

Semantic Structure From Motion

Sid Yingze Bao and Silvio Savarese Electrical and Computer Engineering, University of Michigan at Ann Arbor Source code and data: http://www.eecs.umich.edu/vision/projects/ssfm/index.html

Introduction

Goal:

Estimate 3D location and pose of objects, 3D location of points, and camera parameters from 2 or more images.

Conventional

Main challenge:

High dimensionality of unknowns => Sample P(q,u,o|C,O,Q) with MCMC

Parameter Initialization

- Use object detection scale and pose to initialize cameras relative poses
- Theorem: camera parameters can be estimated given:

image 1 object det.

Motivation:

- Most 3D reconstruction methods do not povide semantic information.
- camera - Most recognition methds do not Structure From Motion provide geometry and camera pose.

camera

- We propose to solve these two problem jointly.

2D object detection

Advantages:

- Improve camera pose estimation, compared to feature-point-based SFM. - Improve object detections given multiple images, compared to independently detecting objects from each single images.
- Establish object correspondences across views.

SSFM Problem Formulation

Measurements

- q: point features (e.g. DOG+SIFT)
- **u**: point matches (e.g. threshold test) - **o**: 2D objects (e.g. [2])

 $\mathbf{\nabla}$ C

i) 3 objects with scale; ii) 2 objects with pose; iii) 1 object with scale and pose.

Monte Carlo Markov Chain

- Sampling starts from different initializations
- Proposal distribution P(q,u,o|C,O,Q)
- Combine all samples to identify the maximum

Comparison Baselines

- Camera Pose Est.: Bundler [1] - Object Detection: LSVM [2]
- 1. Car Dataset [3] (available online)
 - Images and Dense Lidar Points
 - \sim 500 testing images in 10 scenarios
 - **3D** object localization Cam. T. est. error v.s. baseline 0.3

Dataset	\bar{e}_T Bundler/SSFM	\bar{e}_R Bundler/SSFM
Ford Campus Car	$26.5/19.9^{\circ}$	$0.47^{\circ}/0.78^{\circ}$
Street Pedestrian	27.1° / 17.6°	21.1°/ 3 .1°
Office Desktop	8.5° / 4.7°	9.6° / 4.2°

Results

Model Parameters (unknowns)

- C: camera (K is known)
- Q: 3D points (locations)
- O: 3D objects (locations, poses, categories)

Intuition:

In addition to point features, measurements of objects across views provide additional geometrical constraints that allow to relate cameras and scene parameters.

Model Overview

 $\{O,Q,C\}$ =arg max P(q,u,o | C,O,Q) =arg max P(q,u | C,Q)P(o | C,O) \forall

Point Likelihood P(q,u | C,Q)

 $N_Q N_k$ $P(\mathbf{q}, \mathbf{u} | \mathbf{Q}, \mathbf{C}) \propto \prod_{i=1}^{n} \prod_{i=1}^{n} \exp(-(q_i^k - q_{u_i^k}^k)^2 / \sigma_q)$

Object Likelihood P(o|C,O)

Assumption:

Camera #	2	3	4
Det. AP (Cali. Cam.)	62.1%	63.6%	64.2%
Det. AP (Uncali. Cam.)	61.3%	61.7%	62.6%
\bar{e}_T	19.9°	16.2°	13.9°

- 2. Kinect Office Dataset (available online) Cam. T. est. error v.s. baseline
 - Images and calibrated Kinect 3D range data
 - Mouse, Monitor, and Keyboard
 - 500 images in 10 scenarios

3. Person Dataset

- A pair of stereo cameras - 400 image pairs in 10 scenarios

Reference

[1] N. Snavely, S. M. Seitz, and R. S. Szeliski. Modeling the world from internet photo collections. IJCV. 2008. [2] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence of Pattern Analysis, 2009. [3] Gaurav Pandey, James McBride, and Ryan Eustice, Ford campus vision and lidar data set. International Journal of Robotics Research. 2011

Ackowledgement

We acknowledge the support of NSF CAREER #1054127 and the Gigascale Systems Research Center. We thank Mohit Bagra for collecting the Kinect dataset and Min Sun for helpful feedback.