
1

Nancy Lynch
MIT, EECS, CSAIL

Workshop on Discrete Event Systems (Wodes ’06)
Ann Arbor, Michigan
July 11, 2006

Analyzing Security Protocols using
Probabilistic I/O Automata

2

References

Authors: Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses
Liskov, Nancy Lynch, Olivier Pereira, Roberto Segala
Using Probabilistic I/O Automata to Analyze an Oblivious
Transfer Protocol. MIT CSAIL-TR-2005-1001, August ‘05.
Revision, CSAIL-TR-2006-046, June ‘06.
Task-Structured Probabilistic I/O Automata. WODES ’06.
Full version in progress.
Using Task-Structured Probabilistic I/O Automata to Analyze an
Oblivious Transfer Protocol. CSAIL-TR-2006-047, June ‘06.
Time-Bounded Task-PIOAs: A Framework for Analyzing
Security Protocols. DISC ’06.

3

General goals

Develop techniques for
– Modeling security protocols precisely.
– Proving their correctness rigorously.

Techniques should handle both functional
correctness and security properties.
Should be able to describe cryptographic
primitives, computational limitations.
Tractable, usable methods.

4

I/O Automata models and methods

Our favorite tools for modeling, analyzing distributed algorithms,
communication protocols, safety-critical systems,…
Describe systems using:

– I/O Automata (IOA) [Lynch, Tuttle]
– Timed I/O Automata (TIOA) [Kaynar, Lynch, Segala, Vaandrager]
– Hybrid I/O Automata (HIOA) [Lynch, Segala, Vaandrager]
– Probabilistic I/O Automata (PIOA) [Segala, Lynch]

Prove correctness using:
– Compositional methods: Infer properties of a system from properties

of its pieces.
– Invariant assertions: Properties that hold in all reachable system

states.
– Simulation relations: Relate system descriptions at different levels of

abstraction.

5

Uses of I/O Automata

Basic I/O Automata:
– Basic distributed algorithms: Consensus, mutual exclusion, spanning

trees,…
Timed I/O Automata:

– Communication protocols.
– Timing-sensitive distributed algorithms.
– Simple hybrid systems.

Hybrid I/O Automata:
– More complex hybrid systems (controlled vehicles, aircraft).
– Mobile ad hoc networks.

Probabilistic I/O Automata:
– Randomized distributed algorithms.

So, they should work for Security Protocols too!

6

An early attempt [Lynch, CSFW 99]

I/O Automata models and proofs of shared-key
communication systems
Models:

– Diffie-Hellman key distribution protocol, and
– Shared-key communication protocol that uses the keys.

Proves correctness and secrecy for the complete
system, using a composition theorem.
No probabilities used here---just plain I/O Automata.
Treats the cryptosystem formally (algebraically) not
computationally.

7

Limitations of this approach

Doesn’t describe some key features of
cryptographic protocols:
– Computational limitations.
– Probabilistic behavior.
– Small probabilities of guessing secret information.
– “Knowledge” of a fact (rather than a value).

So, we decided we needed a modeling
framework that supports these features too.

8

Specific goal
Prove correctness of a simple 2-party Oblivious
Transfer protocol [Goldreich, Micali, Wigderson 87].
Oblivious Transfer requirements:

– Transmitter gets input bits, x0 and x1, from the “Environment”.
– Receiver gets input bit i, an index it uses to select an input.
– Receiver should output only the chosen Transmitter input xi.
– Adversary (who hears all communication) shouldn’t learn

anything.
Requirements include both
functional correctness and secrecy
properties.

in(i)

out(xi)

Trans Rec

Advin(x0,x1)

9

Four versions of the problem

Depending on whether Transmitter and/or
Receiver is corrupted.
Adversary also sees inputs, outputs, random
choices of corrupted parties.
But it should not learn anything else.

10

Oblivious Transfer Protocol

Trans chooses a random trap-door permutation f, sends to Rec.
Rec chooses random numbers y0 and y1, computes f(yi), where i
is its input, keeps y(1-i) unchanged, sends results to Trans.
Trans applies f-1 to both, extracts hard-core bits, xors them with its
inputs x0 and x1, sends results back to Rec.
Rec decodes the chosen value.

in(i)

out(xi)

Trans Rec

Advin(x0,x1)

11

PIOA modeling
Use PIOAs to model both protocol and requirements specification.
E.g. Specification, when no one is corrupted:

Specification, when Rec is corrupted:
Funct

in(i)

out(xi)
in(x0,x1)

Sim

Funct

in(i)

out’(xi)

in(x0,x1)

Sim

out(xi)

12

Showing the protocol “implements”
the specification system:

Uses new implementation
notion, ≤neg,pt.
Relates Protocol PIOA
system to Specification
PIOA system.
“For every poly-time-
bounded environment PIOA
E, every probabilistic
execution of Protocol + E
yields “approximately the
same” external behavior as
some probabilistic execution
of Spec + E.”
Approximation: Negligible
difference in probability that
E “accepts”.
Expresses functional
correctness and secrecy.

SimFunct

in(i)

out(xi)
in(x0,x1)

in(i)

out(xi)

Trans Rec

Advin(x0,x1)

13

Proving correctness

Break the proof into several stages, using system descriptions at
several levels of abstraction.
Prove some stages using PIOA simulation relations.

– Assertions relating states of the two PIOAs.
– Use a new type of simulation relation, more general than previous PIOA

simulation relations.
– Can express complex correspondences between random choices at

different levels.
– These prove not just ≤neg,pt , but stronger ≤0.

Other stages involve secrecy aspects of a cryptographic primitive (a
trap-door function).

– Proofs adapted from computational crypto “Distinguisher” arguments.
– Usually proved by contradiction.
– We recast in terms of mappings between PIOAs, without contradictions.

14

What’s new here?

Modeling everything, in complete detail, using PIOAs:
– Protocols.
– Requirements, including functionality and secrecy.

Proofs using simulation relations, in several stages.
– Some stages use PIOA simulation relations.
– Other stages express Distinguisher arguments.
– Separate different types of reasoning.

New PIOA theory:
– Task-PIOAs, for resolving scheduling nondeterminism.
– A new kind of simulation relation.
– A way to express poly-time computation restrictions.

New ways of expressing computational crypto reasoning:
– Redefine cryptographic primitives using ≤neg,pt.
– Infer ≤neg,pt for systems that use the primitives.

15

Related work

[Segala 95] Probabilistic I/O Automata theory
[Canetti 01] Universally Composable (UC) security
[Pfitzmann, Waidner 01], [Backes, Pfitzmann, Waidner 04]
Composable security
[Mitchell et al.] Modeling/analyzing security protocols using
process algebras, with probabilistic poly-time processes.
[Shoup 04] Cryptography proof sketches using many levels of
abstraction (“games”).
Work on protocol proofs using formal cryptography,
e.g., [Dolev, Yao 83], [Lynch 99].
Work on protocol proofs using computational cryptography.
Work relating the two, e.g. [Abadi, Rogaway 02],
[Canetti, Herzog 05].

16

Talk Outline:

1. Overview (done)
2. Task-PIOAs

1. PIOAs (review)
2. Task-PIOA definitions
3. New simulation relation
4. Adding computational limitations

3. Oblivious Transfer Modeling and Analysis
1. Specification model
2. Protocol model
3. Correctness theorems
4. Modeling the cryptographic primitives
5. Correctness proof

4. Conclusions

17

2.1. PIOAs [Segala]

A PIOA P consists of:
Q: a countable set of states,
q: a start state,
I, O, and H: countable sets of input, output, and internal actions
D, a transition relation---a set of triples of the form

(state, action, probability measure on states).
Axioms:

Input-enabling
Next-transition determinism

PIOAs can make both
Nondeterministic choices (next action), and
Probabilistic choices (next state).

Closed PIOA: No input actions.

18

PIOAs

Scheduler for a PIOA P:
– Chooses the next action (fine-grained control).
– Choice may depend on entire prior history (full information).

PIOA + Scheduler yield:
– Probabilistic execution
– Trace distribution (probability measure on sequences of external

actions)
Operations:

– Composition
– Hiding (of output actions)

Simulation relation notion
– Relates states to distributions on states.
– Implies inclusion of sets of trace distributions.

19

PIOAs

Traditional PIOA schedulers are too powerful for the
security protocol setting:

– Choose the next action (fine-grained control).
– Choice may depend on entire prior history (full information).

In particular, scheduling choices may depend on secret
information, supposedly hidden in the states of non-
corrupted protocol participants.
Scheduler can “leak” secret information to adversarial
parties, by encoding it in the choices of scheduled
actions.
So, we defined more restricted, partial-information “task
schedulers”.

20

2.2. Task-PIOA definitions

Task-PIOA T = (P,R)
– PIOA + equivalence relation on output and internal actions.
– Task = equivalence class of actions

E.g., “send” actions for round 1 messages.
– Action determinism: At most 1 action in each task enabled in each state.

Task schedule: Arbitrary sequence of tasks.
– Models an oblivious task scheduler.
– Does not depend on dynamic information generated during execution.

Applying a task schedule to the initial state:
– Resolves all nondeterminism.
– Yields unique probabilistic execution, unique trace distribution.

More generally, we can applying a task schedule to:
– A probability distribution on states, or even
– A probability distribution on finite executions.

21

Task-PIOA operations

Composition:
– Compose the PIOAs.
– Take the union of the sets of tasks.

Hiding (of actions).

22

Task-PIOA implementation relation

Environment E for T:
– Task-PIOA that “closes” T.
– Has special “accept” output action.

Used to express E’s distinguishing power.

T1 ≤0 T2:
– For every Environment PIOA E for both T1 and T2,

every trace distribution of T1 || E (obtained from any
task schedule) is also a trace distribution of T2 || E
(obtained from some task schedule).

23

Task-PIOA Compositionality

Theorem: If T1 ≤0 T2 then T1 || T3 ≤0 T2 || T3.
Proof: Straightforward, because of the way the
implementation notion ≤0 is defined (in terms of
mappings from environments to sets of trace
distributions).

24

2.3. New kind of simulation relation

For comparable, closed task-PIOAs T1 and T2.
ε1 R ε2, for probability measures ε1 and ε2 on finite
execs of T1 and T2 with the same trace distribution.
Uses expansion operator Exp(R) on such relations R.
Two conditions (slightly simplified):

– Start condition: Start states of T1 and T2 are R-related.
– Step condition: There is a mapping c from tasks of T1 to finite

sequences of tasks of T2 such that, if ε1 R ε2 and t is a task of
T1, then apply(ε1,t) Exp(R) apply(ε2,c(t)).

A bit more general than “apply(ε1,t) R apply(ε2,c(t))”.
Soundness: Every trace distribution of T1 is a trace
distribution of T2.

25

New simulation relation

Flexible.
Allows us to relate individual results of random
choices at two levels:

R

R

26

New simulation relation

Allows us to relate random choices made at
different times at the two levels.

R
R

R

choose y
compute z

choose z

27

Soundness of simulation relations

Theorem: Every trace distribution of T1 is also
a trace distribution of T2.
Proof: By a somewhat involved inductive
argument.

28

2.4. Adding computational limitations

b-time-bounded task-PIOA (b a constant):
States, actions, transitions, etc., have bit-string

representations, length ≤ b, identifiable in time ≤ b.
Time ≤ b to determine next action, next state.

b-time-bounded task schedule:
At most b tasks in the sequence.

Extend to indexed families of tasks and task
schedules, where b is a function of the index.

29

New notion of implementation

T1 ≤neg,pt T2:
– “For every poly-time-bounded Environment E for

both T1 and T2, every trace distribution of T1 || E
(with any poly-time task schedule) is approximately
the same as some trace distribution of T2 || E (with
some poly-time task schedule).”

– “Approximately the same”: Difference in probability
that E outputs “accept” is negligible

≤neg,pt transitive.
≤neg,pt preserved by composition.

30

Talk Outline:

1. Overview (done)
2. Task-PIOAs (done)

1. PIOAs (review)
2. Task-PIOA definitions
3. New simulation relation
4. Adding computational limitations

3. Oblivious Transfer Modeling and Analysis
1. Specification model
2. Protocol model
3. Correctness theorems
4. Modeling the cryptographic primitives
5. Correctness proof

4. Conclusions

31

3.1. Specification: Receiver corrupted

Funct:
– State: inval(Trans), inval(Rec)
– Transitions: Record inputs, output inval(Trans)(inval(Rec))

Functional correctness + secrecy.

Sim:
– Sees Rec input.
– Gets output (the chosen input) from Funct; relays to environment.
– Arbitrary other interactions with environment.
– Doesn’t learn (or reveal) non-chosen input.

Funct

in(i)

out’(xi)

in(x0,x1)

Sim

out(xi)

32

3.2. OT protocol model: Rec corrupted
Trans, Rec
Adversary communication service:

– Can eavesdrop, delay, reorder, drop messages.
– Sees Rec inputs.
– Relays output from Rec to Envt.
– Arbitrary other interactions with Envt.

Random sources Srctdpp, Srcyval
in(i)

out(xi)

in(x0,x1)

Rec

Adv

Trans
tdpp yval

out’(xi)

33

OT Protocol, informal description

On inputs (x0,x1) for Trans, i for Rec:
Trans chooses a random trap-door permutation f: D → D,

sends f to Rec.
Rec chooses two random elements, y0, y1 in D,

computes zi = f(yi), z(1-i) = y(1-i),
sends (z0,z1) to Trans.

Trans computes b0 = B(f-1(z0)) xor x0, b1 = B(f-1(z1)) xor x1,
sends (b0,b1) to Receiver.

Receiver outputs B(yi) xor bi, which is equal to xi.

34

Trans Task-PIOA

State: inval, tdpp, zval, bval
Transitions:

– Record inval, tdpp inputs
– send(1,f):

Precondition: f = tdpp.funct
– Record zval received in message 2.
– fix-bval:

Precondition: tdpp, zval, inval defined
Effect: bval(0) := B(tdpp.inverse(zval(0))) xor inval(0);
bval(1) := B(tdpp.inverse(zval(1))) xor inval(1)

– send(3,b):
Precondition: b = bval

35

Rec Task-PIOA

State: inval, tdp, yval, zval, outval
Transitions:

– Record inval, yval inputs
– Record tdp received in message 1.
– fix-zval:

Precondition: tdp, yval, inval defined
Effect: zval(inval) := tdp(yval(inval));
zval(1-inval) := yval(1-inval)

– send(2,z)
Precondition: z = zval

– receive(3,b):
Effect: If yval defined then outval := b(inval) xor B(yval(inval))

– out(x):
Precondition: x = outval

36

3.3. Correctness Theorems

Four cases, based on which parties are corrupted.
Theorem: If RS (“Real System”) is a family of OT
protocol systems in which the family of Adv
components is poly-time-bounded, then there is a
family IS (“Ideal System”) of OT requirements systems
in which the family of Sim components is poly-time-
bounded, and such that RS ≤neg,pt IS.
Consider case where Rec is corrupted.
Proof: Uses four levels of abstraction:

37

Levels-of-abstraction proof

Sim component of IS:
– Calculates bval for Rec’s chosen index

using xor of hard-core bit and Trans input.
– Obtains the Trans input from Funct.
– For non-chosen index, chooses bval

randomly.

Int2 calculates non-chosen bval using
xor of random bit and Trans input.
Int1 similar, but calculates non-
chosen bval using xor of hard-core bit
and Trans input.

IS

Int2

Int1

RS

38

Levels-of-abstraction proof

Top and bottom mappings are
simulation relations (of our new kind).
Mapping from Int1 to Int2 is different:

– The two levels are identical, except that
Int1 calculates the non-chosen bval using
xor of hard-core bit and Trans input, while
Int2 uses random bit and Trans input.

– Difference: Hard-core bit vs. random bit.
– Here we use the definition of a hard-core

bit, and a cryptographic Distinguisher
argument.

IS

Int2

Int1

RS

39

3.4. Modeling the crypto primitives

Trap-door permutation and inverse.
Hard-core predicate.
Traditional definition: B is a hard-core predicate for domain D if for
every polynomial-time-computable predicate G, the following two
experiments output 1 with probabilities that differ by a negligible
(sub-inverse-polynomial) function:

– Experiment 1:
Choose random trap-door permutation f.
Choose random y in D.
Output G(f,f(y),B(y))

– Experiment 2:
Choose random f, y as above.
Choose random bit b.
Output G(f,f(y),b).

40

Reformulated in terms of Task-PIOAs

B is a hard-core predicate for D if SH(B) ≤neg,pt SHR,
where:
– SHR: Three random sources:

– SH(B): Two random sources and
a hard-core automaton H:

tdp z b

tdp y

H

z b

H computes tdp(y) and B(y)

41

Equivalence of the two definitions

Theorem: B is a hard-core predicate for D
according to the traditional definition, if and
only if B is a hard-core predicate according to
the new, task-PIOA-based definition.
Nice, because it lets us apply composition
theorems for task-PIOAs to obtain results
about systems that use a hard-core predicate.

42

Example theorem about use of hard-
core predicates

Can use a hard-core predicate twice:

And it implements five random sources:

tdp y

H

z b

y

H

z b

tdp z b z b

43

Theorem used to show Int1 ≤neg,pt Int2

Interface xors two hard-core bits with input values.
Implements Interface composed with one H and random sources.
Similar to Int1 and Int2 systems.

z bz b

tdp y

H

y

H

Interface
(x0,x1)

(z0,z1) (b0,b1)
i

z bz b

tdp zy

H

Interface
(x0,x1)

(z0,z1) (b0,b1)
i

b

44

Theorems about hard-core predicates

Describe various ways in which hard-core bits
can be incorporated into a system.
Infer that the system implements (≤neg,pt), a
similar system using random bits.
Implementation results follow from:
– New definition of hard-core predicate.
– General task-PIOA composition theorems, saying

that ≤neg,pt is preserved by composition.

45

3.5. Correctness proof, revisited

Recall the main theorem and proof outline.
Four cases, based on which parties are corrupted.
For each case, show Theorem:

– If RS is a family of OT protocol systems in which the family of
Adv components is poly-time-bounded, then there is a family IS
of OT spec systems in which the family of Sim components is
poly-time-bounded, and such that RS ≤neg,pt IS.

Consider case where Rec is corrupted.
Proof: Four levels of abstraction.

46

Proof: Rec corrupted

Show ≤neg,pt for all stages, combine using
transitivity.
Sim component of IS:

– Calculates bval for chosen index using xor of
hard-core bit and Trans input.

– Obtains Trans input from Funct output.
– For non-chosen index, uses random bit.

Int2 similar, calculates non-chosen bval using
xor of random bit and Trans input.
Int1 similar, calculates non-chosen bval using
xor of hard-core bit and Trans input.
Interesting reasoning about cryptographic
primitives is confined to the proof relating Int1
and Int2.

IS

Int2

Int1

RS

47

Sim component of IS

Merges Trans and Rec:

Funct

in(i)

out’(xi)

in(x0,x1)

send

receive
Adv

Trans/Rec

tdpp b

y

out’’(xi)

out(xi)

48

Int1 ≤neg,pt Int2

Int1 and Int2 are identical, except:
– Int1 calculates bval for non-chosen index

using xor of hard-core bit and Trans
input.

– Int2 uses random bit and Trans input.

Both systems use hard-core bits for
bval(chosen index).
Difference: Hard-core vs. random bit.
Correspondence follows from
previous theorem about using hard-
core bits.

IS

Int2

Int1

RS

49

RS ≤neg,pt Int1
Compose both with arbitrary Environment E.
Simulation relation.
Discrepancy:

– In RS, yvals are chosen randomly, then zvals computed.
– In Int1, zvals are chosen randomly.

Shows stronger relation ≤0.

Int1

RS
choose y

compute z

choose z

50

Int2 ≤neg,pt IS
Compose both with arbitrary Environment E.
Simulation relation.
Discrepancy:

– In IS, bval for non-chosen index is chosen randomly.
– In Int2, cval is chosen randomly, then xor’ed with Trans input.
– Either way, they are random values.

Shows stronger relation ≤0.

IS

Int2

51

Talk Outline:

1. Overview (done)
2. Task-PIOAs (done)

1. PIOAs (review)
2. Task-PIOA definitions
3. New simulation relation
4. Adding computational limitations

3. Oblivious Transfer Modeling and Analysis (done)
1. Specification model
2. Protocol model
3. Correctness theorems
4. Modeling the cryptographic primitives
5. Correctness proof

4. Conclusions

52

Summary

Developed techniques for modeling and analyzing security
protocols, based on the PIOA modeling framework.
Used them to carry out a formal proof for [GMW87] OT protocol.
Required us to extend PIOAs to Task-PIOAs:

– New partial-information scheduling mechanism (task schedules).
– Implementation relation ≤0.
– Composition theorem.
– New kind of simulation relation, proved to be sound for ≤0.

Time-bounded PIOAs.
– Approximate, time-bounded implementation relation ≤neg,pt.
– Composition theorem.
– Used to express security protocol correctness.
– Used to model cryptographic primitives’ secrecy properties.

53

Oblivious Transfer models

Specification model:
– Expresses both functional correctness and secrecy.
– Formulated in terms of ≤neg,pt.
– Style similar to [Canetti] Universal Composability (UC) and

[Backes, Pfitzmann, Waidner] universal reactive simulatability.

Protocol model:
– Transmitter, Receiver,
– Adversary communication system, can eavesdrop, delay, lose,

reorder messages.

54

Oblivious Transfer proofs

Multi-stage mapping proofs, using ≤neg,pt.
Include computational cryptography issues:

– Time-bound restrictions on adversaries, environments.
– Crypto primitives (trap-door function, hard-core bit).
– Distinguisher arguments, reformulated.

Computational cryptography reasoning isolated to one
stage, which uses a task-PIOA redefinition of the
cryptographic primitives.

55

Evaluation

Usable, scalable methods for carrying out complete,
rigorous proofs of security protocols.
Proofs decompose into manageable pieces.

– Different pieces show different kinds of properties, using
different kinds of reasoning

Inductive, assertional methods.
Combines nicely with formal cryptographic proofs.

56

Future work

Apply methods to more security protocols:
– More complex protocols.
– More powerful adversaries.

Cryptographic primitives:
– Redefine other cryptographic primitives in terms of ≤neg,pt.
– Prove results about their use in protocols.
– Reformulate traditional Distinguisher arguments using ≤neg,pt.

Precise comparison with related approaches, e.g.
[Backes, Pfitzmann, Waidner], and [Mitchell, et al.]
General results, e.g., about protocol composition,
standard classes of adversaries.

57

Thank you!

