

Multiple Targets Tracking in World Coordinate with a Single, Minimally Calibrated Camera.

Wongun Choi

Silvio Savarese

HECHICA WADING WA WADING WADING WA WADING WA WADING

Department of Electrical Engineering and Computer Science, University of Michigan

Overview

- Objective : robustly track multiple targets in 3D.
- Joint estimation of camera and target's motion.
- Modeling interaction between targets.
- Ground feature points for robust camera estimation.
- MCMC particle filtering for efficient estimation.

<u>Challenges</u>

- Unknow (uncalibrated) camera motion.
- Occlusion between targets.
- Background clutter.
- Detector failure (missed detection).

Interaction Model

- Pairwise interaction Model
- Targets' motions are dependent.
- Two exclusive mode of interactions
- Repulsion: people want to keep a distance from others.
- Group Interaction: People moving as a group tend to move together.
- Switch variables to select one of the above models.

$$P(Z_t|Z_{t-1}) = \prod_{i < j} \psi(Z_{it}, Z_{jt}; \beta_{ijt}) \prod_{i < j} P(\beta_{ijt}|\beta_{ij(t-1)}) \prod_{i=1}^{N} P(Z_{it}|Z_{i(t-1)})$$

$$\psi(Z_{it}, Z_{jt}; \beta_{ijt}) = \begin{cases} \psi_g(Z_{it}, Z_{jt}), & if \ \beta_{ijt} = 1\\ \psi_r(Z_{it}, Z_{jt}), & otherwise \end{cases}$$

Joint Model Graphical Represent

Sequential bayesian formulation

$$P(\Omega_{t}|\chi^{t}) \propto P(\Omega_{t}, \chi_{t}|\chi^{t-1}) = P(\chi_{t}|\Omega_{t}) \int P(\Omega_{t}|\Omega_{t-1}) P(\Omega_{t-1}|\chi^{t-1}) d\Omega_{t-1}$$

$$P(\chi_{t}|\Omega_{t}) = P(X_{t}, Y_{t}|Z_{t}, \Theta_{t}) P(\tau_{t}|G_{t}, \Theta_{t})$$

$$P(\Omega_{t}|\Omega_{t-1}) = P(Z_{t}|Z_{t-1}) P(\Theta_{t}|\Theta_{t-1}) P(G_{t}|G_{t-1})$$

- Observation models
- Simplified camera projection function [4].

- Motion models
- Target's individual motion modeled as a first order linear dynamic model.
- Ground features assumed to be static.
- Camera assumed to move along the viewing direction.
- Indicator variable
- Target: indicate whether this target is valid human or not.
- Ground features : indicate whether the feature is on static ground plane.

Estimation: MCMC Particle Filtering

- Motivation
- Non-linear and non-gaussian density function.
- Direct sampling from high dimensional space is not efficient.
- Proposal Distribution $Q(\Omega'_t; \Omega_t)$
- Choose one of the variables: camera parameter, target states, or ground features.
- Sample from Gaussian distribution centered on current sample.
- Randomly change the class of a target or a ground feature.

Human? Non-human?
How fast?
Where? ...
New random sample X'

Experimental Results

Group Interaction

• Improved detection accuracy.

Recall/FPPI on ETH dataset			
Method		Seq.#2 Seq.#3	
Our Algorithm	Recall	0.556 0.541 0.519 0.339 0.421 0.497	7
	FPPI	0.792 0.442 0.267 2.792 1.608 0.647	7
ETH [1]	Recall	0.498 0.404 0.338 0.673 0.616 0.484	1
	FPPI	0.781 0.431 0.262 2.772 1.593 0.638	3

Accurate localization of camera

• Effect of interaction model.

Effect of geometric features.

Frame 6 Frame 96 Frame 600 Frame 995 Frame 1005

• Example tracking results on ETH sequence.

Conclusion

- Joint estimation of camera and targets' state helps improve tracking performance.
- Other geometric cues further stabilize the system.
- Better target association can be achieved by modeling interaction between targets.

References

- [1] Ess, A., Leibe, B., Schindler, K., , van Gool, L.: A mobile vision system for robust multi-person tracking. In: CVPR. (2008)
- [2] Khan, Z., Balch, T., Dellaert, F.: Mcmc-based particle fitering for tracking a variable number of interacting targets. PAMI (2005)
- [3] Pellegrini, S., Ess, A., Schindler, K., van Gool, L.: You'll never walk alone: Modeling social behavior for multi-target tracking. In: ICCV. (2009)
- [4] Hoiem, D., Efros, A., Hebert, M.: Putting objects in perspective. In: CVPR. (2006)

