Technical Report: An Efficient Branch-and-Bound Algorithm for Optimal Human Pose Estimation

Min Sun Murali Telaprolu Honglak Lee Silvio Savarese Department of EECS, University of Michigan, Ann Arbor, MI 48109

1. Linear Programming Relaxation

The message passing algorithm [1] defines the edge-wise message as

$$\lambda_{ji}(h_i; \mathcal{H}_j) = \max_{h_j \in \mathcal{H}_j} \beta_{ji}(\hat{h}_j, h_i) \tag{1}$$

which carries information from node j to node i. Notice that the edge-wise message $\lambda_{ji}(h_i; \mathcal{H}_j)$ depends on the hypothesis space of node j (i.e., \mathcal{H}_j). For conciseness, it is often omitted and the message becomes $\lambda_{ji}(h_i)$. $\lambda_i(h_i)$ is treated as the node-wise message which is the summation of all edge-wise messages into node i (i.e., $\lambda_{ji}(h_i; \mathcal{H}_j); j \in \mathcal{N}_i$) and the unary potential $\theta_i^u(h_i)$ as defined in Eq. 2 of the main paper. In MP-LP, the edge-wise messages are sequentially updated and a pair of messages $\lambda_{ji}(h_i)$ and $\lambda_{ij}(h_j)$ are updated simultaneously as follows,

$$\lambda_{ji}(h_i) = -\frac{1}{2}\lambda_i^{-j}(h_i) + \frac{1}{2}\max_{h_j \in \mathcal{H}_j} \left(\lambda_j^{-i}(h_j) + \theta_{ij}(h_i, h_j)\right)$$
(2)

where $\lambda_i^{-j}(h_i) = \lambda_i(x_i) - \lambda_{ji}(x_i)$ is the sum of messages into node *i* except the message from node *j*. Notice that when $\lambda_{ji}(h_i)$ is updated, it will eventually update the nodewise message $\lambda_i(h_i)$ by passing the messages into node *i*. As a result, the messages are passed to nodes and further change the other edge-wise messages. The β s can be retrieved from the messages as follows,

$$\beta_{ji}(h_j, h_i) = -\frac{1}{2}\lambda_i^{-j}(h_i) + \frac{1}{2}\left(\lambda_j^{-i}(h_j) + \theta_{ij}(h_i, h_j)\right)$$
(3)

2. Learning

The max-margin learning problem is formulated as below,

$$\min_{\mathbf{w},\xi\geq 0} \quad \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{n}\xi_{n}$$

s.t. $\forall n, \forall \mathbf{h} \neq \mathbf{h}_{n}, \quad -\mathbf{w}^{T}\Psi(\mathbf{h}, I_{n}) \geq 1 - \xi_{n}$
 $\forall n, \quad \mathbf{w}^{T}\Psi(\mathbf{h}_{n}, I_{n}) \geq 1 - \xi_{n}, \qquad (4)$

where h_n and I_n are the ground truth part configuration and the image evidence of the n_{th} image, respectively. We use a cutting plane solver [2] to solve the above quadratic programming (QP) problem with a large number of negative constraints (the constraints in the first row). We use the max-margin formulation to learn weights w such that the ground truth configuration (pose assignment) h_n has the highest score. In other words, the weights are adjusted in such a way that the MAP estimation would become as consistent with the ground truth as possible.

References

- A. Globerson and T. Jaakkola. Fixing max-product: Convergent message passing algorithms for MAP LPrelaxations. In *NIPS*, 2008. 1
- [2] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In *ICML*, 2004. 1