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Inputs for algorithm

RSTV learning

3D trajectories + velocity of people
N-directional pose classification

MRF regularization
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Classification
For each tree, find the leaf node for each example.
Compute sum of posterior probability

Queuing Talking

Introduction
Collective activity
Activities that are defined by 
the interaction among people.
Cannot be characterized by 
single person's appearance.

Spatio-temporal context 
around one person.
Data-driven approach to learn 
the crowd context.

Crowd Context

Regularization by spatio-temporal consistency.

Crowd Context

Time

Time

STV [1]
Appropriate for capturing spatio-temporal 
relationship.
Rigid structured descriptor

Susceptible to clutter
Several parameters to be tuned

RSTV
Randomize the discretization in feature space.

Structure learned from training data.
More flexible structure.
Higher scalablility.

Parameter free.

Robustness under clutter.

RSTV enables more accurate classification results than state-of-the-art methods
Capable of handling multiple activities in the scene.
Enable segementation of individuals into different collective activities.

Divide training set into N random subset (bagging)
Train a tree with a subset of training data

Randomly choose a set of features
- Spatial location (r, θ)
- Temporal support (t, Δt)
- Pose direction (p)
- Threshold (t)
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Features in each path
Each color represents a pose
 - blue : facing down
 - green : facing right
 - red : facing up
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Average Accuracy: 70.9%
76.4% 5.8% 1.6% 16.2% 0.0%

4.2% 76.7% 14.1% 4.9% 0.1%

0.0% 20.8% 78.7% 0.2% 0.3%

41.6% 11.6% 9.5% 36.8% 0.6%

0.0% 2.7% 8.2% 3.4% 85.7%
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Average Accuracy: 82.0%
76.5% 6.3% 1.6% 0.0% 0.0% 15.6%

4.8% 78.5% 12.8% 0.9% 3.1% 0.0%

0.2% 20.1% 78.5% 0.8% 0.4% 0.0%

2.8% 6.1% 6.5% 84.1% 0.5% 0.0%

11.1% 5.1% 2.9% 0.4% 80.5% 0.1%
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Accuracy vs # of trees
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