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An industrial experience with Alcatel

Fault management and alarm correlation in telecom nets:

Edge equipement of long haul submarine optical line

Radio access network (GSM)

Optical networks SONET/SDH/WDM

ALcatel MAnagement Plateform (ALMAP)

A telecom network system is made of a number of hardware
and software components. Each component possesses its
own monitoring system that detects anomalies and
propagates deny of service information to the neighbours,
through alarm messages. This causes thousands of causally
related (“correlated”) messages to travel across the network
and reach the supervision system.
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Figure A.1: the submarine optical telecommunication system considered for the trial with Alcatel 
Optical Systems business division and Alcatel Research and Innovation.
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Figure A.2: failure impact analysis. 
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SDH Ring

Montrouge

Figure A.3: the SDH/SONET optical ring of the Paris area, with its four nodes. The diagram on 
the left zooms on the structure of the management software, and shows its Managed Objects
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Figure A.4: showing a failure propagation scenario, across management layers (vertically) and
network nodes (horizontally). 
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Correlated alarms

Figure A.5: returning alarm correlation information to the operator. 



The need for self-modeling

SDH, WDM

OTN, GMPLS...

standards: behavior of generic

network elements

capturing architecture

(network discovery)

automatic

behavioral model

generation

automatic

algorithm generation

and deployment

Model based techniques require models! Models for such
huge systems can’t be built by hand.

Wodes 2006 – p.3/22



Contents

1. Industrial motivation

2. Problem setting: (on-line) distributed monitoring of
distributed systems

3. Using classical tools: automata and products

4. Problem of state explosion: more compact data
structures:

(a) execution trees
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Distributed systems monitoring

We are given:

A distributed system with subsystems � � � � �
;� � � � � �

, observation system attached to each
subsystem;
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Distributed systems monitoring

We are given:

A distributed system with subsystems � � � � �
;� � � � � �

, observation system attached to each
subsystem;

Perform the monitoring of under the following constraints:

A supervisor

� � is attached to each subsystem;� � only knows the local system model � plus interface
information relating � to its neighbours;� � accesses observations made by

� � ; it can exchange
messages with its neighbouring supervisors;

No global clock is available and communications are
asynchronous.
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Approach for this talk

We shall first try to address this problem with most classical
frameworks: automata and their products

We shall push this game to its very limits

However, at some point, the
stringent need for moving to a
partial order framework will appear
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Here are my lawyers

be prepared to overnight



Monitoring a finite state machine

� �	 � 
 � � � �� � � 	 � states,


 � labels
 � 
�� � 
�� � observed
�

unobserved

� � �� ��� � � � ��� � � � ��� � � ��� � � a run��� � set of all runs of

 "! # $ � � � � � erasing states and unobs labels from �

observation � % � &  "! # $ � � � �' � � � � (

Wodes 2006 – p.7/22



Monitoring a finite state machine

� �	 � 
 � � � �� � � 	 � states,


 � labels
 � 
�� � 
�� � observed
�

unobserved

� � �� ��� � � � ��� � � � ��� � � ��� � � a run��� � set of all runs of

 "! # $ � � � � � erasing states and unobs labels from �

observation � % � &  "! # $ � � � �' � � � � (

monitor �
)*

*,+
algorithm that computes,
for every observation

%

of ,
the set

 ! # $- �� � % �
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On-line monitoring

This amounts to synchronizing on-line,

observation

%

with a “simulation” of .

Since product captures synchronization, this amounts to
constructing, on-line, the set of all runs of the product. %

.

We need to achieve this in our distributed setting:

� �/ 0 �% � 1 � / 0 % �
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Su & Wonham approach [2004, 2006]

1. compute and store the local monitor

2 � �354 6  ! # $- ���7 � � % � � ,
seen as a language;

2. perform a consistent merge of local monitors:

2 �354 6 1 � / 0 2 � �  ! # $- �� � 1 � / 0 % � �

and compute

 ! # $ � � 2 �

without computing

2

, by
allowing exchanges of messages btw supervisors.
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Su & Wonham approach [2004, 2006]

1. compute and store the local monitor

2 � �354 6  ! # $- ���7 � � % � � ,
seen as a language;

2. perform a consistent merge of local monitors:

2 �354 6 1 � / 0 2 � �  ! # $- �� � 1 � / 0 % � �

and compute

 ! # $ � � 2 �

without computing

2

, by
allowing exchanges of messages btw supervisors.

Let

8�2 � be the solutions found by the distributed algorithm.
The authors distinguish local consistency : local solutions

82 �

agree on their interfaces, and global consistency : the
algorithm succeeds in computing

892 � �  "! # $ � � 2 �

for each

�

.
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On-line monitoring (cont’d)

Manipulating languages in the form of sets of runs is
costly.

Representing them by automata is not suitable for
on-line processing.

Greatest attention must be paid to data structures and
how to compute with them.

We need efficient data structures to construct the set of all
runs of an automaton, incrementally, in a distributed way:

automata unfoldings/trellises,

partial order unfoldings/trellises.
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Automata unfoldings (execution trees)
:;:;:< :;:<:= :<

:;:; :;:<:= :<

:=

:<
:< :;

> ? @ A > ?

?>A@B
@ A

:=
:< :;

A

?
B@ >
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Unfolding based monitoring
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Unfolding based monitoring
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Unfolding based monitoring
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Unfolding based monitoring
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Basic tools to handle distributed systems

Assume � � / 0 � � % � �/ 0 % �
Problem: computing the monitor

^� _ ` suffers from state
explosion in , and thus in its unfolding.

A first idea to avoid this is to apply, for unfoldings, the well
known recommendation: never compute the product.

Since we have . % � � / 0 � � . % � � , this amounts to

computing .Xa�b c � a . %a �

without computing � / 0 � � . % � � .
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Basic tools to handle distributed systems

The product of unfoldings is formally defined as follows:

2 . d 2 e �354 6 ^gf _ fh
For


 eGi 


and j � 	 k � 	 e

, the projection

 "! # $ml h 7 n � ^� �
is obtained by deleting transitions

o� 
 e

, taking transitive
closure, determinizing, and mapping � to j � � � .
The intersection of sub-unfoldings of a same

^� :

2p 2 e

possesses as runs the common runs of

2

and

2 e

.
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Basic tools to handle distributed systems

Theorem [Fabre & al 2003] (factorizing unfoldings)

q r � � r q q ^� � � a

q ^� � � s t u � v w

Definition (modular monitoring)

. % � x / 0 � � . % � �

�354 6 ^� _ `

y z { q {}| ~ v � w � � ��� � q s t u � v w

Wodes 2006 – p.13/22



Key Problems

Problem 1 Compute � �3 without computing .

Problem 2 Compute � �3 by attaching a supervising peer
to each site.

Problem 3 Compute � �3 on-line and on the fly.

Problem 4 Address asynchronous distributed systems.

Problem 5 Avoid state explosion due to concurrency.

Problem 6 Address changes in the systems dynamics.
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A separation theorem

Theorem: � � � � ] � � � �

: automata.
Say that � separates � from � if

� 
 � p 
 � � i 
 � . Then:

 "! # $ � � ^� ; _ � = _ � U � �  "! # $ � � ^� ; _ � = �� �� �� ��� �� � � �7 � �

 "! # $ � � ^� = _ � U �� �� �� ��� �� � � �7 � �� �� �� ��� �� � � ���� � 4� �4 � � � �� �

 "! # $ � � ^� ; _ � = _ � U � �  "! # $ �
�����������

^� ; . d  "! # $ � � ^� = _ � U �� � � �� ��� � � � � �7 � �� � � �� ��� �� � � �7 � �

�����������
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A separation theorem

Define the following operators:

�� f�� � f�� �354 6  "! # $ x 2 x . d 2 �

� � �¡ ¢ 2 � � 2 e� £ �354 6 2 � p 2 e�
Using these operators, previous rules rewrite as

 "! # $ � � ^� ; _ � = _ � U � � � � �¡ �� d ¤ ; � d ¤ = � � � d ¤ U � d ¤ = "! # $ � � ^� ; _ � = _ � U � � �� ¥§¦ ¨©5ª ¤ U «ª ¤ = ¬ � d"¤ ;

Lemma: The two operators �� and

� � �¡ are increasing
w.r.t. their arguments.
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Use for belief propagation algorithm

Belief propagation algorithm when the interaction graph of� � � � / 0 is a tree. For distributed monitoring: �  � . � �.
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Use for belief propagation algorithm

Belief propagation algorithm when the interaction graph of� � � � / 0 is a tree. For distributed monitoring: �  � . � �.
Computes � �3 without computing , by attaching a
supervising peer to each site — with a rigid scheduling,
however.
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Use for belief propagation algorithm

Belief propagation algorithm when the interaction graph of� � � � / 0 is a tree. For distributed monitoring: �  � . � �.
Since � � and

� � � ¡ are increasing w.r.t. their arguments,
chaotic asynchronous iterations can be used as well. These
can be interleaved with getting new observations. Yields an
on-line, distributed, and asynchronous algorithm.
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Use for belief propagation algorithm

Belief propagation algorithm when the interaction graph of� � � � / 0 is a tree. For distributed monitoring: �  � . � �.
When cycles exist in the interaction graph, the same
distributed chaotic algorithm yields local consistency but
not global consistency.
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where are 
partial orders

needed?



From unfoldings to trellises

We solved Problems 1, 2, and 3: on-the-fly modular and
distributed supervision.

Did we properly address state explosion? Asynchrony?
Concurrency? Not quite so:
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From unfoldings to trellises

We solved Problems 1, 2, and 3: on-the-fly modular and
distributed supervision.

Did we properly address state explosion? Asynchrony?
Concurrency? Not quite so:

Factorized unfoldings significantly reduces state
explosion, but� � �

Automata unfoldings are trees that generally grow
exponentially in width along with their depth.
This fact gets worse as components exhibit internal
concurrency — something that follows from
asynchrony.
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From unfoldings to trellises

The well known Viterbi algorithm for max likelihood
estimation of hidden state in stochastic automata uses
another data structure: trellises.
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From unfoldings to trellises

The well known Viterbi algorithm for max likelihood
estimation of hidden state in stochastic automata uses
another data structure: trellises.

Trellises are obtained from unfoldings by merging
identical futures of different runs, according to various
observation criteria. Examples are:

length of the path �;
visible length of the path �;
projection

 "! # $ l h � � � , where


 e"® 


.
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From unfoldings to trellises

The well known Viterbi algorithm for max likelihood
estimation of hidden state in stochastic automata uses
another data structure: trellises.

Trellises are obtained from unfoldings by merging
identical futures of different runs, according to various
observation criteria. Examples are:

length of the path �;
visible length of the path �;
projection

 "! # $ l h � � � , where


 e"® 


.

Formalization:

¯ � 
 k � 
±° observation criterion. Two paths �

and � e of the unfolding are merged if they begin and end at
identical states and produce identical words

¯ � � � � ¯ � � e � .
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From unfoldings to trellises
:;:;:< :;:<:= :<

:;:; :;:<:= :<

:=

:<
:< :;

> ? @ A > ?

?>A@B
@ A

:=
:< :;

A

?
B@ >

automaton and its unfolding

^�
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From unfoldings to trellises

� O

� N

� O
� O

� P
� P

� P

� N
� N

� N� P

� N � O
²

³
´µ ¶

automaton and its trellis

·�

observation criterion � length of �¯ � 
 � &¹¸ ( k � & ] (
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From unfoldings to trellises

� P

� N � O
²

³
´µ ¶

� N

� O
� O

� P
� P

� N
� N

� O

automaton and its trellis

·�

observation criterion � visible length of �¯ � 
 k � & ] (
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From unfoldings to trellises

� O� P � N

� O� P � N� O
³ ¶

º»º¼ º½º»¾
¿

º»º¼ º½º»¾
¿

� P

� N � O
²

³
´µ ¶

automaton and its trellis

·�

observation criterion �  "! # $ÁÀ >7 ? Â � � �¯ � Ã Ä � & ¶ � ³ ( k � & ¶ � ³ (
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Trellis-based monitoring: trial

Centralized monitoring: define

q {}| ~ ¯ . %
where

¯

is the length of

 "! # $ lÆÅ � � � , i.e., the length of

%

.
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Trellis-based monitoring: trial

Centralized monitoring: define

q {}| ~ ¯ . %
where

¯

is the length of

 "! # $ lÆÅ � � � , i.e., the length of

%

.

Trial: modular monitoring
Assume � �/ 0 � � % � � / 0 % �
Attempt to define

y z { q {| ~ s t u � ¯ . % � � �

HHhhmmmm, there are problems� � �
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Problems with trellises and projections

�
:=

:U
:<

B
> ?:;

A
A

:h <
:h ;

:h =
A

>
?

@

� h Ç È¤ ÉËÊ Ì É

:;
A

:=
:U

:<
B

> ?� :=7 :h ; �
� :=7 :h ; �

B

È¤ÎÍ ¤ É Ê ÌÏ Ì É
� :<7 :h < �

>
� :=7 :h = �B

A
� :;7 :h ; �
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� :U7 :h = �

@

@
� :;7 :h = �
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:U

B
:<

> :;
A

:=
:U

B
:;
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È¤ Ê Ì Ð�Ñ Ò ÓÕÔZÖ Ê ¿Ê ¾Ê × ØÊ Ù � È¤ÎÍ ¤ É Ê ÌÏ Ì É �

Wodes 2006 – p.19/22



Problems with trellises and projections

�
:=

:U
:<

B
> ?:;

A
A

:h <
:h ;

:h =
A

>
?

@

� h Ç È¤ ÉËÊ Ì É

:=
:U

B
:<

> :;
A

:=
:U

B
:;

A
?

È¤ Ê Ì

:;
A

:=
:U

:<
B

> ?� :=7 :h ; �
� :=7 :h ; �

B

È¤ÎÍ ¤ É Ê ÌÏ Ì É
� :<7 :h < �

>
� :=7 :h = �B

A
� :;7 :h ; �

@
� :U7 :h = �

@

@
� :;7 :h = �

?
Ð�Ñ Ò ÓÕÔZÖ Ê ¿Ê ¾Ê × ØÊ Ù � È¤ÎÍ ¤ É Ê ÌÏ Ì É �

Wodes 2006 – p.19/22
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Problems with trellises and projections
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Problems with trellises and projections

�
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A
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the projection does not yield a valid trellis
the reason is that

¯ÎÚ ¯ e

counts the length of runs globally
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Solution: distributable obs. criteria
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the projection yields a valid trellis¯ @ Ú ¯ e @ counts the length of runs locally, in each component
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Solution: distributable obs. criteria

ÝÞ º» Ê º É¼ ß
È¤ÎÍ ¤ É Ê ÌÏ Ì É È¤ÎÍ ¤ É Ê ÌÜÛ Ï Ì ÉÛdà¤ÎÍ ¤ É

ÝÞ º» Ê º É¼ ß ×Þ ºá Ê º É¼ ß

ÝÞ º» Ê º É¼ ß ×Þ ºá Ê º É¼ ß

Þ º¼ Ê º É» ß

Þ º½ Ê º É½ ßÖ Þ º» Ê º É» ß¿
¾ Þ º½ Ê º É½ ß ¾Þ º» Ê º É» ßÖ

¿Þ º¼ Ê º É¼ ß

Þ º½ Ê º É½ ßÖ ¾
Þ º¼ Ê º É¼ ß¿Þ º» Ê º É» ß

Þ ºá Ê º É¼ ß ÝÞ º¼ Ê º É» ß×Þ º¼ Ê º É¼ ßÝ ×Þ º¼ Ê º É» ß

ÝÞ ºá Ê º É¼ ß×Þ º¼ Ê º É¼ ß Ý ×Þ º¼ Ê º É» ß

Þ ºá Ê º É¼ ßÞ ºá Ê º É¼ ß× ÝÞ º¼ Ê º É» ßÞ º¼ Ê º É¼ ßÝ ×Þ º¼ Ê º É» ß

¯ÎÚ ¯ e

counts the length of runs, globally¯ @ Ú ¯ e @ is a vector counter that counts the length of runs
in each component;¯ @ Ú ¯ e @ is distributable: compatible with projections

With distributable criteria, trellises can be factorized and
belief propagation works.
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Solution: distributable obs. criteria
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¯ @ Ú ¯ e @ is a vector counter that counts the length of runs

in each component;

The idea of using vector clocks is not new. It was
proposed by Fidge [1991] and Mattern [1989] for the
distributed reconstruction of coherent states in
distributed systems — e.g., for checkpointing.
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Moving to partial orders
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With a distributable observation criterion, global runs are
best seen as the synchronization of local runs, i.e., as
partial orders — note the reduction in the number of events,
due to concurrency.
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With a distributable observation criterion, global runs are
best seen as the synchronization of local runs, i.e., as
partial orders — note the reduction in the number of events,
due to concurrency.
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Moving to partial orders

For large distributed systems, internal concurrency and
asynchrony may exist also within each local subsystem.

Thus, with the above data structures, state explosion may
occur, locally to each subsystem.

Therefore it is advisable to use partial order data structures
also to represent the sets of local runs.

While efficiency increases by doing so, new problems
appear� � �
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Moving to partial orders
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some causalities and conflicts are caused by
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Moving to partial orders
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solutions exist, e.g., moving to event structures where only
event are involved and causality/conflict is encoded
explicitly
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Other issues

Problem Address changes in the systems dynamics.

Solution: unfolding dynamic Petri nets, or Graph Grammars
(in progress)
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Other issues

Problem: Address changes in the systems dynamics.

Solution: unfolding dynamic Petri nets, or Graph Grammars
(in progress)

Problem: Address incomplete models

Solution???

Problem: Address nondeterminism in monitors via
concurrent probabilistic models

Solution: true concurrency probabilistic models, by Samy
Abbes [2004, 2005]

Problem: Address timing aspects in monitors

Solution: unfolding timed Petri nets, Chatain [2005]
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Objection!!
Partial 
orders

needed…
Nancy, 
help!!
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Partial 
orders

needed…
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help!!

Coming
tomorrow…
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