,24] or group of local features [25,26] under rigid geomet-
rical transformations, they can be hardly extended for handling object classes.

Recently, a number of works have proposed interesting solutions for capturing
the multi-view essence of an object category [1,27,28,29,30,31,32]. These tech-
niques bridge the gap between models that represent an object category from just
a single 2D view and models that represent single object instances from multiple
views. Among these, [32] presents an interesting methodology for repopulating
the number of views in training by augmenting the views with synthetic data.
In [1] a framework was proposed in which stable parts of objects from one class
are linked together to capture both the appearance and shape properties of the
object class. Our work extends and simplifies the representation in [1]. Our crit-
ical contributions are:

– We propose a novel method for representing and synthesizing views of ob-
ject classes that are not present in training. Our view-synthesis approach is
inspired by previous research on view morphing and image synthesis from
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multiple views. However, the main contribution of our approach is that the
synthesis takes place at the categorical level as opposed to the single object
level (as previously explored).

– We propose a new algorithm that takes advantage of our view-synthesis
machinery for recognizing objects seen under arbitrary views. As opposed
to [32] where training views are augmented by using synthetic data, we
synthesize the views at recognition time. Our experimental analysis validates
our theoretical findings and shows that our algorithm is able to successfully
estimate object classes and poses under very challenging conditions.

2 Model Representation for Unseen Views

We start with an overview of the overall object category model [1] in Sec. 2.1
and give details of our new view synthesis analysis in Sec. 2.2.

2.1 Overview of the Savarese et al. Model [1]

Fig. 2 illustrates the main ideas of the model proposed by [1]. We use the car
category as an example for an overview of the model. There are two main com-
ponents of the model: the canonical parts and the linkage structure among the
canonical parts. A canonical part P in the object class model refers to a region of
the object that tends to occur frequently across different instances of the object
class (e.g. rear bumper of a car). It is automatically determined by the model.
The canonical parts are regions containing multiple features in the images, and
are the building blocks of the model. As previous research has shown, a part
based representation [26,28,29] is more stable for capturing the appearance vari-
ability across instances of objects. A critical property introduced in [1] is that the
canonical part retains the appearance of a region that is viewed most frontally
on the object. In other words, a car’s rear bumper could render different appear-
ances under different geometric transformations as the observer moves around
the viewing sphere (see [1] for details). The canonical part representation of the
car rear bumper is the one that is viewed the most frontally (Fig. 2(a)).

Given an assortment of canonical parts (e.g. the colored patches in Fig. 2(b)),
a linkage structure connects each pair of canonical parts {Pj , Pi} if they can
be both visible at the same time (Fig. 2(c)). The linkage captures the relative
position (represented by the 2 × 1 vector tij) and change of pose of a canonical
part given the other (represented by a 2 × 2 homographic transformation Aij).
If the two canonical parts share the same pose, then the linkage is simply the
translation vector tij (since Aij = I). For example, given that part Pi (left rear
light) is canonical, the pose (and appearance) of all connected canonical parts
must change according to the transformation imposed by Aij for j = 1 · · ·N, j �=
i, where N is the total number of parts connected to Pi. This transformation
is depicted in Fig. 2(c) by showing a slanted version of each canonical part (for
details of the model, the reader may refer to [1]).

We define a canonical view V as the collection of canonical parts that share
the same view V (Fig. 2(c)). Thus, each pair of canonical parts {Pi, Pj} within
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(a) (b) (c)

pi

Fig. 2. Model Summary. Panel a: A car within the viewing sphere. As the observer
moves on the viewing sphere the same part produces different appearances. The location
on the viewing sphere where the part is viewed the most frontally gives rise to a canonical
part. The appearance of such canonical part is highlighted in green. Panel b: Colored
markers indicate locations of other canonical parts. Panel c: Canonical parts are con-
nected together in a linkage structure. The linkage indicates the relative position and
change of pose of a canonical part given the other (if they are both visible at the same
time). This change of location and pose is represented by a translation vector and a homo-
graphic transformation respectively. The homographic transformation between canoni-
cal parts is illustrated by showing that some canonical parts are slanted with respected to
others. A collection of canonical parts that share the same view defines a canonical view
(for instance, see the canonical parts enclosed in the area highlighted in yellow.

V is connected by Aij = I and a translation vector tij . We can interpret a
canonical view V as a subset of the overall linkage structure of the object cat-
egory. Notice that by construction a canonical view may coincide with one of
the object category poses used in learning. However, not all the poses used in
learning will be associated to a canonical view V . The reason is that a canon-
ical view is a collection of canonical parts and each canonical part summarizes
the appearance variability of an object category part under different poses. The
relationship of parts within the same canonical view is what previous literature
have extensively used for representing 2D object categories from single 2D views
(e.g. the constellation models [4,6]). The linkage structure can be interpreted
as its generalization to the multi-view case. Similarly to other methods based
on constellations of features or parts, the linkage structure of canonical parts is
robust to occlusions and background clutter.

2.2 Representing an Unseen View

The critical question is: how can we represent (synthesize) a novel non-canonical
view from the set of canonical views contained in the linkage structure? As we
will show in Sec. 3, this ability becomes crucial if we want to recognize an object
category seen under an arbitrary pose. Our approach is inspired by previous
research on view morphing and image synthesis from multiple views. We show
that it is possible to use a similar machinery for synthesizing appearance, pose
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and position of canonical parts from two or more canonical views. Notice that the
output of this representation (synthesis) is a novel view of the object category,
not just a novel view of a single object instance, whereas all previous morphing
techniques are used for synthesizing novel views of single objects.

Representing Canonical Parts. In [1], each canonical part is represented by
a distribution of feature descriptors along with their x, y location within the part.
In our work, we simplify this representation and describe a canonical part P by a
convex quadrangle B (e.g., the bounding box) enclosing the set of features. The
appearance of this part is then characterized by a bag of codewords model [5] -
that is, a normalized histogram h of vector quantized descriptors contained in B.
Our choice of feature detectors and descriptors is the same as in [1]. A standard
K-means algorithm can be used for extracting the codewords. B is a 2×4 vector
encoding the b = [x, y]T coordinates of the four corners of the quadrangle, i.e.
B =

[
b1 . . . b4

]
; h is a M×1 vector, where M is the size of the vocabulary of the

vector quantized descriptors. Given a linked pair of canonical parts {Pi, Pj} and
their corresponding {Bi, Bj}, relative position of the parts {Pi, Pj} is defined
by tij = ci − cj, where the centroid ci = 1

4

∑
k bk; the relative change of pose

is defined by Aij which encodes the homographic transformation acting on the
coordinates of Bi. This simplification is crucial for allowing more flexibility in
handling the synthesis of novel non-canonical views at the categorical level.

View Morphing. Given two views of a 3D object it is possible to synthesize
a novel view by using view-interpolating techniques without reconstructing the
3D object shape. It has been shown that a simple linear image interpolation
(or appearance-morphing) between views do not convey correct 3D rigid shape
transformation, unless the views are parallel (that is, the camera moves parallel
to the image planes) [15]. Moreover, Seitz & Dyer [2] have shown that if the cam-
era projection matrices are known, then a geometrical-morphing technique can
be used to synthesize a new view even without having parallel views. However,
estimating the camera projection matrices for the object category may be very
difficult in practice. We notice that under the assumption of having the views
in a neighborhood on the viewing sphere, the cameras can be approximated as
being parallel, enabling a simple linear interpolation scheme (Fig. 3). Next we
show that by combining appearance and geometrical morphing it is possible to
synthesize a novel view (meant as a collection of parts along with their linkage)
from two or more canonical views.

Two-View Synthesis. We start by the simpler case of synthesizing from two
canonical views V n and V m. A synthesized view V s can be expressed as a collec-
tion of linked parts morphed from the corresponding canonical parts belonging to
V n and V m. Specifically, a pair of linked parts {P s

i , P s
j } ∈ V s can be synthesized

from the pair {Pn
i ∈ V n, Pm

j ∈ V m} if and only if Pn
i and Pm

j are linked by the
homographic transformation Aij �= I (Fig. 3). If we represent {P s

i , P s
j } by the

quadrangles {Bs
i , B

s
j } and the histograms {hs

i , h
s
j} respectively, a new view is ex-

pressed by:
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object

view Vn view Vm

view Vs

Pi Pj

viewing sphere

parallel view Vn parallel view Vm

object

view Vn view Vm
view Vs

Pi Pj

viewing sphere

Ps
i Ps

j
Pn

i Pm
j

Pm
jAij Pn

jAji

object

Pi Pj

viewing sphere

view Vs,t

view Vn view Vm

view Vq

Fig. 3. View Synthesis. Left: If the views are in a neighborhood on the viewing
sphere, the cameras can be approximated as being parallel, enabling a linear inter-
polation scheme. Middle: 2-view synthesis: A pair of linked parts {P s

i , P s
j } ∈ V s is

synthesized from the pair P n
i ∈ V n, and P m

j ∈ V m if and only if P n
i and P m

j are linked
by the homographic transformation Aij �= I . Right: 3-view synthesis can take place
anywhere within the triangular area defined by the 3 views.

Bs
i = (1 − s)Bn

i + sAijB
n
i ; Bs

j = sBm
j + (1 − s)AjiB

m
j ; (1)

hs
i = (1 − s)hn

i + shm
i ; hs

j = shn
j + (1 − s)hm

j ; (2)

The relative position between {P s
i , P s

j } is represented as the difference ts
ij of the

centroids of Bs
i and Bs

j . ts
ij may be synthesized as follows:

ts
ij = (1 − s)tn

ij + stm
ij (3)

In summary, Eqs. 1 and 3 regulate the synthesis of the linkage structure between
the pair {P s

i , P s
j }; whereas Eqs. 2 regulate the synthesis of their appearance

components. By synthesizing parts for all possible values of i and j we can obtain
a set of linked parts which give rise to a new view V s between the two canonical
views V n and V m. Since all canonical parts in V n and V m (and their linkage
structures) are represented at the categorical level, this property is inherited to
the new parts {P s

i , P s
j }, thus to V s.

Three-View Synthesis. One limitation of the interpolation scheme described
in Sec. 2.2 is that a new view can be synthesized only if it belongs to the linear
camera trajectory from one view to the other. By using a bi-linear interpolation
we can extend this to a novel view from 3 canonical views. The synthesis can take
place anywhere within the triangular area defined by the 3 views (Fig. 3) and is
regulated by two interpolating parameters s and t. Similarly to the 2-view case,
3-view synthesis can be carried out if and only if there exist 3 canonical parts
Pn

i ∈ V n, Pm
j ∈ V m, and P q

k ∈ V q which are pairwise linked by the homographic
transformations Aij �= I, Aik �= I and Ajk �= I. The relevant quantities can be
synthesized as follows:

Bst
i = [ (s − 1)I sI ]

(
Bn

i AikBn
i

AijB
n
i AikAijB

n
i

) [
(1− t)I

t I

]
(4)

hst
i = [ (s − 1)I sI ]

(
hn

i hq
i

hm
i hp

i

) [
(1 − t)I

t I

]
(5)
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tst
ij = [ (s − 1)I sI ]

(
tn

ij tq
ik

tm
ij tm

ij + tq
ik − tn

ij

) [
(1 − t)I

t I

]
(6)

Analogous equations can written for the remaining indexes.

3 Recognizing Object Class in Unseen Views

Sec. 2.2 has outlined all the critical ingredients of the model for representing and
synthesizing new views. We discuss here an algorithm for recognizing pose and

Algorithm step 1

1. I ← list of parts extracted from test image
2. for each model C
3. for each canonical view V ∈ C
4. [R(n), V ∗(n)] ← MatchView(V, C, I); % return similarity R
5. n ++;
6. L← KMinIndex(R) % return shortlist L

MatchView(V, C, I)
1. for each canonical part P ∈ V
2. M(p) ← MatchKPart (P, I)); % return K best matches
3. p ++;
4. for each canonical part P̄ ∈ C linked to V
5. M̄(q) ← MatchKPart (P̄ , I); % return K best matches
6. q ++;
7. [M∗, M̄∗] ← Optimize(V, M, M̄);
8. V ∗ ← GenerateTestView(M∗, M̄∗, I);
9. R ← Distance(V, V ∗);
10. return R, V ∗;

Fig. 4. Pseudocode of the step 1 algorithm. MatchView(V, C, I) returns the similarity
score between V and I . KminIndex() returns pointers to the the K smallest values of
the input list. MatchKPart (P, I) returns the best K candidate matches between P and
I . A match is computed by taking into account the appearance similarity Sa between
two parts. Sa is computed as the distance between the histograms of vector quantized
features contained in the corresponding part’s quadrangles B. Optimize(V, M, M̄) opti-
mizes over all the matches and returns the best set of matches M∗, M̄∗ from the candi-
date matches in M, M̄ . The selection is carried out by jointly minimizing the overall ap-
pearance similarity Sa (computed over the candidate matches) and the geometrical sim-
ilarity Sg (computed over pairs of candidate matches). Sg is computed by measuring the
distance between the relative positions tij , t̄ij . GenerateTestView(M∗, M̄∗, I) returns
a linkage structure of parts (B, appearances h and relative positions t) given M∗, M̄∗.
This gives rise to the estimated matched view V ∗ in the test image. Distance(Vi, Vj)
returns an estimate of the overall combined appearance and geometrical similarity
Sa + Sg between the linkage structures associated to Vi, Vj . Sa is computed as in
MatchKPart over all the parts. Sg is computed as the geometric distortion between
the two corresponding linkage structures.
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Algorithm step 2

1. for each canonical view V ∈ L
2. V ∗ ← L(l)
3. V ′ ← FindClosestView(V, C);
4. V ′′ ← FindSecondClosestView(V, C);
5. for each 2-view synthesis parameter s
6. V s ← 2-ViewSynthesis(V, V ′, s);
7. R(s) ← Distance(V s, V ∗);
8. for each 3-view synthesis parameters s and t
9. V s,t ← 3-ViewSynthesis(V, V ′, V ′′, s, t);
10. R(s, t) ← Distance(V s,t, V ∗);
11. L(l) ← Min(R);
12. l ++;
13. [CwVw] ← MinIndex(L);

Fig. 5. Pseudocode of the step 2 algorithm. FindClosestView(V, C) (FindSecond-
ClosestView(V, C)) returns the closest (second closest) canonical pose on the viewing
sphere. 2-ViewSynthesis(V, V ′, s) returns a synthesized view between the two views
V, V ′ based on the interpolating parameters s. 3-ViewSynthesis(V, V ′, s, t) is the equiv-
alent function for three view synthesis. Cw and Vw are the winning categories and poses
respectively.

categorical membership of a query object seen under arbitrary view point. We
consider a two-step recognition procedure. The first step is a modified version
of [1]. The output of this algorithm is a short list of the K best model views
across all views and all categories. The second step is a novel algorithm that
refines the error scores of the short list by using the view-synthesis scheme.

3.1 A Two-Step Algorithm

In the first step (Fig. 4), we want to match the query image with the best
object class model and pose. For each model, we find hypotheses of canonical
parts consistent with a certain canonical view of an object model. Given such
canonical parts, we infer the appearance, pose and position of other parts that
are not seen in their canonical view (MatchView function). This information
is encoded in the object class linkage structure. An optimization process finds
the best combination of hypothesis over appearance and geometrical similarity
(Optimize). The output is a similarity score as well as a set of matched parts
and their linkage structure (the estimated matched view V ∗) in the test image.
The operation is repeated for all possible canonical views and for all object class
models. Finally, we create a short list of the N best canonical views across all
the model categories ranked according to their similarity (error) scores. Each
canonical view is associated to its own class model label. The complexity of
step-1 is O(N2NvNc), where N is the total number of canonical parts (typically,
200–500); Nv = number of views per model; Nc = number of models.
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In the second step (Fig. 5), we use the view synthesis scheme (Sec. 2.2) to
select the final winning category and pose from the short list. The idea is to
consider a canonical view from the short list, pick up the nearest (or two nearest)
canonical pose(s) on the corresponding model viewing sphere (FindClosestView
and FindSecondClosestView), and synthesize the intermediate views according
to the 2-view-synthesis (or 3-view-synthesis) procedure for a number of values of
s (s, t) (2-ViewSynthesis and 3-ViewSynthesis). For each synthesized view, the
similarity score is recomputed and the minimum value is retained. We repeat this
procedure for each canonical view in the short list. The canonical view associated
with the lowest score gives the winning pose and class label. The complexity of
step-2 is just O(NlNs), where Nl is the size of the short list and Ns is the number
of interpolating steps (typically, 5–20).

4 Experiments and Results

In this section, we show that our algorithm is able to successfully recognize an
object class viewed under a pose that is not seen during training. In addition to
classification, we also measure the accuracy in pose estimation of an object.

4.1 Experiment I: Comparison with [1]

In the first set of experiments we compare the performances of our algorithm with
those reported in [1]. We use the same dataset as in [1,33] and the same learning
and testing methodology. The dataset comprises images of 8 different object
categories, each containing 10 different instances. Each of these are photographed
under a range of poses, described by a pair of azimuth and zenith angles (i.e., the
angular coordinates of the observer on the viewing sphere, Fig. 6) and distance
(or scale). The total number of angular poses in this dataset is 24: 8 azimuth
angles and 3 zenith angles. Each pose coordinate is kept identical across instances
and categories. Thus, the number and type of poses in the test set are the same
as in the training set. The data set is split into a training and test set as in [1].

To assess the performance of our algorithm to recognize unseen views, we train
both the model in [1] and ours by using a reduced set of poses in training. The

azimuth

zenith

x

y

z

ϕ

φ

ϕ

φ

x

y

z

(90,60)

(45,0)

ϕφ = (0,30)(   ,    )

Fig. 6. Left: An object pose is represented by a pair of azimuth and zenith angles.
Right: Some of the unseen poses tested during our recognition experiments (Fig. 7).
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Fig. 7. Left: Performances of our model (red) and Savarese et al. model [1] (blue)
as a function of the number of views used in training. Note that the performances
shown here are testing performances, obtained by an average over all 24 testing poses.
Middle: Confusion table results obtained by the Savarese et al. model [1] for 8 object
classes on a sample of 8 unseen views only (dataset [33]). Right: Confusion table
results obtained by our model under the same conditions.
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Fig. 8. Left: Confusion table results obtained by [1] for 8 object classes ( dataset [35]).
Middle: Confusion table results obtained by our model under the same conditions.
Right: Performance improvement achieved by our model over [1] for each category.

reduced set is obtained by randomly removing poses from the original training
set. This was done by making sure that no more than one view is removed from
any quadruplet of adjacent poses in the viewing sphere1. The number of poses
used in testing is kept constant (to be more specific, all 24 views are used in this
case). This means some of the views in testing have not been presented during
training. Fig. 7 illustrates the performances of the two models as a function of
the number of views used in training. The plots shows that our model systemat-
ically outperforms that of [1]. However, notice that the added accuracy becomes
negligible as the number of views in training approaches 24. In other words,
when no views are missing in training, the performance of the model used in
[1] approximates our model. For a baseline comparison with a pure bag-of-world
model the reader can refer to [1]. Fig. 7(middle, right) compare the confusion
table results obtained by our model and that of [1] for 8 object classes on a
sample of 8 unseen views only.

1 We have found experimentally that this condition is required to guarantee there are
sufficient views for successfully constructing the linkage structure for each class.
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shoe (s=0.44)
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2 closest training im.

toaster (s=0.32)
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2 closest training im.

Fig. 9. Estimated pose for each object that was correctly classified by our algorithm.
Each row shows two test examples (the colored images in column 3 and column 6)
from the same object category. For each test image, we report the estimated location
of the object (red bounding box) and the estimated view-synthesis parameter s. s
gives an estimate of the pose as it describes the interpolating factor between the two
closest model (canonical) views selected by our recognition algorithm. For visualization
purposes we illustrate these model views by showing the corresponding training images
(columns 1-2 and 4-5). (This figure is best viewed in color with PDF magnification.)



View Synthesis for Recognizing Unseen Poses of Object Classes 613

4.2 Experiment II: A New Testing Dataset

In this experiment we test our algorithm on a much more challenging testset.
We have collected this testset for two reasons. First, we would like to test our
models for recognizing object under arbitrary poses. Second, the dataset in [1]
has been collected under relatively controlled settings. While training and testing
images are well separated, the background, lighting and the cameras used for this
dataset are similar. In this new dataset of 8 object classes, 7 classes of images
(cellphone, bike, iron, shoe, stapler, mouse, and toaster) are collected from the
Internet (mostly Google and Flickr) by using an automatic image crawler. The
initial images are then filtered to remove outliers by a paid undergraduate with
no knowledge of our work. We eventually obtain a set of 60 images for each
category. The 8th class, the car, is from the LabelMe dataset [34]. A sample of
the dataset is available at [35]. As in the previous experiment, we compare the
performances of our algorithm to [1]. This time we have trained the models by
using the full dataset from Savarese et al. [33] (48 available poses, 10 instances,
for a total number of 480 images per category).

Results by both models are reported in Fig. 8. Again, our model achieves
better overall results. Fig. 8 (right panel) shows the performance comparison
broken down by each category. Notice that for some categories such as cellphone
or bikes, the increment is less significant. This suggests our algorithm is more
effective for categories composed by a richer 3D structure (as opposed to cell-
phone and bike that are almost planar objects). All the experiments presented
in this section use the 2-view synthesis scheme. The 3-view scheme is currently
tested and will be presented in future work. Fig. 9 illustrates a range of pose
estimation results on the new dataset. See Fig. 9 caption for details.

5 Conclusion

Recognizing objects in 3D space is an important problem in computer vision.
Many works recently have been devoted to this problem. But beyond the possi-
bility of semantic labeling of objects seen under specific views, it is often crucial
to recognize the pose of the objects in the 3D space, along with its categorical
identity. In this paper, we have proposed an algorithm to deal with the unseen
(and/or untrained) poses in recognition. We achieve this by modifying the model
proposed by Savarese et al. [1] and by taking advantage of a variant of the view
morphing technique proposed by Seitz & Dyer [2]. Our initial testing of the al-
gorithm shows promising results. But a number of issues remain. Our algorithm
still requires a good number of views to be used during training in order to
generalize. More analysis and research need to be done to make this as mini-
mal as possible. Further research is also needed to explore to what degree the
inherent nuisances in category-level recognition (lighting variability, occlusions
and background clutter) affect the view morphing formulation. Finally, it would
be interesting to extend our framework and incorporate the ability to model
non-rigid objects.
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