

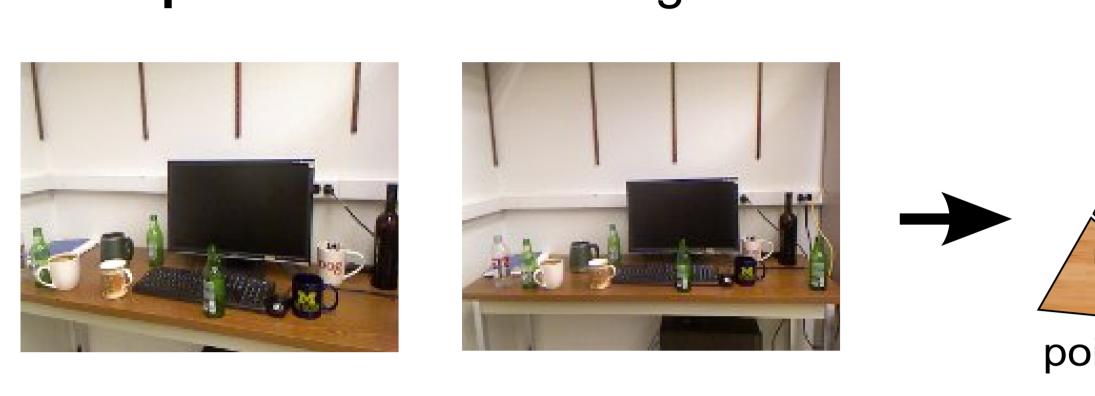
Semantic Structure From Motion with Points, Regions, and Objects Sid Yingze Bao, Mohit Bagra, Yu-Wei Chao, Silvio Savarese Electrical and Computer Engineering, University of Michigan at Ann Arbor Project webpage: http://www.eecs.umich.edu/vision/projects/ssfm/index.html (Code will be available soon!)

Introduction

Semantic Structure from Motion (SSFM) is a new framework for jointly estimating semantic and geometrical information from multiple images:

- Detect object; segment and classify regions (semantic)
- Recover 3D geometry of objects, regions, and points (structure)
- Recover cameras location and pose (motion)

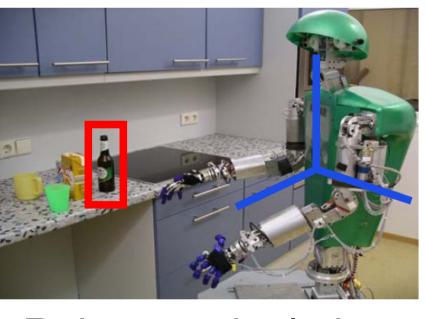
Input: two or more images



Motivation

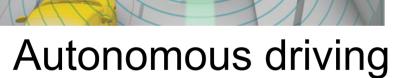
Ability to jointly recover semantic and geometry information is critical in many applications.

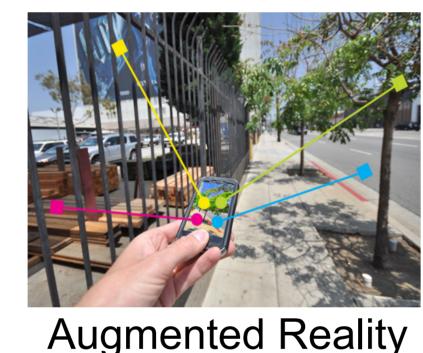
- Most 3D reconstruction methods do not provide semantic.
- Most recognition methods do not localize objects in 3D physical space.



Robot manipulation

Main intuitions

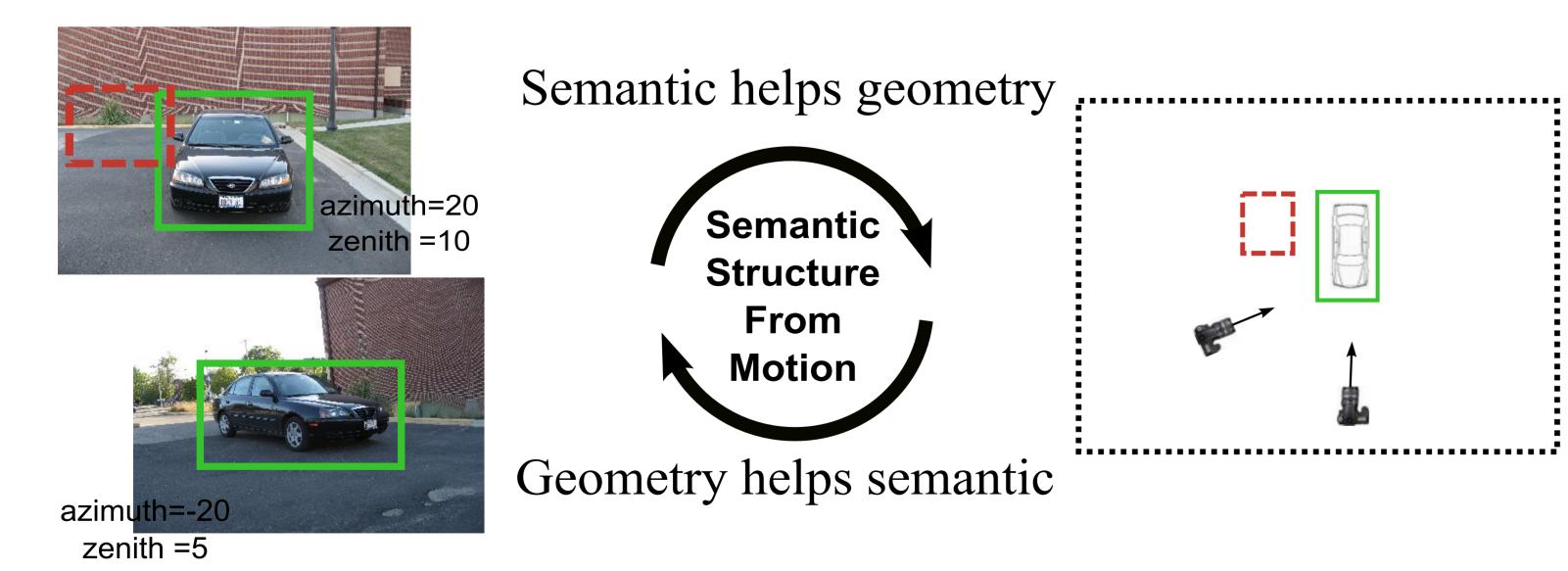




Semantics and 3D geometry are mutually beneficial.

- Objects and regions help localize the observer.
- Geometric context helps object detection and region classification.
- Semantic reasoning guides the process of matching points and regions.

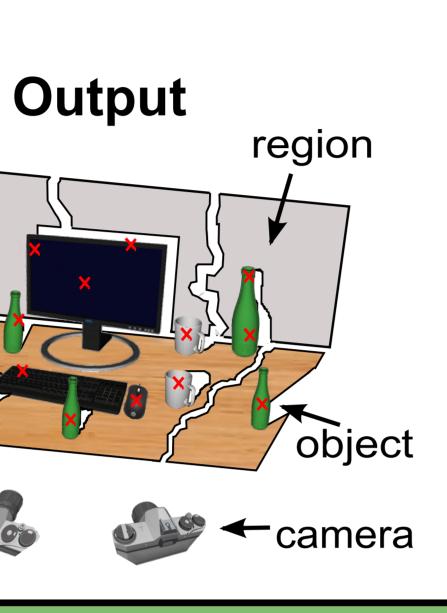
Interactions among objects, regions and points help regularize solution.



Reference

[1] N. Snavely, S. M. Seitz, and R. S. Szeliski. Modeling the world from internet photo collections. IJCV. 2008. [2] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence of Pattern Analysis, 2009. [3] Gaurav Pandey, James McBride, and Ryan Eustice. Ford campus vision and lidar data set. IJRR 2011 [4] Y. Bao, and S. Savarese, Semantic structure from motion, CVPR 2011

[5] L. Ladicky, C. Russell, P. Kohli, and P. Torr. Graph cut based inference with co-occurrence statistics. ECCV 2010 [6] Y. Bao, M. Bagra, S. Savarese, Semantic structure from motion with object and point interactions, IEEE Workshop on Challenges and Opportunities in Robot Perception (in conjunction with ICCV-11). Best Student Paper Award



Notations

Inputs

- Two or more images I
- known internal parameters

Measurements (noisy)

- q: point features (e.g. DOG+SIFT)
- **u**: point matches (e.g. threshold test)
- **b**: 2D regions (e.g. superpixel)
- **o**: 2D objects (e.g. detected by [2])

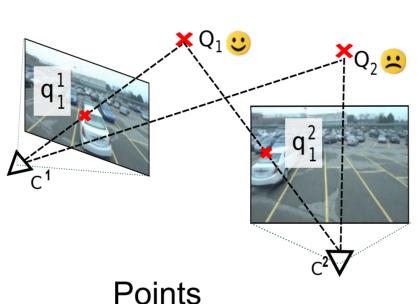
Model Parameters (unknowns)

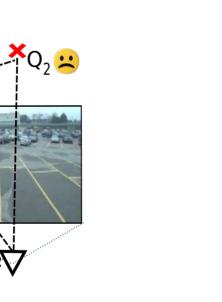
- C: cameras (locations and poses)
- Q: 3D points (locations)
- **B**: 3D regions (locations, orientations, classes)
- O: 3D objects (locations, poses, categories)

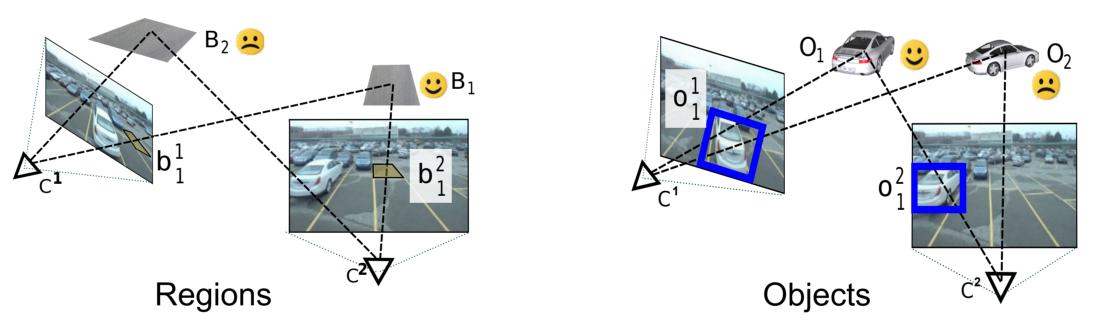
Model

Relationships among points, regions, objects, and cameras follow:

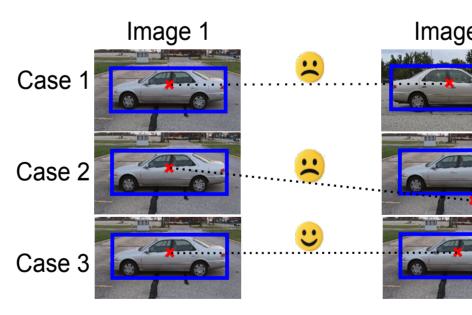
Intuition 1: The image projection of estimated objects, regions, and points are consistent with measurements (location, scale, and pose).

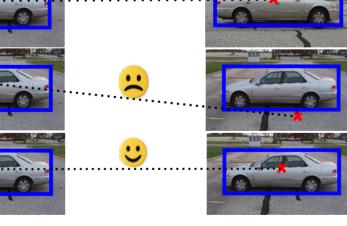


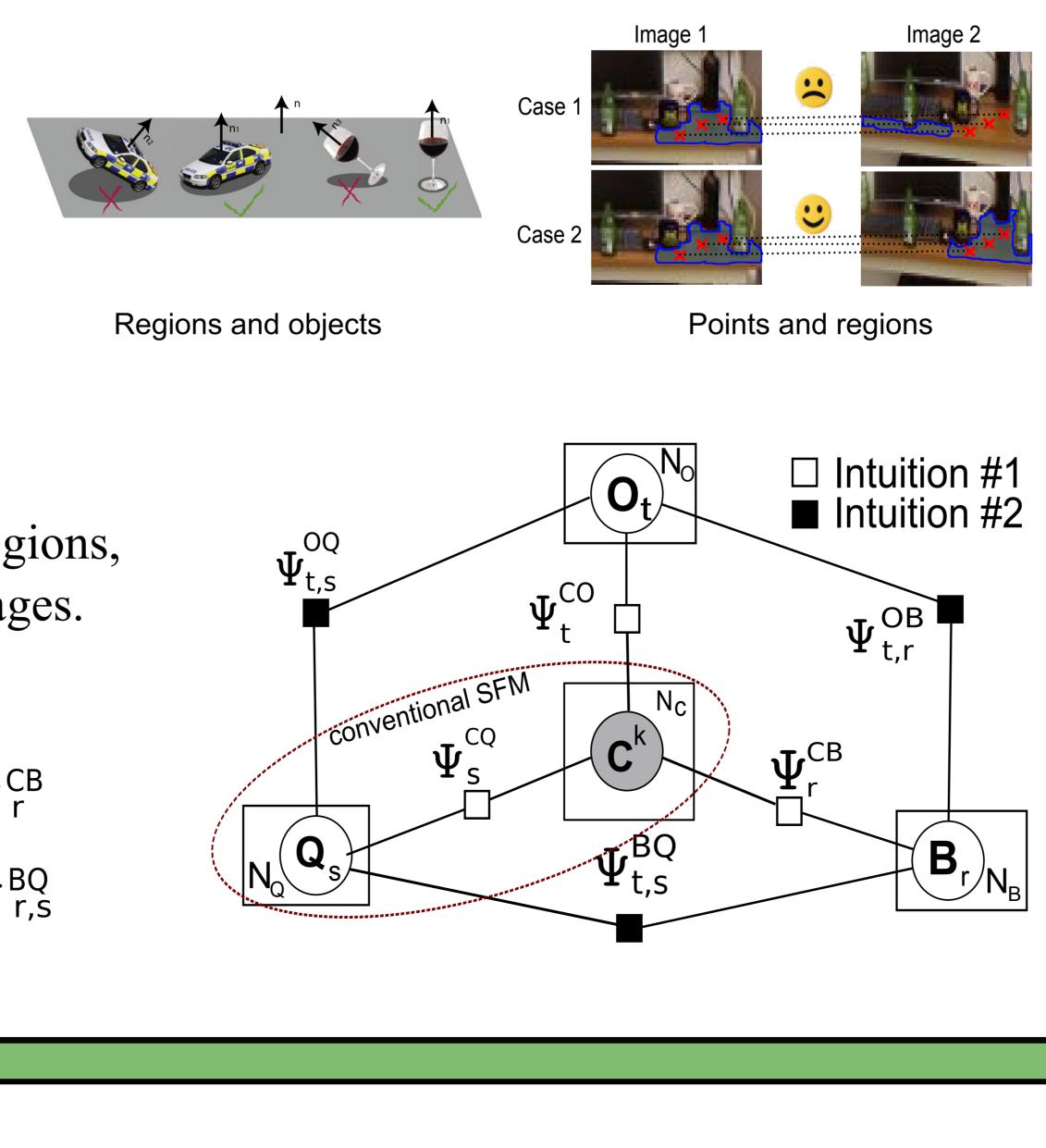




Intuition 2: The interactions among points, regions, and objects should be consistent with the interactions learnt from training.





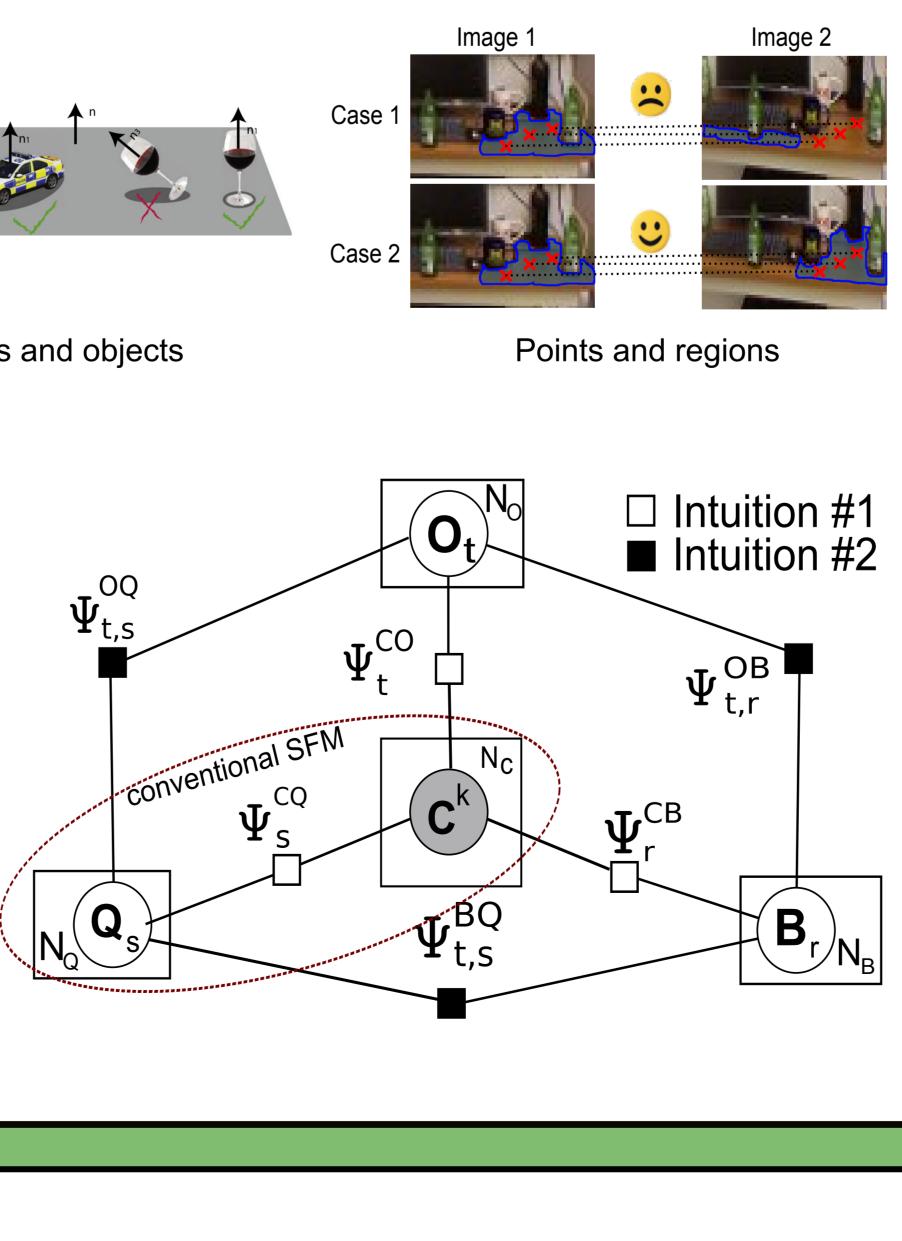


Energy Formulation

Points and objects

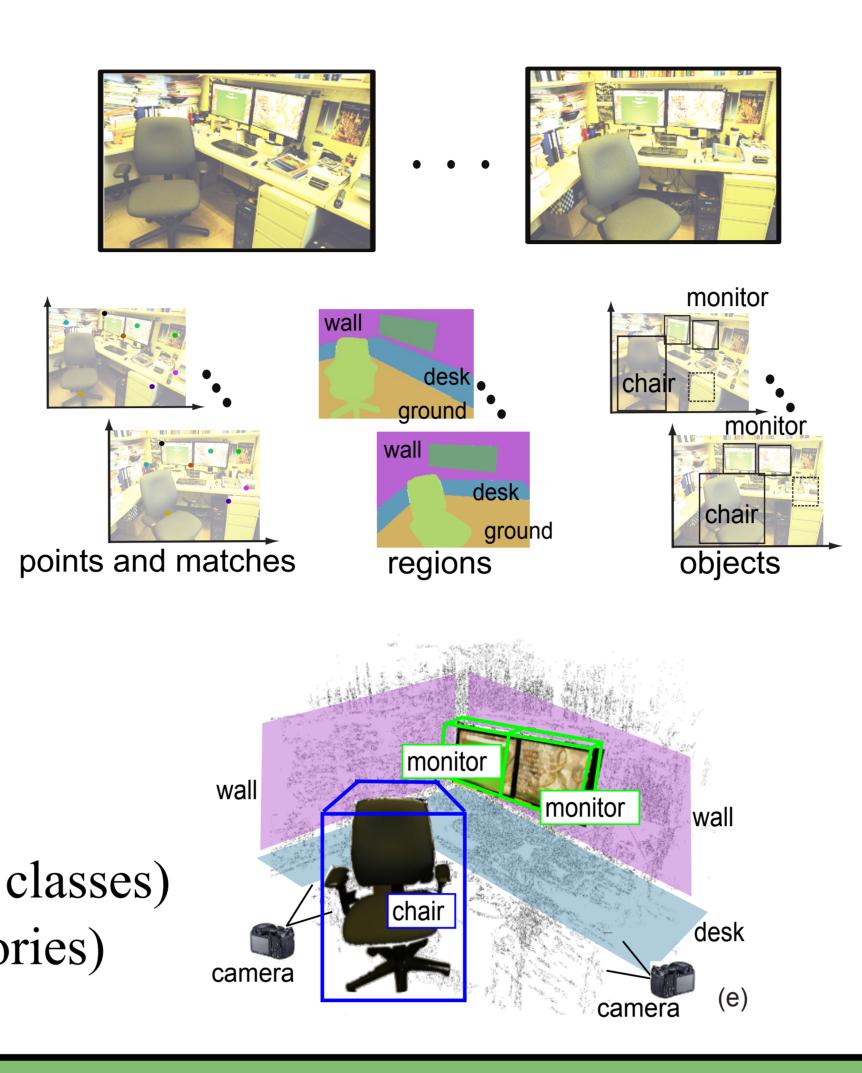
Joint energy of objects, regions, points, cameras given images.

> Ψ (O, B, Q, C; I) = $\prod \Psi_{t}^{CO} \prod \Psi_{s}^{CQ} \prod \Psi_{r}^{CB}$ $\prod_{t,s} \Psi^{OQ}_{t,s} \prod_{r,r} \Psi^{OB}_{t,r} \prod_{r,s} \Psi^{BQ}_{r,s}$



Ackowledgement

We acknowledge the support of NSF CAREER #1054127 and the Gigascale Systems Research Center.

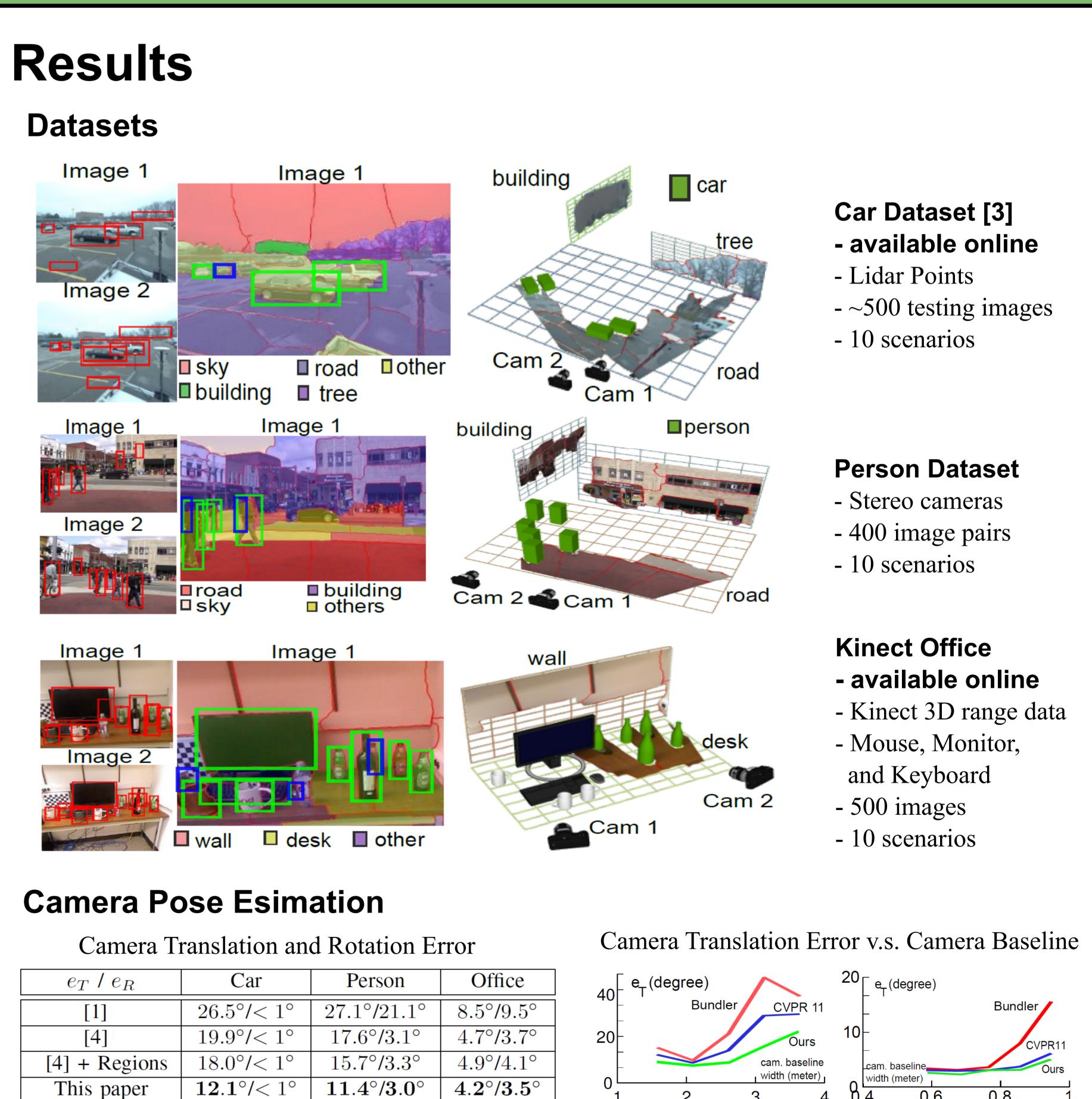


Inference

Solving SSFM Problem: $\{\mathbf{O}, \mathbf{B}, \mathbf{Q}, \mathbf{C}\} = \operatorname{argmax} \Psi(\mathbf{O}, \mathbf{B}, \mathbf{Q}, \mathbf{C}; \mathbf{I})$

Sampling (Simulated Annealing) - High dimensionality of unknowns

- Propose initial guesses of cameras:
- Cameras estimated by point matches (SFM)
- Cameras estimated by matched object detections
- Cameras estimated by matched regions



e_T / e_R	Cal
[1]	$26.5^{\circ} / < 1^{\circ}$
[4]	$19.9^{\circ} / < 1^{\circ}$
[4] + Regions	$18.0^{\circ} / < 1^{\circ}$
This paper	12 .1°/< 1°

Object Detection Average Precision

Object Detection in 2D			Object Detection in 3D					
	[2]	[4]	This Paper			by single	Without	Our full
Car	54.5%	61.3%	62.8%			image.	interactions	model.
Person	70.1%	75.1%	76.8%	•	Car	21.4%	32.7%	43.1%
Office	42.9%	45.0%	45.7%		Office	15.5%	20.2%	21.6%

Region Classification and 3D Geometry Estimation

Re

egion Classification Accuracy			ccuracy	Region 3D Local	Region 3D Localization Raletive Error			
%	Car	Person	Office	with / without interaction	$median(e_d)$	$var(e_d)$		
[5]	88.9	82.9	50.8	Car	0.281 / 0.175	0.54 / 0.44		
Ours	90.2	84.4	51.2	Office	0.033 / -0.011	0.182 / 0.189		

Sampling Algorithm Propose initial guesses of cameras FOR $\mathbf{C} \in \text{initial guesses of cameras}$ FOR n = 1 : M (M is user-specified) $C_{n+1} = C_n + C'$ (C' is 0-mean Gaussian r.v whose variance decreases as n increases) **O**'n = argmax $\Pi \Psi_t^{CO}$ \mathbf{Q}'_{n} = argmax $\Pi \Psi_{s}^{CQ}$ (details in paper) **B**'_n = argmax $\Pi \Psi_r^{CB}$ {On, Qn, Bn} = argmax $\Pi \Psi_{t,s}^{OQ} \Pi \Psi_{t,r}^{OB} \Pi \Psi_{r,s}^{BQ}$ $\alpha = \Psi(O_n; Q_n; B_n; C_n; I) / \Psi(O_{n-1}; Q_{n-1}; B_{n-1}; C_{n-1}; I)$ IF α < uniform(0, 1) ${O_n, Q_n, B_n, C_n} = {O_{n-1}, Q_{n-1}, B_{n-1}, C_{n-1}}$ FND

Identify the sample maximizing $\Psi(\mathbf{O}; \mathbf{Q}; \mathbf{B}; \mathbf{C}; \mathbf{I})$

(a) Car dataset

(b) Kinect dataset