o N

Partial Order Techniques for
Distributed Discrete Event Systems
Wodes 2006

Eric Fabre and Albert Benveniste

IRISA-INRIA Rennes

An Industrial experience with Alcatel
-

Fault management and alarm correlation in telecom nets:

Edge equipement of long haul submarine optical line
Radio access network (GSM)

o
#® Optical networks SONET/SDH/WDM
#» Alcatel MAnagement Plateform (ALMAP)

A telecom network system is made of a number of hardware

and software components. Each component possesses Its

own monitoring system that detects anomalies and

propagates deny of service information to the neighbours,

through alarm messages. This causes thousands of causally

related (“correlated”) messages to travel across the network
Land reach the supervision system. J

Wodes 2006 — p.2/22

View Heplace

oog

Figure A.1: the submarine optical telecommunication system considered for the trial with Alcatel
Optical Systems business division and Alcatel Research and Innovation.

Aubervilliers

uen
STM4 STM
(east) {west) n-1
/

root
cause
(west)

STM4 STM4

—
ok
STM4 STM4 -

_____ n-
¥

impacted

LSE services

-
- w B
LSP v-‘

O™ 4

) \
MPLS Domain C Montrouge Gentilly

ﬁ‘b“ |
LSP2, ﬂ!.' ‘
4 A I-:I
. Z n o ,
— (1) \ 83,'
f— LSP3. /I L
E_Jl SP3.2 “1[
() . .
MPLS Domain A | oje ~
A2

MPLS Domain B

Figure A.2: failure impact analysis.

PDH45
PDH140
STM1
STM1

! STM4 (esi)

STM1

STM1

STM4

(ousest)

PDH2

—Jl PDH140

STM4
(esi)

STM4
(ouest)

(esi)
STM4

STM4
{ouest)

STM4
{ouest)

STM4
{est)

STM4
(est)

{ouest)
STM4

PDH45
PDH2

Figure A.3: the SDH/SONET optical ring of the Paris area, with its four nodes. The diagram on
the left zooms on the structure of the management software, and shows its Managed Objects

St Ouen Aubervilliers

Montrouge Gentilly

d

Figure A.4: showing a failure propagation scenario, across management layers (vertically) and
network nodes (horizontally).

B AS Current USM (0) : Alarm Sublist : vd gentilly [

Marne COUNTERS Total
v gentilly

Critical

AS Current USM {0) : Alarm Sublist : correlated alarms

COINTFRS

Pam
Correlated alanms I 3
fific: M\nor Wsz\nq n NACK

] T I

Figure A.5: returning alarm correlation information to the operator.

The need for self-modeling

standards:
SDH, WDM
OTN, GMPLS...

behavior of generic
network elements

l

capturing architecture
(network discovery)

l

automatic

behavioral model

generation

i

automatic

algorithm generation
and deployment

Model based techniques require models! Models for such
Lhuge systems can’t be built by hand.

|

Wodes 2006 — p.3/22

Contents

. Industrial motivation

2. Problem setting: (on-line) distributed monitoring of
distributed systems

3. Using classical tools: automata and products
4. Problem of state explosion: more compact data
structures:
(a) execution trees
(b) trellises
(c) partial orders

5. Other issues

-

|

Wodes 2006 — p.4/22

Distributed systems monitoring

o N

We are given:
A distributed system A with subsystems A;.: € I;

® O,,i € I, observation system attached to each
subsystem;

o |

Wodes 2006 — p.5/22

Distributed systems monitoring

-

We are given: T

® A distributed system A with subsystems A;,i € I;

® ;1 € I, observation system attached to each
subsystem,;

Perform the monitoring of A under the following constraints:
#® A supervisor S; Is attached to each subsystem,;

#» S; only knows the local system model A; plus interface
iInformation relating A; to its neighbours;

® §S; accesses observations made by O;; it can exchange
messages with its neighbouring supervisors;

No global clock is available and communications are

L asynchronous. J

Wodes 2006 — p.5/22

Approach for this talk

o o

We shall first try to address this problem with most classical
frameworks: automata and their products

We shall push this game to its very limits

However, at some point, the
stringent need for moving to a
partial order framework will appear

006 — p.6/22

Here are my lawyers

be prepared to overnight

-

Monitoring a finite state machine

A
L
o

2A

Proj, (o)
observation

-

(S,L,—,sq), S:states, L :labels
L,UL, = observed U unobserved
/4 12 (3

Sp——>81 —— 89— S3.- alun

set of all runs of 4

erasing states and unobs labels from ¢
O € {Proj,(0) |0 € X4}

|

Wodes 2006 — p.7/22

-

.

Monitoring a finite state machine

A
L

o

2A

Proj, (o)
observation

monitor

-

(S,L,—,sq), S:states, L :labels

L,UL, = observed U unobserved
1 o {3
Sp ——S1 —— SS9 —— 83 .- alun

set of all runs of 4

erasing states and unobs labels from o
O € {Proj,(0) |0 € X4}

algorithm that computes,
for every observation O of A,
the set Proj, ' (O) |

Wodes 2006 — p.7/22

On-line monitoring
fThis amounts to synchronizing on-line, T
observation O
with a “simulation” of A.

Since product captures synchronization, this amounts to
constructing, on-line, the set of all runs of the product

A x O.

We need to achieve this in our distributed setting:
A = XA
O lier Oi

o |

Wodes 2006 — p.8/22

Su & Wonham approach [2004, 2006}
-

1. compute and store the local monitor V; =g.¢ Proj(;il (0;),
seen as a language;

2. perform a consistent merge of local monitors:

V =qet |lictVi = Proj, " (|licrO;s)

and compute Proj, (V) without computing V, by
allowing exchanges of messages btw supervisors.

o |

Wodes 2006 — p.9/22

Su & Wonham approach [2004, 2006}

-

-

1. compute and store the local monitor V; =4t Preg;} (0:),
seen as a language,;

2. perform a consistent merge of local monitors:

V =qet |licrVi = Proj, " (|licrO;)

and compute Proj, (V) without computing V, by
allowing exchanges of messages btw supervisors.

Let V; be the solutions found by the distributed algorithm.

The authors distinguish local consistency: local solutions V;
agree on their interfaces, and global consistency: the

algorithm succeeds in computing V; = Proj, (V) for each 1.

Wodes 2006 — p.9/22

On-line monitoring (cont’d)

o N

Manipulating languages in the form of sets of runs is
costly.

#® Representing them by automata is not suitable for
on-line processing.

#» Greatest attention must be paid to data structures and
how to compute with them.

We need efficient data structures to construct the set of all
runs of an automaton, incrementally, in a distributed way:
automata unfoldings/trellises,

partial order unfoldings/trellises.

o |

Wodes 2006 — p.10/22

Automata unfoldings (execution trees)

o N

a

d €
27
A AR AN
C A e P

Unfolding based monitoring

- N

o {automaton, observation} o

Unfolding based monitoring

B
F

S1 @0
-ff&ff ==
82 30 C') .
g r el
S1 62
I I
[
SzQ 30
A, oF
U 4 O =Up

synchronizing their unfoldings

-

Unfolding based monitoring

.
2wy

S1 @0
-ff&ff ==
82 30 6 ;
g r el
S1 as 5
I I
F Y
SzQ 30
A, oF
U4 O =Up

the resulting product

(s1,0) T

f f
(82,1)<> C>(83>1)

Xy

(5172)

L. f f

(82, 3)6 (837 3)

Uaxo =Uyg XY Uo

-

Unfolding based monitoring
(81 0) T

/Qiﬁ % % f
w s20 530 (s2,1)O O(ss3,1)

A U_A OIUO UAX():UA Xu Up

on-line computation of monitoring |

Unfolding based monitoring
- o

@ 0

S1 S1

.$.f .$.f.\.r :‘fA‘:f == -ff&ff

szw 82 530 R (s2,1) O(s3,1)
T 7«,:':, %T

S1

6 5 (5172)

A U_A OIUO UAX():UA Xu Up

o on-line computation of monitoring o

Unfolding based monitoring
- o

S1 51 @ 0
N/Q\ N :‘fA‘:f f -ff&ff
szw 82 530 R (52,1)O O(s3,1)
T ,Z':| |:':|’I°
S1 C'> 5 (5172)
f f s Ay ;
s20 830
2, (5130 O(s3,9)
A U_A OIUO UAX():UA Xu Up

-

Unfolding based monitoring

S1 51 @ 0
. ’/fQ\ N zﬁ‘:f =
£
S9 s30 S2 30 61
i r el
S1 62
f f
f L
20 830
oF
A U 4 O =Up

.

(817 0)

(51,3)0

-

(s3,3)

monitor

Basic tools to handle distributed systems
B -
Assume A= X,;cr A, O= X,;c10;

Problem: computing the monitor I/ 4o suffers from state
explosion in A, and thus in its unfolding.

A first idea to avoid this is to apply, for unfoldings, the well
known recommendation: never compute the product.

Since we have A x O = X ¢ (A; x O;), this amounts to

computing Z/{XiEI(AZ'XOi>
without computing X ;.7 (A; x O;).

o |

Wodes 2006 — p.13/22

Basic tools to handle distributed systems
B -

The product of unfoldings is formally defined as follows:
YV XUV =gt Upuyr
® ForL/ C Land 7 :S— S, the projection
Projr . (Ua)

IS obtained by deleting transitions ¢ L', taking transitive
closure, determinizing, and mapping s to n(s).

The intersection of sub-unfoldings of a same U 4:

yny

L possesses as runs the common runs of YV and V. J

Wodes 2006 — p.13/22

Basic tools to handle distributed systems

o N

Theorem [Fabre & al 2003] (factorizing unfoldings)

U
Xiel UA@

= Xi¢; Proj; (Uy)

Definition (modular monitoring)

AxO = X ier (Ai x O;)
M —def Z/{.AXO

Minod =def (Mz')z-ga/\/lz‘ = Proj; (M)
| L

Key Problems

o N

Problem 1 Compute M, ,q Without computing M.

Problem 2 Compute M,,,q by attaching a supervising peer
to each site.

Problem 3 Compute M,,,q on-line and on the fly.
Problem 4 Address asynchronous distributed systems.
Problem 5 Avoid state explosion due to concurrency.

Problem 6 Address changes in the systems dynamics.

o |

Wodes 2006 — p.14/22

A separation theorem

o N

Theorem: A;,: = 1,2, 3: automata.
Say that A, separates A; from As if (L1 N Ls) C Ly. Then:

Pr0j2 (Z/{.A1><.A2 ><A3) — PrOjQ (Z/{.A1 XAQZ ﬂ PrOjQ (Z/{A2 XA3Z

' WV

local to (1,2) local to (2,3)

\ . J/
N

local to 2 (intersection)

()

Pr0j1 (Z/{A1XA2 ><_A3) — Pr0j1 Z/{Al XZ/{ FrOjQ (Z/{A2 X-A?)l

local to (2,3)
\ local to (1,2))

o |

Wodes 2006 — p.15/22

A separation theorem

fDefine the following operators: T

Msgy, .y, =def Proj; (Vj x4 Vi)
Fuse(Vz-, VZ/) =def Vi N V£

Using these operators, previous rules rewrite as

PI'OjQ (Z/{Ale2><A3) — Fuse(MSgZ/{_AlﬁuAQ) MSgUA3—>Z/{A2)
Proj; (Ua, xAyxA;) = Msg(

MSgUA3—>LlA2>_>MA1

Lemma: The two operators Msg and Fuse are increasing
w.r.t. their arguments.

o |

Wodes 2006 — p.15/22

Use for belief propagation algorithm

o N

Belief propagation algorithm when the interaction graph of
(A;);er is a tree. For distributed monitoring: A; «— A; x O;.

006 — p.16/22

Use for belief propagation algorithm

o N
N

Belief propagation algorithm when the interaction graph of
(A;);er is a tree. For distributed monitoring: A; «— A; x O;.

006 — p.16/22

Use for belief propagation algorithm

. N
N /

N
/

Belief propagation algorithm when the interaction graph of
(A;);er is a tree. For distributed monitoring: A; «— A; x O;.

006 — p.16/22

Use for belief propagation algorithm

o N

Belief propagation algorithm when the interaction graph of
(A;);er is a tree. For distributed monitoring: A; «— A; x O;.

006 — p.16/22

Use for belief propagation algorithm

. N
N /

N /

7
J TN

Belief propagation algorithm when the interaction graph of

(A;);er is a tree. For distributed monitoring: A; «— A; x O;.

006 — p.16/22

Use for belief propagation algorithm

| -
\ /

N 7

T
N

Belief propagation algorithm when the interaction graph of
(A;);er is a tree. For distributed monitoring: A; «— A; x O;.

006 — p.16/22

Use for belief propagation algorithm

B -
N /
\\ V7

T
N

Belief propagation algorithm when the interaction graph of
(A;);er is a tree. For distributed monitoring: A; «— A; x O;.
Computes M,,,q Without computing M, by attaching a
supervising peer to each site — with a rigid scheduling,

Lhowever. J

Use for belief propagation algorithm

B -
N /

\\ V.

T
N

Belief propagation algorithm when the interaction graph of
(A;);er is a tree. For distributed monitoring: A; «— A; x O;.
Since Msg and Fuse are increasing w.r.t. their arguments,
chaotic asynchronous iterations can be used as well. These
can be interleaved with getting new observations. Yields an
Lon-line, distributed, and asynchronous algorithm. J

Wodes 2006 — p.16/22

Use for belief propagation algorithm

B -
N /
\\ V7

T
N

Belief propagation algorithm when the interaction graph of
(A;);er is a tree. For distributed monitoring: A; «— A; x O;.
When cycles exist in the interaction graph, the same
distributed chaotic algorithm yields local consistency but

Lnot global consistency. J

where are

partial orders
needed?

From unfoldings to trellises

f # We solved Problems 1, 2, and 3: on-the-fly modular andT
distributed supervision.

Did we properly address state explosion? Asynchrony?
Concurrency? Not quite so:

o |

Wodes 2006 — p.17/22

From unfoldings to trellises

o .

We solved Problems 1, 2, and 3: on-the-fly modular an
distributed supervision.

Did we properly address state explosion? Asynchrony?
Concurrency? Not quite so:

s Factorized unfoldings significantly reduces state
explosion, but . ..

s Automata unfoldings are trees that generally grow
exponentially in width along with their depth.

s This fact gets worse as components exhibit internal
concurrency — something that follows from
asynchrony.

o |

Wodes 2006 — p.17/22

From unfoldings to trellises

o N

The well known Viterbi algorithm for max likelihood
estimation of hidden state in stochastic automata uses
another data structure: trellises.

o |

Wodes 2006 — p.17/22

From unfoldings to trellises

o N

#» The well known Viterbi algorithm for max likelihood
estimation of hidden state Iin stochastic automata uses
another data structure: trellises.

» Trellises are obtained from unfoldings by merging
identical futures of different runs, according to various
observation criteria. Examples are:

s length of the path o;
s Vvisible length of the path o;
s projection Proj;, (o), where L' C L.

o |

Wodes 2006 — p.17/22

From unfoldings to trellises

o N

#» The well known Viterbi algorithm for max likelihood
estimation of hidden state Iin stochastic automata uses
another data structure: trellises.

Trellises are obtained from unfoldings by merging
identical futures of different runs, according to various
observation criteria. Examples are:

s length of the path o;
s Visible length of the path o;
s projection Proj;, (o), where L' C L.

Formalization: ¢ : L. — Ly observation criterion. Two paths o
and ¢’ of the unfolding are merged if they begin and end at
identical states and produce identical words 6(c) = 6(d").

o |

Wodes 2006 — p.17/22

From unfoldings to trellises

a

“Rei
e
NN
P N

automaton A and its unfolding 44 4

From unfoldings to trellises

52
S2 S1 S0
S9 S1 S0

automaton A and its trellis 74
observation criterion = length of o
0:LU{x}— {1}

-

From unfoldings to trellises

automaton A and its trellis 74
L observation criterion = visible length of o J
0:L— {1}

Wodes 2006 — p.17/22

From unfoldings to trellises

automaton A and its trellis 74
observation criterion = Projy, ., (o)

0 =1d:{b,c}— {b,c}

o |

Wodes 2006 — p.17/22

Trellis-based monitoring: trial

o N

Centralized monitoring: define

M =4t T4.0

where 6 Is the length of Proj; (o), I.e., the length of O.

Trellis-based monitoring: trial

o N

Centralized monitoring: define

0
M =aet T g50
where 6 Is the length of Proj; (o), I.e., the length of O.

Trial: modular monitoring

Assume A= X7 A;,0 = X1 0;
Attempt to define

Mmod —def (PI'OjZ' (TXXO))z'EI

HHhhmmmm, there are problems . ..

o |

Wodes 2006 — p.18/22

Problems with trellises and projections

o N

S0

50
aDsl C 3,1
bl b< >d
S2 8,2
el
S3
A A =T g

Wodes 2006 — p.19/22

Problems with trellises and projections
. -
D|> <> |\

VAR

el l

Wodes 2006 — p.19/22

Problems with trellises and projections
f S0 (s0,50) T

S0 36 s 20
AR | N\
/ / /
aDsl C S1 S1 S92 S1,S1 S2, 81
bl b< >d C/bl el /bl / le
S92 sh S1 82 S3 (51, 85 S3, S S2, 81
el / ! el el /
S3 S3 S3, S

A A" =T g T a0 TaxAr 006"

Wodes 2006 — p.19/22

Problems with trellises and projections

So (80736)

BROEER BN

O Al

5182 (s1,82) (s2,s3) (s2,s1)
y v el €
£
S3 (83732)
A = TA’,O’ T_A,g TAXA’,OI_!O’

Proj{a,’b’c’e}’

-

T (TAXA/,QLIQ/)

06 — p.19/22

Problems with trellises and projections

S0 S0 50 (80,80)

ATRCEE T N

aD‘Sl (817 31) (827 31) 51 C
bl <> /I \ ; le b\
£ . ,

52 S1 52 (s1,82) (s2,82) (s2,s1) 52
el ,/ V eI 6 eI

/l/
83 S3 (s3,53) S3
A A= Ty g Ta0 Tax A, 000

PI'OJ{a b,c o (Taxaroue)

the projection does not yield a valld trellis
the reason is that 6 LI #’ counts the length of runs globally

Wodes 2006 — p.19/22

Solution: distributable obs. criteria

.
a@:L
L

@l

S3

A

-

S0 (80, 50) S0

OER TN

(51,81) (s2,51) 51 52
<> / | \ e bl (/X b\ e\
I// / y / /

81 S22 83 (s1,82) (s2,82) (s2,82) (s2,81) s2 s3

’/ v eI el 6 ///;; 6|

: 4
$3 (s3,82) (83,52) $3
A’ — TA/,GI T_A,Q TAX.A’,le_W&

Proj{a,b,c,e},ﬂ' (TAX.A’,OdI_IO&)
the projection yields a valid trellis

64 LI ¢, counts the length of runs locally, in each component

Wodes 2006 — p.20/22

Solution: distributable obs. criteria

(SO\,SG)\\ (30\,86)\\ (30\’86)\\

(s1,87) (s2,57) (s1,87) (s2,57) (s1,87) (s2,57)
AT S AT
(s1,s5) (s2,s5) (s2,s5)(s2,s]) (s1,85) (s2,s5) (s2,s7) (s1,85) (s2,s5) (s2,s85)(s2,s])
e e d e q e e q
(s3,85) (s3,85) (s3,85) (s3,85) (s3,85) (s3,85)
Unxar TaxAr,06 Taxar,0400,

0 U ¢ counts the length of runs, globally

® 6,10 is avector counter that counts the length of runs
In each component;
04 L1 0, is distributable: compatible with projections

» \With distributable criteria, trellises can be factorized and
belief propagation works.

Wodes 2006 — p.20/22

Solution: distributable obs. criteria
f (s0,50) (s0,s0) (s0,s0) T

a C a C a C
(8173/1) (8273/1) (3173/1) (3273/1) (3173/1) (3273/1)
a® d € a? d |® a d €
(/ / / / / / / / / / /
31’82) (32782) (32782)(32a31) (31732) (32a32) (32731) (31732) (32732) (32732)(82’81)
e e ld e\ q e e q
(33’3/2) (33’3/2) (33’3/2) (83’3/2) (83a3/2) (S3a3/2)
Uaxar Taxar 000 Tuxar 0400,

0 U ¢ counts the length of runs, globally

® 6,10 is avector counter that counts the length of runs
In each component;
04 L1 0, is distributable: compatible with projections

» \With distributable criteria, trellises can be factorized and
belief propagation works.

Wodes 2006 — p.20/22

Solution: distributable obs. criteria

-

(50, 80) (505 80) (so

(s1,57) (s2,s7) (s1,57) (s2,s7) (s1
PO A
(s1,85) (s2,85) (s2,s5)(s2,s)) (s1,85) (s2,85) (s2,s7) (s1,85) (s2
e e d e q e

(s3,85) (s3,55) (s3,53) (s3,55) (s3

-

, 80)

c

aSll) (32a3/1)
FRINC
, 85) (s2,85)(s2,s])

¢ d

,55) (83, 83)

Uaxar Taxar 000 Tuxar 0400,

® 6,10 is avector counter that counts the length of runs

In each component;
The idea of using vector clocks is not new. It

was

proposed by Fidge [1991] and Mattern [1989] for the
distributed reconstruction of coherent states in
L distributed systems — e.g., for checkpointing. J

Wodes 2006 — p.20/22

Moving to partial orders
B -

(807 36) 86

(3178’1) (5278,1) 8%8,
IS T AN VANPN
b d e d
(51,8,2) (3275,2) (5278’2) (52,8,1)
el ld S9 3’2 3’2 S3 8’2

e

(s3,85) (s3,85) (s3,s5) %e
po
quA’ M.AX.A’

3

With a distributable observation criterion, global runs are
best seen as the synchronization of local runs, i.e., as
partial orders — note the reduction in the number of events,

Ldue to concurrency. J

Wodes 2006 — p.21/22

Moving to partial orders
B -

(807 86) 86

(s1,81) (s2,8}) %

s1 8 $9
/ bll ld\
b d e
(51,8,2) (3278,2) (3278’2) (52,8,1)
el e\ / S9 sh S3

(s3,85) (s3,55) %6

T.AX.A’,HdLIGZi 53 TﬁiA’;Qdueé
With a distributable observation criterion, global runs are

best seen as the synchronization of local runs, i.e., as
partial orders — note the reduction in the number of events,

Ldue to concurrency. J

Wodes 2006 — p.21/22

-

Moving to partial orders

-

For large distributed systems, internal concurrency and
asynchrony may exist also within each local subsystem.

Thus, with the above data structures, state explosion may
occur, locally to each subsystem.

Therefore it is advisable to use partial order data structures
also to represent the sets of local runs.

While efficiency increases by doing so, new problems
appear ...

o |

Wodes 2006 — p.21/22

Moving to partial orders

NGO T IS
i/ O

!/
S3 So S3 So

some causalities and conflicts are caused by A"

o |

Wodes 2006 — p.21/22

Moving to partial orders
- o -

| a('°>c <>

some causalities and conflicts are caused by A"
projecting A" away make them dangling

o |

Wodes 2006 — p.21/22

Moving to partial orders
f A A’ A" T

| a('?c <>

solutions exist, e.g., moving to event structures where only
event are involved and causality/conflict is encoded

Lexplicitly J

Wodes 2006 — p.21/22

Other 1ssues

o N

Solution: unfolding dynamic Petri nets, or Graph Grammars
(in progress)

Problem Address changes in the systems dynamics.

o |

Wodes 2006 — p.22/22

Other 1ssues

o N

Solution: unfolding dynamic Petri nets, or Graph Grammars
(in progress)

Problem: Address changes in the systems dynamics.

Problem: Address incomplete models
Solution???

o |

Wodes 2006 — p.22/22

-

Other 1ssues

-

Solution: unfolding dynamic Petri nets, or Graph Grammars
(in progress)

Problem: Address changes in the systems dynamics.

Problem: Address incomplete models
Solution???

Problem: Address nondeterminism in monitors via
concurrent probabilistic models

Solution: true concurrency probabilistic models, by Samy
Abbes [2004, 2005]

|

Wodes 2006 — p.22/22

-

Other 1ssues

-

Solution: unfolding dynamic Petri nets, or Graph Grammars
(in progress)

Problem: Address changes in the systems dynamics.

Problem: Address incomplete models
Solution???

Problem: Address nondeterminism in monitors via
concurrent probabilistic models

Solution: true concurrency probabllistic models, by Samy
Abbes [2004, 2005]

Problem: Address timing aspects in monitors
Solution: unfolding timed Petri nets, Chatain [2005]

|

Wodes 2006 — p.22/22

Partial
orders
needed..

Nancy,
help!/

coming
fomorrow...

Partial
orders
needed..

Nancy,
help!/

	An industrial experience with Alcatel
	The need for self-modeling
	Contents
	Distributed systems monitoring
	Approach for this talk
	Monitoring a finite state machine
	On-line monitoring
	Su & Wonham approach [2004, 2006]
	On-line monitoring (cont'd)
	Automata unfoldings (execution trees)
	Unfolding based monitoring
	Basic tools to handle distributed systems
	Key Problems
	A separation theorem
	Use for belief propagation algorithm
	From unfoldings to trellises
	Trellis-based monitoring: trial
	Problems with trellises and projections
	Solution: distributable obs. criteria
	Moving to partial orders
	Other issues

